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Abstract We give a Gaussian-type upper bound for the transition kernels of the time-
inhomogeneous diffusion processes on a nilpotentmeta-abelianLie group N generated
by the family of time dependent second order left-invariant differential operators.
These evolution kernels are related to the heat kernel for the left-invariant second
order differential operators on higher rank N A groups.
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1 Introduction

Time-dependent parabolic equations and, in particular, the problem of finding the
upper and lower bounds for their fundamental solutions has attracted considerable
attention in recent years (see e.g. [5,12–15,31] and the monographs by Stroock and
Varadhan [27], and van Casteren [4]). The aim of this paper is to get a Gaussian-
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type upper bound for the transition kernel of a particular kind of diffusion process
(evolution) on a nilpotent meta-abelian group N . The type of the evolution equation
considered here comes from the study of the heat equation on a class of solvable Lie
groups, the so called higher rank N A groups which are, by definition, the semi-direct
products of a nilpotent and abelian (with dimension greater than 1) groups (more on
that in Sect. 1.4).

1.1 Our setting

In what follows we assume that the group N is meta-abelian

N = M � V,

where M and V are abelian Lie groups with the corresponding Lie algebras m and v.
Weconsider a family of automorphisms {�(a)}a∈Rk of n, that leavesm and v invariant,
where a �→ �(a) is a homomorphism of R

k into Aut(n). Let m and v be spanned,
respectively, by {Y1, . . . ,Yd1} and {X1, . . . , Xd2}. We use these bases to identify m
and v with R

d1 and R
d2 respectively. We also use the exponential mapping to identify

M and V with m and v and thus with R
d1 and R

d2 respectively. For x ∈ N we write
x = m(x)v(x) = mv = (m, v) where m(x) = m ∈ M and v(x) = v ∈ V denote the
components of x in M � V .

Now we consider the action of an Lie abelian group A = R
k on N . We have a

semi-direct product S = N � A = N � R
k with the multiplication in S given by

(x, a)(y, b) = (xya, a + b),

where, for x = exp X, X ∈ n, the action of a ∈ A = exp A = R
k on N is defined as

xa = exp(�(a)X).

The group S is a solvable Lie group. The rank of S is, by definition, equal to dim A.

Similarly, for g ∈ S wewrite g = x(g)a(g) = xa = (x, a),where x(g) = x ∈ N and
a(g) = a ∈ A denote the components of g in N � A. In what follows we identify the
group A, its Lie algebra a, and a∗, the space of linear forms on a, with the Euclidean
space R

k endowed with the usual scalar product 〈·, ·〉 and the corresponding norm
‖a‖ = 〈a, a〉1/2. By ‖ · ‖∞ we denote the maximum norm ‖a‖∞ = max1≤ j≤k |a j |.

Let σ be a continuous function from [0,+∞) to A = R
k, and denote

�σ (t) = �(σ(t)).

We assume also that

(A1) in the {Yi }1≤i≤d1 basis on m, adX is lower triangular for all X ∈ v and
(A2) the restriction Sσ of �σ to M considered as a linear operator on m is given in

the {Yi }1≤i≤d1 basis by a d1 × d1 lower triangular matrix:

Sσ (t) = �σ (t)|M = [sσ
i j ]1≤i, j≤d1 .
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Specifically, for i ≥ j,

sσ
i j (u) = hM

i j (σ (u))eξ j (σ (u)),

where hM
i j ∈ R[a1, . . . , ak] are polynomials in a ∈ A = R

k with hM
j j = 1, for

1 ≤ j ≤ d1, and ξ1, . . . , ξd1 ∈ A∗ = (Rk)∗.
(A3) The matrix

T σ (t) = �σ (t)|V = [tσi j ]1≤i, j≤d2

is a d2 × d2 lower triangular and, for i ≥ j,

tσi j (u) = hVi j (σ (u))eϑ j (σ (u)),

where hVi j ∈ R[a1, . . . , ak] are polynomials in a ∈ A = R
k with hVj j = 1, for

1 ≤ j ≤ d2, and ϑ1, . . . , ϑd2 ∈ A∗ = (Rk)∗.

1.2 Evolution kernel

Let, for Z ∈ n,

Z(t) = �σ (t)Z .

Let,

Lσ
N (t) =

d2∑

i=1

Xi (t)
2 +

d1∑

j=1

Y j (t)
2.

Now we consider the evolution process generated by Lσ
N (t). By C(N ) we denote

the set of coninuous functions on N . Let

C∞(N ) =
{
f ∈ C(N ) : lim

x→∞ f (x) exists
}

.

Let d = dim n. For X ∈ n, we let X̃ denote the corresponding right-invariant vector
field. For a multi-index I = (i1, . . . , id), i j ∈ Z

+ and a basis X1, . . . , Xd of the Lie

algebra n we write X I = Xi1
1 , . . . , Xid

m . For κ, � = 0, 1, 2, . . . ,∞ we define

C (κ,�)(N ) = { f : X̃ I X J f ∈ C∞(N ) for every |I | < κ + 1 and |J | < � + 1}
and

‖ f ‖0(κ,�) = sup
|I |=κ,|J |=�

‖X̃ I X J f ‖∞,

‖ f ‖(κ,�) = sup
|I |≤κ,|J |≤�

‖X̃ I X J f ‖∞.
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In particular C (0,2)(N ) with the norm ‖ f ‖(0,2) is a Banach space. It is known (see
[4,19,28]) that there exists the (unique) family of bounded operatorsUσ

s,t onC∞ which
satisfies

(i) Uσ
s,s = Id, for all s ≥ 0,

(ii) limh→0Uσ
s,s+h f = f in C∞(N ),

(iii) Uσ
s,rU

σ
r,t = Uσ

s,t , 0 ≤ s ≤ r ≤ t,
(iv) ∂sUσ

s,t f = −Lσ
N (s)Uσ

s,t f for every f ∈ C (0,2)(N ),

(v) ∂tUσ
s,t f = Uσ

s,tLσ
N (t) f for every f ∈ C (0,2)(N ),

(vi) Uσ
s,t : C (0,2)(N ) → C (0,2)(N ) for all s ≤ t.

The family Uσ
s,t is called the evolution generated by Lσ

N (t). By Pσ
t,s we denote the

corresponding kernel

Uσ
s,t f (x) =

∫

N
Pσ
t,s(x; y) f (y)dy.

Since Lσ
N (t) commutes with left translation, the same is true for Uσ

s,t . Hence,

Pσ
t,s(x; y) = Pσ

t,s(e; x−1y).

With a small abuse of notation we write

Pσ
t,s(x) = Pσ

t,s(e; x).

Hence, the operator Uσ
s,t is a convolution operator with a probability measure (with a

smooth density) Pσ
t,s,

Uσ
s,t f = f ∗ Pσ

t,s .

We call Pσ
t,s(x) or P

σ
t,s(x; y) the evolution kernel. Sometimes Pσ

t,s(x; y) is called the
transition kernel since in probabilistic terms Pσ

t,s(x; y) is the transition kernel for the
time-dependent Markov process (or evolution), ω(t), on N defined by the operator
Lσ
N (t). Probability that starting from x at time s the proces ω(t) is in a given set

B ⊂ N is

Ps,x (ω(t) ∈ B) =
∫

B
Pσ
t,s(x; y)dy.

By (iii), for s ≤ r ≤ t,

Pσ
t,r ∗ Pσ

r,s = Pσ
t,s .
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1.3 Main result

Our aim is to estimate the evolution kernel Pσ
t,s . In order to do this, first we disin-

tegrate the process ω(t) into the corresponding processes on M and V respectively.
Specifically, let

Lσ
M (t) =

d1∑

j=1

Y j (t)
2 and Lσ

V (t) =
d2∑

j=1

X j (t)
2 (1.1)

thought of as operators on M and V respectively.
For v ∈ V, let

Lσ
M (t)v =

d1∑

j=1

(Ad(v)Y j (t))
2. (1.2)

Then the operator Lσ
N (t) is the skew-product of the above defined operators, i.e.,

Lσ(t)
N f (m, v) = Lσ

V (t) f (m, ·)|v + Lσ
M (t)v f (·, v)|m, t ∈ R

+.

The time-dependent family of operators Lσ
V (t) gives rise to an evolution on V = R

d2

that is described by a kernel PV,σ
t,s which may be explicitly computed, since V is

abelian. For η ∈ C∞([0,+∞), V ) let

Lσ
M (t)η =

d1∑

j=1

(Ad(η(t))Y j (t))
2.

This family of operators gives rise to an evolution on M = R
d1 that is described by a

kernel PM,σ,η
t,s which may also be explicitly computed (see Sect. 4).

One of our main tools is the following skew-product formula for Pσ
t,s (which can

be proved along the lines of [23, Theorem 1.2], where diagonal action of A on N was
considered).

Theorem 1.1 For m ∈ M and v ∈ V,

∫

N
Pσ
t,s(m, v;m′, v′) f (m′, v′)dm′dv′

=
∫ ∫

M
PM,σ,η
t,s (m;m′) f

(
m′, η(t)

)
dm′dWV,σ

s,v (η)

whereWV,σ
s,v is the probability measure on the space C([s,+∞), V ) generated by the

diffusion process η(t) starting from v ∈ V at time s, with the generator Lσ
V (t).

A difficulty in applying the above formula is that the process η(t) does not have
independent coordinates. This difficulty is overcome with the help of Proposition 3.1
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which gives the estimate for the joint probability of supu∈[s,t] ‖η(u)‖∞ and the position
of the process η at time t, i.e., η(t). This makes all the computation quite involved.

In order to state our main theorem we need to introduce some notation. Let, for
1 ≤ j ≤ d2,

Vj (τ, t) = max
s∈[τ,t](A

σ
V (τ, s) − Aσ

V (τ, s)Aσ
V (τ, t)−1Aσ

V (τ, s)) j j , (1.3)

where

Aσ
V (τ, s) = 2

∫ s

τ

T σ (u)T σ (u)∗du. (1.4)

Set

S(τ, t) =
∑

i≥ j

∫ t

τ

|sσ
i j (u)|2du, S�(τ, t) =

d1∏

j=1

∫ t

τ

e2ξ j (σ (u))du,

T (τ, t) =
∑

i≥ j

∫ t

τ

|tσi j (u)|2du, T�(τ, t) =
d2∏

j=1

∫ t

τ

e2ϑ j (σ (u))du,

V(τ, t) =
d2∑

j=1

Vj (τ, t).

(1.5)

The main result is the following estimate.

Theorem 1.2 For every T > 0 there are positive constants c1, c2, c3 and a natural
number ko such that for all T ≥ t ≥ τ ≥ 0 and all (m, v) ∈ N ,

Pσ
t,τ (m, v)

≤ c1
̃(τ, t, v) − ‖v‖∞ + 2

S�(τ, t)1/2T�(τ, t)1/2
exp

(
− c2‖v‖2
T (τ, t)

− c3‖m‖2
(̃(τ, t, v) + 1)2koS(τ, t)

)

+ c1
‖m‖ 1

2ko

S�(τ, t)1/2T�(τ, t)1/2
exp

(
− c2‖v‖2
T (τ, t)

− c3‖m‖2
(̃(τ, t, v) + 1 + ‖m‖ 1

2ko )2koS(τ, t)

)

+ c1S�(τ, t)−1/2T�(τ, t)−1/2V(τ, t)1/2 exp

(
− c2‖v‖2
T (τ, t)

− ‖m‖1/ko
2V(τ, t)

)
, (1.6)

where

(τ, t, v) = max
s∈[τ,t] ‖A

σ
V (τ, s)Aσ

V (τ, t)−1v‖∞, (1.7)

and

̃(τ, t, v) = (τ, t, v) + C
n∑

j=1

Vj (τ, t)
1/2. (1.8)
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Remark In Sect. 7 we give explicit estimates for the quantities ̃(τ, t, v) and V(τ, t).

Remark Gaussian estimates in R
n for the fundamental solution of the time-dependent

parabolic equations are usually obtained under the assumption that the operator is
(uniformly) elliptic (see e.g. classical papers by Aronson [2] and Fabes and Stroock
[11]). We do not require this condition and our estimate explicitly depends on the
coefficients of the operator.

Remark If the action of A on N is diagonal, i.e., the polynomials in entries of matrices
Sσ (t) and T σ (t) [see the assumptions (A2) and (A3)] satisfy hM

i j = hVi j = 0 for i �= j
then all the quantities appearing in Theorem 1.2 can be easily computed. We get

Vj (τ, t) = 2
∫ t

τ

e2ϑ j (σ (u))du, S(τ, t) =
d1∑

j=1

∫ t

τ

e2ξ j (σ (u)du

and

V(τ, t) = 2
d2∑

j=1

∫ t

τ

e2ϑ j (σ (u))du T (τ, t) = V(τ, t)/2.

Finally,

(τ, t, v) = max
s∈[τ,t]

∫ s

τ

e2ϑ j (σ (u))du

(∫ t

τ

e2ϑ j (σ (u))du

)−1

‖v‖∞ = ‖v‖∞.

In this setting Theorem 1.2 simplifies and we obtain [23, Theorem 4.1].

1.4 Applications

Since the estimate given by Theorem 1.2, at first glance, seems to be quite technical
and complicated it is worth to explain why this formula is important and where it can
be used. First of all the estimate for Pσ

t,s, given by Theorem 1.2, can be applied in the
analysis of left-invariant, second-order differential operators on the higher rank N A
groups, i.e., the semi-direct product N �R

k as described above (at this moment we do
not assume that N = M�V ). Consider, for α = (α1, . . . , αk) ∈ R

k, the left-invariant
differential operator of the form

Lα =
d2∑

j=1

X j (a)2 +
d1∑

j=1

Y j (a)2 + �α, (1.9)

where

�α =
k∑

j=1

(∂2a j
− 2α j∂a j ).
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In this setting properties of bounded harmonic functions on S is certainly of interest.
Under some assumption on the drift vector α there exists a Poisson kernel ν for Lα

[6,7]. That is, there is a C∞ function ν on N such that every bounded Lα-harmonic
function F on S may be written as a Poisson integral against a bounded function f
on S/A = N ,

F(g) =
∫

S/A
f (gx)ν(x)dx =

∫

N
f (x)ν̌a(x−1xo)dx, g = (xo,a),

where

ν̌a(x) = ν(a−1x−1a)χ(a)−1,

where χ is the modular function for left invariant Haar measure on S, i.e.,

χ(g) = det(Ad(g)).

Conversely the Poisson integral of any f ∈ L∞(N ) is a bounded Lα-harmonic func-
tion.

It is known that the Poisson kernel ν is equal to limt→∞ πN (μt ), where πN (g) =
x(g) is a projection from S onto N . To get some information on μt we use a well
known formula which express Tt as a skew-product of the diffusion on N and A. For
f ∈ Cc(N × R

k) and t ≥ 0,

Tt f (x, a) = EaU
σ
0,t f (x, σt ) = Ea( f ∗N Pσ

t,0)(x, σt ), (1.10)

where the expectation E is taken with respect to the distribution of the process σt
(Brownian motion with drift) in R

k generated by �α. The operator Uσ
0,t acts on the

first variable of the function f (as a convolution operator). The idea of such a decom-
position goes back to [16,17,29]. In the context of N A groups with dim A = 1 this
decompositionwas used in [7–10], and laterwas generalized by the authors and applied
for dim A > 1, see e.g. [20,22]. Note that Theorem 1.1 is a generalization of (1.10)
to evolution operators.

Estimates for the Poisson kernel for the operator (1.9) were obtained by the authors
in a series of papers [20–24]. However, in all these papers the action of A on N is
diagonal. Thus Theorem 1.2 opens the door to consider non-diagonal actions. This is
going to be the subject of our future research.

1.5 Structure of the paper

The outline of the rest of the paper is as follows. In Sect. 2 we state the formula for the
evolution kernel in R

n and recall the Borell–TIS inequality which is in Sect. 3 used in
the proof of an appropriate estimate for P

(
sups∈[τ,t] ‖η(s)‖∞ ≥ u and η(t) ∈ B

)
for

u ∈ R and B ⊂ R
n . In Sects. 4 and 5 we study evolutions on M and V, respectively.

Finally in Sect. 6 we give the proof of Theorem 1.2 and in Sect. 7 we give some
estimates for quantieties given in (1.7) and (1.8).
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2 Preliminaries

2.1 Gaussian variables and fields

We follow the presentation in [1]. For R
n-valued random variables X and Y their

covariance matrix is defined as Cov(X,Y ) = E(X − EX)(Y − EY )t . An R
n-valued

random variable X is said to be multivariate Gaussian if for every non-zero α =
(α1, . . . , αn) ∈ R

n, the real valued random variable 〈α, X〉 = ∑n
i=1 αi Xi is Gaussian.

In this case the density of X is given by the multivariate normal density

(2π)−n/2(detC)−1/2e− 1
2C

−1(x−m)·(x−m),

where m = EX and C = Cov(X, X) is a positive semi-definite n × n covariance
matrix. In this case we write X ∼ Nn(m,C) or simply X ∼ N (m,C).

Lemma 2.1 Let X ∼ Nn(m,C). Assume that d < n and make the partition

X = (X1, X2) = ((X1, . . . , Xd), (Xd+1, . . . , Xn)),

m = (m1,m2) = ((m1, . . . ,md), (md+1, . . . ,mn))

and

C =
[
C11 C12

C21 C22

]
,

where C11 is a d × d-matrix. Then each Xi ∼ N (mi ,Cii ) and the conditional distri-
bution of Xi given X j is also Gaussian, with mean vector

mi | j = mi + Ci jC
−1
j j (X j − m j )

and covariance matrix

Ci | j = Cii − Ci jC
−1
j j C ji .

Proof See e.g. [1, p. 8]. ��
A random field is a stochastic process, taking values in some space, usually in a
Euclidean space, and defined over a parametric space T . A real valued Gaussian
process is a random field f on a parameter set T for which the (finite dimensional)
distributions of ( ft1 , . . . , ftn ) are multivariate Gaussian for each 1 ≤ n < +∞ and
each (t1, . . . , tn) ∈ T n .

2.2 Gaussian inequalities

The following powerful inequality was discovered independently, and was proved in
very different ways, by Borell [3] and Tsirelson et al. [30]. Following [1] we call the
following inequality Borell–TIS inequality.
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Theorem 2.2 (Borell–TIS inequality) Let ft be a centered Gaussian process, almost
surely bounded on T .Write | f |T = supt∈T ft . ThenE| f |T < +∞ and, for all u > 0,

P(| f |T − E| f |T > u) ≤ e−u2/2σ 2
T ,

where

σ 2
T = sup

t∈T
E f 2t .

Proof For the proof see the original papers [3,30] or [1]. ��
Immediately, we get the following

Corollary 2.3 Let ft be a centered Gaussian process, almost surely bounded on T .

Then for all u > E| f |T ,

P(| f |T > u) ≤ e−(u−E| f |T )2/2σ 2
T .

2.3 Evolution equation in R
n

Let

L(t) = 1

2

n∑

i, j=1

ai j (t)∂i∂ j +
n∑

j=1

δ j (t)∂ j , (2.1)

where ∂i = ∂xi and a(t) = [ai j (t)] is a symmetric, positive definite matrix and the ai j
and δ j belong to C([0,∞), R). For s > t , let Pt,s be the evolution kernel generated
by L(t). Let, for 1 ≤ i, j ≤ n,

As,t = [Ai j (s, t)] =
[∫ t

s
ai j (u)du

]
,

Ds,t = [Dj (s, t)] =
[∫ t

s
δ j (u)du

]
. (2.2)

Proposition 2.4 The evolution kernel Pt,s corresponding to the operator L(t) defined
in (2.1) is given by

Pt,s(x) = (2π)−
n
2 (det As,t )

− 1
2 e− 1

2 (A−1
s,t (x−Ds,t ))·(x−Ds,t ).

Proof See e.g. [23, Proposition 2.9] ��

3 Main probabilistic estimate

Consider the operator L(t), defined in (2.1), without the drift vector δ(t) =
(δ1(t), . . . , δn(t)), i.e,
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L(t) = 1

2

n∑

i, j=1

ai j (t)∂i∂ j . (3.1)

Let bs = (b1s , . . . , b
n
s ) be the stochastic process generated by the operator L(t).Define,

for v ∈ R
n,

Bε(v) =
n∏

j=1

B1
ε (v j ) and B1

ε (v j ) = [v j − ε/2, v j + ε/2],

and let ‖ · ‖∞ denote the �∞-norm on R
n, i.e., for a vector y ∈ R

n, ‖y‖∞ =
max1≤ j≤n |y j |.

Thedistribution of the processbt starting at time τ from v, i.e.,bτ = v, is denoted by
Pτ,v(·). This is a probability measure on the space of trajectories bt ∈ C([0,∞), R

n).

Proposition 3.1 Let bt be the process generated by L(t) defined in (3.1). For every
T > 0 there exists a constant C > 0 such that, for every ε > 0, u ≥ 0, v ∈ R

n, and
all T ≥ t ≥ τ ≥ 0, the following estimate holds,

(det Aτ,t )
1
2Pτ,0

(
sup

s∈[τ,t]
‖bs‖∞ > u and bt ∈ Bε(v)

)

≤ C
∫

Bε(v)

e−(u−(τ,t,a)−C
∑n

j=1 Vj (τ,t)1/2)2/2V(τ,t)e− 1
2 A

−1
τ,t a·ada

for all u > supa∈Bε(v) (τ, t, a) + C
∑n

j=1 Vj (τ, t)1/2, where

(τ, t, a) = sup
s∈[τ,t]

‖Aτ,s A
−1
τ,t a‖∞

and

Vj (τ, t) = max
s∈[τ,t](Aτ,s − Aτ,s A

−1
τ,t Aτ,s) j j , V(τ, t) =

n∑

j+1

Vj (τ, t).

Proof Let τ be fixed. To simplify notation we write, for s ≥ τ,

As = [Ai j (τ, s)],
where [Ai j ] is the matrix defined in (2.2). We write

Pτ,0

(
sup

s∈[0,t]
‖bs‖∞ > u and bt ∈ Bε(v)

)

=
∫

Bε(v)

Pτ,0

(
sup

s∈[0,t]
‖bs‖∞ > u | bt = a

)
Pt,τ (a)da. (3.2)
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Now we estimate the conditional probability under the integral sign. For s ≤ t and
fixed, consider 2n-dimensional random vector

(bs, bt ) = (b1s , . . . , b
n
s , b

1
t , . . . , b

n
t ) ∼ N2n(0,C).

By Proposition 2.4, Cov(bs, bs) = [Ai j (0, s)] = As . Since the process bs has inde-
pendent increments we get

Cov(bs, bt ) = Cov(bs, bs + bt − bs) = Cov(bs, bs) = As .

By Cov(bt , bs) = Cov(bs, bt )t we get,

C =
[
As As

As At

]
.

ByLemma 2.1 the conditional distribution of bs given bt is Gaussianwithmean vector

ms|t = As A
−1
t bt

and covariance matrix

Cs|t = As − As A
−1
t As .

Let bs(a) = (b1s (a), . . . , bns (a)) denote the process whose distribution is the condi-
tional distribution of bs given bt = a. In this notation

Pτ,0

(
sup

s∈[τ,t]
‖bs‖∞ > u | bt = a

)
= Pτ,0

(
sup

s∈[τ,t]
max
1≤ j≤n

|b j
s (a)| > u

)
. (3.3)

Let

b̃s(a) := bs(a) − E0bs(a) = bs(a) − As A
−1
t a.

Clearly,

b̃s(a) ∼ Nn(0,Cs|t ). (3.4)

We continue (3.3) as follows.

Pτ,0

(
sup

s∈[τ,t]
max
1≤ j≤n

|b j
s (a)| > u

)

= P0

(
sup

s∈[τ,t]
max
1≤ j≤n

|b̃ j
s (a) + (As A

−1
t a) j | > u

)
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≤ Pτ,0

(
sup

s∈[τ,t]
max
1≤ j≤n

|b̃ j
s (a)| + sup

s∈[τ,t]
‖As A

−1
t a‖∞ > u

)

= Pτ,0

(
sup

s∈[τ,t]
max
1≤ j≤n

|b̃ j
s (a)| > u − (τ, t, a)

)
.

Thus, by symmetry of b̃s(a) (see (3.4)),

Pτ,0

(
sup

s∈[τ,t]
max
1≤ j≤n

|b j
s (a)| > u

)
≤ 2Pτ,0

(
sup

s∈[τ,t]
max
1≤ j≤n

b̃ j
s (a) > u − (τ, t, a)

)
.

(3.5)

Denote

�(τ, t, a) = Eτ,0 sup
s∈[τ,t]

max
1≤ j≤n

b̃ j
s (a),

σ 2
t = sup

s∈[τ,t]
max
1≤ j≤n

Eτ,0(b̃
j
s (a))2. (3.6)

By Corollary 2.3, with T = {1, . . . , n} × [τ, t],

Pτ,0

(
sup

s∈[τ,t]
max
1≤ j≤n

b̃ j
s (a) > u − (τ, t, a)

)
≤ e−(u−(τ,t,a)−�(τ,t,a))2/2σ 2

t ,

for all u > (τ, t, a) + �(τ, t, a). Taking together the above estimate, (3.3), (3.5),
and putting the resulting upper bound into (3.2) we get

Pτ,0

(
sup

s∈[τ,t]
‖bs‖∞ > u and bt ∈ Bε(v)

)

≤ 2
∫

Bε(v)

e−(u−(τ,t,a)−�(τ,t,a))2/2σ 2
t Pt,τ (a)da

≤ C(det At )
− 1

2

∫

Bε(v)

e−(u−(τ,t,a)−�(τ,t,a))2/2σ 2
t e− 1

2 A
−1
t a·ada, (3.7)

for all u > supa∈Bε(v) (τ, t, a) + �(τ, t, a). We used Proposition 2.4 in the last
inequality.

Let us estimate the quantities introduced in (3.6). The coordinate process b̃ j
s (a) is

a Gaussian process and, by (3.4),

b̃ j
s (a) ∼ N1(0, v j (s)), where v j (s) = v j (τ, s) = (As − As A

−1
t As) j j . (3.8)

In this notation

Vj (τ, t) = max
s∈[τ,t] v j (s).
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It follows from [26, (1.1)] that for every η > 0 and T > 0 there is c = cη,T such that
for every u > 0 and all T ≥ t ≥ τ ≥ 0,

Pτ,0

(
sup

s∈[τ,t]
max
1≤ j≤n

b̃s(a) > u

)
≤ ce−(1−η)u2/2σ 2

t .

Hence, taking η = 1/2,

Eτ,0 sup
s∈[τ,t]

max
1≤ j≤n

b̃ j
s (a) =

∫ ∞

0
Pτ,0( sup

s∈[τ,t]
max
1≤ j≤n

b̃s(a) > u)du

≤ c
∫ ∞

0
e−u2/4σ 2

t du ≤ c
∫

R

e−u2/4σ 2
t du ≤ cσt .

Hence,

�(τ, t, a) ≤ cσt .

By (3.8),

σ 2
t = sup

s∈[τ,t]
max
1≤ j≤n

v j (τ, s) ≤
n∑

j=1

Vj (τ, t) = V(τ, t).

Hence, for u > supa∈Bε(v) (τ, t, a) + C
∑n

j=1 Vj (τ, t)1/2, we can rewrite (3.7) as
follows,

(det At )
1
2Pτ,0

(
sup

s∈[τ,t]
‖bs‖∞ > u and bt ∈ Bε(v)

)

≤ C
∫

Bε(v)

e−(u−(τ,t,a)−C
∑n

j=1 Vj (τ,t)1/2)2/2V(τ,t)e− 1
2 A

−1
t a·ada.

Hence, the result follows. ��
With the notation as in Proposition 3.1 we have immediately the following

Corollary 3.2 For every T > 0 there exists a constant C > 0 such that for all ε > 0
and all T ≥ t ≥ τ ≥ 0 the following estimate holds,

ε−n(det Aτ,t )
1
2Pτ,0

(
sup

s∈[τ,t]
‖bs‖∞ > u and bt ∈ Bε(v)

)

≤ C sup
a∈Bε(v)

e−(u−(τ,t,a)−C
∑n

j=1 Vj (τ,t)1/2)2/2
∑n

j=1 Vj (τ,t)e− 1
2 A

−1
τ,t a·a

for all u > supa∈Bε(v) (τ, t, a) + C
∑n

j=1 Vj (τ, t)1/2.
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4 Evolution on M

We choose coordinates yi for M for which Yi corresponds to ∂i = ∂yi , 1 ≤ i ≤ d1.
Let η ∈ C([0,∞), V ) and consider the evolution on M generated by the operator

Lσ
M (t)η =

d1∑

j=1

(Ad(η(t))Y j (t))
2.

Then

Ad(η(t))Y j (t) = Ad(η(t))�σ (t)Y j =
d1∑

k=1

ψ j,k(t)Yk,

and consequently,

Ad(η(t))Y j (t) =
d1∑

j=1

(
Ad(η(t))Y j (t)

)2 =
d1∑

k,l=1

d1∑

j=1

ψk, j (t)ψl, j (t)YkYl

=
d1∑

k,l=1

(ψ(t)ψ(t)∗)klYkYl ,

where ψ(t) = [ψi, j (t)] is the matrix of Ad(η(t))�σ (t)|M . Thus the matrix [ai j ] from
(2.1) for the operator Lσ

M (t)η is

aσ,η
M (t) = 2[Ad(η(t))Sσ (t)][Ad(η(t))Sσ (t)]∗,

where the adjoint is in the y j coordinates. Let

Aσ,η
M (s, t) =

∫ t

s
aσ,η
M (u) du.

For a d × d invertible matrix A we set

B(A)(x) = 1

2
A−1x · x and D(A) = (2π)−

d
2 (det A)−

1
2 .

It follows fromProposition2.4 that the evolutionkernel PM,σ,η
t,s for the operatorLσ

M (t)η

is Gaussian, and in our notation, is given by

PM,σ,η
t,s (m) = D(Aσ,η

M (t, s))e−B(Aσ,η
M (t,s))(m), m ∈ M = R

d1

and the corresponding transition kernel is,

PM,σ,η
t,s (m;m′) = PM,σ,η

t,s (m − m′), m1,m2 ∈ M = R
d1 .
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For a matrix A the operator norm, that is the norm A considered as a liner operator
from �2(Rn) → �2(Rn) is denoted by ‖A‖. We will need the following two simple
lemmas.

Lemma 4.1 Let A be a positive semi-definite matrix. Then

B(A)(x) ≥ ‖x‖2/(2‖A‖).

Proof See e.g. [22, Lemma 4.1] ��
Lemma 4.2 Let K and D be square matrices and let

A =
[
K B

C D

]
.

If det K �= 0 then det A = det K det(D − CK−1B).

Proof See e.g. [32]. ��
Nowweprove anupper boundonD(Aσ,η(s, t)) that is independent ofη generalizing

[22, Lemma 4.2].

Lemma 4.3 There is a constant C > 0 such that

D(Aσ,η
M (s, t)) ≤ C

(
d1∏

i=1

∫ t

s
sσ
i i (u)2du

)−1/2

,

where sσ
i j (t) are the entries of the matrix S

σ (t) defined in (1.1).

Proof By the assumptions (A1) and (A2) on p. 2 the operator adX : m → m is lower
triangular for all X ∈ v and �σ (t)|M = Sσ (t), where Sσ (t) is linear operator on m
that is lower triangular in the Yi basis. We omit the t and σ dependence for the sake
of simplicity. In the coordinates defined by the Yi basis,

adX =
[
Xo 0

vt 0

]
, Adx = eadX =

[
eXo 0

v(X)t 1

]
, where x = exp X,

where the Xo is (d1 − 1) × (d1 − 1)-matrix and v is a (d1 − 1) × 1-column vector.
Then

Adx S = eadX

[
S0 0

S1 sd1d1

]
=

[
eXo So 0

v(X)tSo + S1 sd1d1

]
=:

[
eXo So 0

F t sd1d1

]
. (4.1)

Then

Adx S(Adx S)t =
[
eXo SoStoe

X t
o G

G t s2d1d1 + |F |2
]

,
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where

G = eXo SoF = eXo So(S
t
ov(X) + St1).

Hence,

Aσ,η(s, t) =
[
Ao B

Bt A + E

]
,

where

Ao =
∫ t

s
eXo(u)So(u)So(u)teXo(u)tdu, B =

∫ t

s
G(u)du,

A =
∫ t

s
s2d1d1(u)du, E =

∫ t

s
|F(u)|2du.

From Lemma 4.2,

det Aσ,η(s, t) = (det Ao)(A + E − BtA−1
o B)

= (det Ao)A + (det Ao)(E − BtA−1
o B)

= (det Ao)A + det

[
Ao B

Bt E

]
.

The determinant on the right is non-negative since it is the sd1d1 = 0 case of formula
(4.1). Hence,

det Aσ,η
M (s, t) ≥ A(det Ao).

Our result follows by induction. ��
Now we estimate the operator norm of the matrix

Aσ,η
M (s, t) =

∫ t

s
Ad(η(u))Sσ

(
Ad(η(u))Sσ (u)

)t
du. (4.2)

Recall that we assume that Sσ is lower triangular [assumption (A2)]. Specifically, for
i ≥ j,

sσ
i j (u) = hM

i j (σ (u))eξ j (σ (u)),

where hM
i j are polynomials in a ∈ A = R

k, and hM
j j = 1.

Lemma 4.4 Let η = η(u) = (η1(u), . . . , ηd2(u)) ∈ R
d2 = V be a continuous

function. There exist constants C > 0 and ko ∈ N, such that
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‖Aσ,η
M (s, t)‖ ≤ C(1 + �η(s, t))2ko

∑

i≥ j

∫ t

0
|sσ
i j (u)|2du,

where

�η(s, t) = sup
s≤u≤t

‖η(u)‖∞.

Proof We note first that for X ∈ n,

AdX
∣∣
m =

ko∑

�=0

(
adX

∣∣
m

)�
/�!

Hence,

‖AdX
∣∣
m‖ ≤ C(1 + ‖ adX ‖)ko ≤ C ′(1 + ‖X‖)ko .

Since all norms on finite dimensional vector space are equivalent we get

‖Sσ (u)‖2 ≤ C
∑

i≥ j

|sσ
i j (u)|2. (4.3)

Our result follows by bringing the norm inside the integral in (4.2). ��

5 Evolution on V

Now we consider the evolution process η(t) on V generated by

Lσ
V (t) =

d2∑

j=1

X j (t)
2 =

d2∑

j=1

(T σ (t)X j )
2

(see (1.1) on p. 4). The matrix at = [ai j (t)] defined in (2.1) is equal to

aσ
V (t) = 2T σ (t)T σ (t)∗.

Let

Aσ
V (s, t) =

∫ t

s
aσ
V (u)du.

One of the differences between this setting and the case of meta-abelian groups con-
sidered in [23] is that the coordinates η j (t), j = 1, . . . , d2, of the process η(t) are no
longer independent.
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Notice that exactly in the same way as in the proof of Lemma 4.3 we can show that

(det Aσ
V (s, t))−1/2 ≤ C

⎛

⎝
d2∏

j=1

∫ t

s
e2ϑ j (σ (u))du

⎞

⎠
−1/2

. (5.1)

We have the following, analogous to (4.3), inequality

‖T σ (u)‖2 ≤ C
∑

i≥ j

|tσi j (u)|2

which implies (as in Lemma 4.4)

‖Aσ
V (s, t)‖ ≤ C

∑

i≥ j

∫ t

s
|tσi j (u)|2du. (5.2)

Hence in the notation introduced in (1.3) and (1.5), using Lemma 4.1, Corollary 3.2
reads,

Proposition 5.1 For every T > 0 there exist constants C, c > 0 such that, for all
T ≥ t ≥ τ ≥ 0, all u > 0, and all ε > 0, the following estimate holds,

ε−nWV,σ
0

(
sup

s∈[τ,t]
‖η(s)‖∞ ≥ u and η(t) ∈ Bε(v)

)

≤ CT�(τ, t)−1/2 sup
a∈Bε(v)

e−(u−(τ,t,a)−C
∑d2

j=1 Vj (τ,t)1/2)2/2V(τ,t)

× exp

(
− c‖a‖2
T (τ, t)

)
,

for all u > supa∈Bε(v) (τ, t, a) + C
∑d2

j=1 Vj (τ, t)1/2, where

(τ, t, v) = max
s∈[τ,t] ‖A

σ
V (τ, s)Aσ

V (τ, t)−1v‖∞.

6 Proof of Theorem 1.2

In this section we estimate the transition kernel for the evolution on N = M � V,

Pσ
t,τ (m, v) = Pσ

t,τ (0, 0;m, v), t ≥ τ.

Proof of Theorem 1.2 We allow the constants C and D to change from line to line.
By Lemmas 4.1 and 4.3, for t ≥ τ and m,m′ ∈ M,
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PM,σ,η
t,τ (m,m′) = D(Aσ,η

M (τ, t))e−B(Aσ,η
M (τ,t))(m−m′)

≤ CS�(τ, t)−1/2e
− ‖m−m′‖2

2‖Aσ,η
M (τ,t)‖ . (6.1)

By Theorem 1.1, for m,m′ ∈ M and v, v′ ∈ V ,

∫

V
Pσ
t,τ (m, v;m′, v′)ψ(v′)dv′ =

∫
PM,σ,η
t,τ (m,m′)ψ(η(t)) dWV,σ

τ,v (η)

≤ CS�(τ, t)−1/2
∫

ψ(η(t))e
− ‖m−m′‖2

2‖Aσ,η
M (τ,t)‖ dWV,σ

τ,v (η).

Let

F(m, σ, η) = exp

(
− D‖m‖2

(1 + �η(s, t))2koS(τ, t)

)
,

where

�η(s, t) = sup
s≤u≤t

‖η(u)‖∞.

Then, by Lemma 4.4,

T�(τ, t)1/2
∫

Pσ
t,τ (m, v)ψ(v)dv ≤ C

∫
F(m, σ, η)ψ(η(t)) dWV,σ

τ,0 (η). (6.2)

For v ∈ R
d2 given and ε > 0, let

ψε(·) = ε−n1Bε(v)(·),

where

Bε(v) =
d2∏

j=1

B1
ε (v j ) and B1

ε (v j ) = [v j − ε/2, v j + ε/2].

We will estimate (6.2) with ψε in place of ψ as ε tend to zero.
Let Eη

τ,v denote expectation with respect to the distribution dWV,σ
τ,v (η) of η in the

space of trajectories (η(τ) = v ∈ V ). For � = 1, 2, . . . , define the sets of paths in V,

A� =
{

η : � − 1 ≤ �η(τ, t) = sup
u∈[τ,t]

‖η(u)‖∞ < �

}
.

The integral on the right in (6.2) can be written as an infinite sum and estimated as
follows
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∞∑

�=1

Eη
τ,0F(m, σ, η)ψε(η(t))1A�

(η)

≤
∞∑

�=1

exp

(
− D‖m‖2

(1 + �)2koS(τ, t)

)
Eη

τ,0ψε(η(t))1A�
(η)

≤
∞∑

�=1

exp

(
− D‖m‖2

�2koS(τ, t)

)
Eη

τ,0ψε(η(t))1A�
(η), (6.3)

for some ko ≥ 1.
To simplify notation we introduce

c� = exp

(
− D‖m‖2

�2koS(τ, t)

)
,

E�(ε) = Eη
τ,0ψε(η(t))1A�

(η) = ε−nWV,σ
τ,0 (η ∈ A� and η(t) ∈ Bε(v)) .

Let v �= 0 and choose ε/2 < ‖v‖∞. If η ∈ A� and η(t) ∈ Bε(v) then ‖η(t)‖∞ ≥
‖v‖∞ − ε/2. Hence,

E� = 0 for � < ‖v‖∞ − ε/2. (6.4)

Let

I = I (ε) =
∞∑

�=1

c�E�(ε),

and set

�∗
ε =

⌈
sup

a∈Bε(v)

̃(τ, t, a)

⌉
.

Obviously, �̃(τ, t, v)� > ‖v‖∞−ε/2 for sufficiently small ε.Since �∗
ε ≥ �̃(τ, t, v)�

we get that �∗
ε > ‖v‖∞ − ε/2 for sufficiently small ε. Hence,

I = I1 + I2 :=
∑

‖v‖∞≤�≤�∗
ε

c�E�(ε) +
∞∑

�=�∗
ε

c�E�(ε).

We estimate I1. Since

E�(ε) ≤ E ′(ε),

where

E ′(ε) = ε−nWV,σ
τ,0 (η(t) ∈ Bε(v)) ,
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we get, by (5.1) and (5.2),

I1 ≤ E ′(ε)
∑

‖v‖∞≤�≤�∗
ε

exp

(
− D‖m‖2

�2koS(τ, t)

)

≤ c(�∗
ε − ‖v‖∞ + 1)T�(τ, t)−1/2 exp

(
− c‖v‖2
T (τ, t)

)
exp

(
− D‖m‖2

(�∗
ε)

2koS(τ, t)

)
.

Now we consider I2. In this case to estimate E�(ε) we use Proposition 5.1,

I2 ≤ CT�(τ, t)−1/2 exp

(
− c‖v‖2
T (τ, t)

)

×
∞∑

�=�∗
ε

exp

(
− D‖m‖2

�2koS(τ, t)

)
sup

a∈Bε(v)

exp

(
− (� − ̃(τ, t, a))2

2V(τ, t)

)
.

Now we estimate the series above. We split the sum above into two parts: �∗
ε ≤ � ≤

�∗
ε + ‖m‖1/2ko and � > �∗

ε + ‖m‖1/2ko , and estimate the corresponding parts by the
following two terms [we note that if ε → 0 then �∗

ε → ̃(τ, t, v)]:

‖m‖ 1
2ko exp

(
− D‖m‖2

(�∗
ε + ‖m‖ 1

2ko )2koS(τ, t)

)

and

∑

�≥�∗
ε+‖m‖1/2k0

exp

(
− (� − supa∈Bε(v) ̃(τ, t, a))2

2V(τ, t)

)

≤
∞∑

�=1

exp

(
− (� + 1 + ‖m‖1/2ko)2

2V(τ, t)

)

≤
∫ ∞

‖m‖1/2ko
e−r2/2V(τ,t)dr ≤ √

2
√
V(τ, t)e− ‖m‖1/ko

2V(τ,t) .

The theorem follows. ��

7 Estimates for quantities (1.8) and (1.7)

In order to apply the estimate given in Theorem 1.2 into some particular problem one
needs to control the quantities (1.8) and (1.7) appearing there. The aim of this section
is to give some estimates for them which make the bound in Theorem 1.2 explicit.

We will need the following classical bounds for the norm of the inverse matrices
which is due to Richter [25] (see also [18] for a different proof). Recall that for a
matrix A, ‖A‖ stands for the operator norm �2 → �2.
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Theorem 7.1 Let A be a nonsingular n × n-matrix. Then

(n(n−2)/2| det A|−1‖A‖)1/(n−1) ≤ ‖A−1‖ ≤ n−(n−2)/2| det A|−1‖A‖n−1.

For the matrix Aσ
V (τ, t), defined in (1.4) on p. 5, we have by (5.2),

‖Aσ
V (τ, t)‖ ≤ T (τ, t),

where T (τ, t) is defined in (1.5). Also note that T (τ, t) is an increasing function of t.
Hence, the following is a corollary from Theorem 7.1. Notation below is as in (1.5).

Lemma 7.2 There is a constant c > 0 such that for every t ≥ τ ≥ 0 and for every
v ∈ R

d2 ,

(τ, t, v) ≤ cd2
−(d2−2)/2T�(τ, t)−1T (τ, t)d2‖v‖.

Proof By Theorem 7.1,

(τ, t, a) = sup
s∈[τ,t]

‖Aσ
V (τ, s)Aσ

V (τ, t)−1v‖∞

≤ cd2
−(d2−2)/2 sup

s∈[τ,t]
‖Aσ

V (τ, s)‖| det Aσ
V (τ, t)|−1‖Aσ

V (τ, t)‖d2−1‖v‖

≤ cd2
−(d2−2)/2 sup

s∈[τ,t]
T (τ, s)| det Aσ

V (τ, t)|−1T (τ, t)d2−1‖v‖

≤ cd2
−(d2−2)/2| det Aσ

V (τ, t)|−1T (τ, t)d2‖v‖.

Now (5.1) finishes the proof. ��
Lemma 7.3 There is a positive constant c such that for every t ≥ τ ≥ 0 and for every
v ∈ R

d2 ,

̃(τ, t, v) ≤ cT�(τ, t)−1T (τ, t)d2‖v‖ + c(T (τ, t) + T (τ, t)d2+1T�(τ, t)−1)1/2.

(7.1)

Proof Since all norms on the finite dimensional vector space are equivalent we get,
by (1.3), for every j,

0 ≤ Vj (τ, t)
1/2 ≤ c

(
max
s∈[τ,t] ‖A

σ
V (τ, s) − Aσ

V (τ, s)Aσ
V (τ, t)−1Aσ

V (τ, s)‖
)1/2

≤ c

(
max
s∈[τ,t] ‖A

σ
V (τ, s)‖ + max

s∈[τ,t] ‖A
σ
V (τ, s)‖ max

s∈[τ,t] ‖A
σ
V (τ, t)−1Aσ

V (τ, s)‖
)1/2

.

From the proof of Lemma 7.2

max
s∈[τ,t] ‖A

σ
V (τ, s)Aσ

V (τ, t)−1‖ ≤ d2
−(d2−2)/2T�(τ, t)−1T (τ, t)d2 .
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Thus

0 ≤ Vj (τ, t)
1/2 ≤ c(T (τ, t) + T (τ, t)d2+1T�(τ, t)−1)1/2.

Hence the sum
∑

j V j (τ, t)1/2 has the same (with a different constat) estimate. This
together with the estimate obtained in Lemma 7.2 finish the proof. ��

From the proof of Lemma 7.3 we have the following corollary .

Lemma 7.4 There is c > 0 such that for all t ≥ τ > 0,

V(τ, t) ≤ c(T (τ, t) + T (τ, t)d2+1T�(τ, t)−1).
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