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Abstract Let X = (Xn)n≥1 be a sequence of arbitrarily dependent nonnegative ran-
dom variables satisfying the boundedness condition

sup
τ

EX p
τ ≤ t,

where t > 0, 1 < p < ∞ are fixed numbers and the supremum is taken over
all finite stopping times of X . Let M = E supn Xn and V = supτ EXτ denote the
expected supremum and the optimal expected return of the sequence X , respectively.
We establish the prophet inequality

M ≤ V + V

p − 1
log

(
te

V p

)

and show that the bound on the right is the best possible. The proof of the inequality
rests on Burkholder’s method and exploits properties of certain special functions. The
proof of the sharpness is somewhat indirect, but we also provide an indication how
the extremal sequences can be constructed.
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1 Introduction

The purpose of the paper is to establish a sharp estimate between the expected supre-
mum of a sequence X = (Xn)n≥1 of L p-bounded random variables and the opti-
mal expected return (i.e., optimal stopping value) of X . Such comparisons are called
“prophet inequalities” in the literature and play a distinguished role in the theory of
optimal stopping, as evidenced in the papers of Allaart [1], Allaart and Monticino
[2], Assaf et al. [4,5], Boshuizen [3,6], Hill [8,9], Hill and Kertz [10–12], Kennedy
[13,14], Kertz [15,16], Krengel, Sucheston and Garling [17–19], Tanaka [24,25] and
many others.

We start with the necessary background and notation. Assume that X = (Xn)n≥1
is a sequence of (possibly dependent) random variables defined on the probability
space (�,F ,P). With no loss of generality, we may assume that this probability
space is the interval [0, 1] equipped with its Borel subsets and Lebesgue measure. Let
(Fn)n≥1 = (σ (X1, X2, . . . , Xn))n≥1 be the natural filtration of X . The problem can
be generally stated as follows: under some boundedness condition on X , find universal
inequalities which compare M = E supn Xn , the expected supremum of the sequence,
with V = supτ EXτ , the optimal stopping value of the sequence; here τ runs over the
class T of all finite stopping times adapted to (Fn)n≥1. The term “prophet inequality”
arises from the optimal-stopping interpretation of M , which is the optimal expected
return of a player endowed with complete foresight; this player observes the sequence
X andmay stop whenever he wants, incurring a reward equal to the variable at the time
of stopping. With complete foresight, such a player obviously stops always when the
largest value is observed, and on the average, his reward is equal to M . On the other
hand, the quantity V corresponds to the optimal return of the non-prophet player.

Let us mention here several classical results in this direction; for an excellent expo-
sition on the subject, we refer the interested reader to the survey by Hill and Kertz
[12]. The first universal prophet inequality is due to Krengel, Sucheston and Garling
[17,18]: if X1, X2, . . . are independent and nonnegative, then

M ≤ 2V

and the constant 2 is the best possible. The next result, coming from [8] and [10],
states that if X1, X2, . . . are independent and take values in [0, 1], then

M − V ≤ 1

4

and

M ≤ V − V 2.

Both estimates are sharp: equalities may hold for some non-trivial sequences X . Anal-
ogous inequalities for other types of variables X1, X2, . . . (e.g., arbitrarily-dependent
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and uniformly bounded, i.i.d., averages of independent r.v.’s, exchangeable r.v.’s, etc.),
aswell as for other stopping options (for instance, stoppingwith partial recall, stopping
several times, using only threshold stopping rules, etc.) have been studied intensively
in the literature and have found many interesting applications. We refer the reader to
the papers cited at the beginning.

The motivation for the results obtained in this paper comes from the following
statement proved by Hill and Kertz [11]: if X1, X2, . . . are arbitrarily dependent and
take values in [0, 1], then we have the sharp bound

M ≤ V − V log V . (1.1)

There is a very natural problem concerning the L p-version of this result, where p is
a fixed number between 1 and infinity. For example, consider the following interest-
ing question. Suppose that X1, X2, . . . are nonnegative random variables satisfying
supn EX

p
n ≤ 1. What is the analogue of (1.1)? Unfortunately, as we will see in Sect.

5 below, there is no non-trivial prophet inequality in this setting. More precisely, for
any K > 0 one can construct a sequence X bounded in L p which satisfies V = 1 and
M ≥ K .

We will work under the more restrictive assumption

X1, X2, . . . are nonnegative and satisfy sup
τ∈T

EX p
τ ≤ t, (1.2)

where t is a given positive number. For instance, this holds true, if the sequence X
possesses a majorant ξ which satisfies Eξ p ≤ t .

The main result of the paper is the following.

Theorem 1.1 Let t > 0, 1 < p < ∞ be fixed and suppose that X1, X2, . . . satisfy
(1.2). Then

M ≤ V + V

p − 1
log

(
te

V p

)
(1.3)

and the inequality is sharp: the bound on the right cannot be replaced by a smaller
number.

Note that this statement generalizes the inequality (1.1) of Hill and Kertz: it suffices
to take t = 1 and let p go to∞ to recover the bound. On the other hand, the expression
on the right of (1.3) explodes as p ↓ 1, which indicates that there is no prophet
inequality in the limit case p = 1.

A few words about the proof. Our approach is based on the following two-step pro-
cedure: first we show that it suffices to establish (1.3) under the additional assumption
that X is a nonnegative supermartingale; second, we prove that in the supermartingale
setting, the validity of (1.3) is equivalent to the existence of a certain special function
which enjoys appropriate majorization and convexity properties. In the literature this
equivalence is often referred to as Burkholder’s method or Bellman function method,
and it has turned out to be extremely efficient in numerous problems in probability
and analysis: consult e.g. [7,20,21,26] and references therein.
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We have organized the paper as follows. In the next sectionwe reduce the problem to
the supermartingale setting. Section 3 contains the description of Burkholder’s method
(or rather its variant which is needed in the study of (1.3) for supermartingales). In
Sect. 4 we apply the method and provide the proof of Theorem 1.1. In the final part of
the paper we show that there are no interesting prophet inequalities in the case when
the variables X1, X2, . . . are only assumed to be bounded in L p.

2 A reduction

In this section we show how to relate (1.3) to a certain inequality for nonneg-
ative supermartingales. Throughout, we use the notation X∗ = supn≥1 Xn and
X∗
m = sup1≤n≤m Xn for the maximal and the truncated maximal function of X .

Recall that V = supτ∈T EXτ . We start with the observation that it is enough to
deal with finite sequences only (in this paper we say that X is finite, if it is of the form
(X1, X2, . . . , XN−1, XN , XN , XN , . . .) for some deterministic N ). This is straightfor-
ward: suppose we have successfully established the prophet inequality in this special
case, and pick an arbitrary, possibly non-finite X . Then for any fixed N , the truncated
sequence XN = (X1, X2, . . . , XN−1, XN , XN , XN , . . .) is finite, inherits (1.2) and its
optimal expected return does not exceed V . Since the function V �→ V+ V

p−1 log
( te
V p

)
is nondecreasing on (0, t1/p], an application of (1.3) gives

E(XN )∗ ≤ V + V

p − 1
log

(
te

V p

)
.

It remains to let N → ∞ and use Lebesgue’s monotone convergence theorem.

Lemma 2.1 Suppose that X = (Xn)n≥1 is an arbitrarily dependent finite sequence of
random variables satisfying X1 ≡ 0 and (1.2). Then there is a finite supermartingale
Y = (Yn)n≥1 adapted to the filtration of X, which satisfies

Yn ≥ Xn almost surely for all n, (2.1)

P (Y1 = V ) = 1 (2.2)

and
sup
τ∈T

EY p
τ ≤ t, sup

τ∈T
EYτ ≤ V . (2.3)

Note that the additional assumption X1 ≡ 0 is not restrictive at all: we can always
replace the initial sequence X1, X2, . . . with 0, X1, X2, . . ., and the prophet inequality
remains the same. In the proof of the above lemma we will need the notion of essential
supremum, a well-known object in the optimal stopping theory. Let us briefly recall its
definition, for details and properties we refer the reader to the monographs of Peskir
and Shiryaev [22] and Shiryaev [23].

Definition 2.1 Let (Zα)α∈I be a family of random variables. Then there is a countable
subset J of I such that the random variable Z = supα∈J Zα satisfies the following
two properties:
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(i) P(Zα ≤ Z) = 1 for each α ∈ I ,
(ii) if Z̃ is another randomvariable satisfying (i) in the place of Z , thenP(Z ≤ Z̃) = 1.

The random variable Z is called the essential supremum of (Zα)α∈I .

Proof of Lemma 2.1 We will use some basic facts from the optimal stopping theory;
for details, we refer the reader to Chapter I in Peskir and Shiryaev [22]. Suppose
that X = (X1, X2, . . . , XN , XN , XN , . . .) is a finite sequence and let Y be the Snell
envelope of X , i.e., the smallest adapted supermartingale majorizing the sequence
(Xn)n≥1. It is a well-known fact that for each n the variable Yn is given by the formula

Yn = ess sup
{
E(Xσ |Fn) : σ ∈ Tn

}
,

where Tn denotes the class of all finite adapted stopping times not smaller than n. Since
σ ≡ n belongs to Tn , the inequality (2.1) is given for free. To show (2.2), observe
that Y1 is a constant random variable, since the σ -algebra F1 = σ(X1) is trivial. Thus
the bound Y1 ≥ V follows directly from the above formula for Y1 and the definition
of an essential supremum. On the other hand, for any finite stopping time σ we have
V ≥ EXσ = E(Xσ |F1) almost surely, which implies P(V ≥ Y1) = 1, again from the
definition of an essential supremum. This gives (2.2). Since the sequence X stabilizes
after N steps, so does Y and therefore the second estimate in (2.3) holds true, directly
from (2.2) and the supermartingale property. To prove the first bound in (2.3), recall
that Y can be alternatively defined by the backward induction

YN = XN , Yn = max
{
Xn,E(Yn+1|Fn)

}
, n = 1, 2, . . . , N − 1.

This implies that Yn = E(Xτn |Fn), where the stopping time τn is given by

τn = inf
{
k ∈ {n, n + 1, . . . , N } : Yk = Xk

}
.

Thus, if we fix an arbitrary τ ∈ T , then

Yτ = Yτ∧N =
N∑

n=1

Yn1{τ∧N=n} =
N∑

n=1

1{τ∧N=n}E
(
Xτn |Fn

)
,

which gives

EY p
τ =

N∑
n=1

E

[
E

(
1{τ∧N=n}Xτn |Fn

)p] ≤
N∑

n=1

E

[
1{τ∧N=n}X p

τn

]
= EX p

σ ,

where σ = ∑N
n=1 1{τ∧N=n}τn . We easily check that σ is a stopping time: for any

1 ≤ k ≤ N , the event

{σ = k} =
N⋃

n=1

({τ ∧ N = n} ∩ {τn = k}) =
k⋃

n=1

({τ ∧ N = n} ∩ {τn = k})



294 A. Osȩkowski

belongs to Fk . Therefore, the boundedness assumption (1.2) implies EY p
τ ≤ t , as

desired.
Therefore, it suffices to establish the inequality (1.3) under the additional assump-

tion that the process X is a finite supermartingale and the variable X1 is constant almost
surely. By some standard approximation arguments, we may further restrict ourselves
to the class of simple supermartingales; recall that the sequence X = (Xn)n≥1 is called
simple, if for each n the random variable Xn takes only a finite number of values. We
are ready to apply Burkholder’s method, which is introduced in the next section.

3 Burkholder’s method

Now we will describe the main tool which will be used to establish the inequality
(1.3). Distinguish the set

D = {(x, y, t) ∈ [0,∞) × [0,∞) × [0,∞) : x p ≤ t, x ≤ y}

and, for each (x, y, t) ∈ D, let S(x, y, t) denote the class of all simple, finite and
nonnegative supermartingales X = (Xn)n≥1 satisfying X1 ≡ x and supτ EX

p
τ ≤ t ,

where the supremum is taken over all stopping times adapted to the natural filtration
of X . Suppose that we are interested in the explicit formula for the function

B(x, y, t) = sup
{
E

(
X∗
n ∨ y

)}
,

where the supremum is taken over all positive integers n and all X ∈ S(x, y, t). The
key idea in the study of this problem is to introduce the class C which consists of all
functions B : D → R satisfying

B(x, y, t) ≥ y for any (x, y, t) ∈ D, (3.1)

and the following concavity-type property: if α ∈ [0, 1], (x, y, t) ∈ D and (x±, x± ∨
y, t±) ∈ D satisfy αx− + (1 − α)x+ ≤ x and αt− + (1 − α)t+ ≤ t , then

B(x, y, t) ≥ αB(x−, x− ∨ y, t−) + (1 − α)B(x+, x+ ∨ y, t+). (3.2)

We turn to the main result of this section. Recall that the probability space is the
interval [0, 1] with its Borel subsets and Lebesgue measure.

Theorem 3.1 The function B is the least element of the class C.

Proof It is convenient to split the reasoning into two parts.

Step 1. First wewill show thatB belongs to the class C. Themajorization (3.1) is imme-
diate, since X∗

n ∨ y ≥ y. The main difficulty lies in proving the concavity property
(3.2). Fix the parameters α, x , t , x±, t± as in the statement and pick arbitrary super-
martingales X− ∈ S(x−, y, t−), X+ ∈ S(x+, y, t+). We splice these two processes
into one sequence X = (Xn)n≥1 by setting X1 ≡ x and, for n ≥ 2,
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Xn(ω) =
{
X−
n−1(ω/α) if ω ∈ [0, α],

X+
n−1((ω − α)/(1 − α)) if ω ∈ (α, 1].

Then X is a nonnegative supermartingale (with respect to its natural filtration), because
the processes X± have this property and αx− + (1− α)x+ ≤ x . Furthermore, for any
stopping time τ of X we have EX p

τ ≤ t . To see this, we consider two cases.
1. If P(τ = 1) > 0, then the set {τ ≤ 1} is nonempty; combining this with the facts

that X1 is constant and τ is a stopping time of X , we see that {τ ≤ 1} = �, or τ ≡ 1.
Then EX p

τ = x p ≤ t by the definition of D.
2. Suppose that {τ = 1} = ∅, or τ ≥ 2 almost surely. Then we easily verify that

the variables τ±, given by

τ−(ω) = τ(αω) − 1, τ+ = τ(α + (1 − α)ω) − 1,

are stopping times of X− and X+. Therefore,

EX p
τ = αE(X−

τ−)p + (1 − α)E(X+
τ+)p ≤ αt− + (1 − α)t+ ≤ t.

Hence X ∈ S(x, y, t). Since x ≤ y, we have X∗
n ∨ y = sup2≤k≤n Xk ∨ y and thus

B(x, y, t) ≥ E(X∗
n ∨ y) = αE

(
(X−

n−1)
∗ ∨ y

) + (1 − α)E
(
(X+

n−1)
∗ ∨ y

)
.

Take the supremum over all n and X± as above to obtain the desired bound (3.2).

Step 2. Now suppose that B is an arbitrary element of C; we must prove that B ≤ B.
To do this, rephrase the condition (3.2) as follows. Suppose that (X, T ) is an arbitrary
random variable with two-point distribution, such that P(X p ≤ T ) = 1. Then for any
(x, y, t) ∈ D such that EX ≤ x and ET ≤ t , we have

B(x, y, t) ≥ EB(X, y, T ). (3.3)

Note that the set {(x, t) : x p ≤ t} is convex. Therefore, by straightforward induction,
the above inequality extends to the case when (X, T ) is an arbitrary simple random
variable satisfying X p ≤ T with probability 1. Now, pick X ∈ S(x, y, t) and consider
the sequence (X,Y, T ), where Yn = X∗

n ∨ y and Tn = ess supτ∈Tn E
(
X p

τ |Fn
)
(here

Tn denotes the class of all stopping times of X not smaller than n). Then the process
B(X,Y, T ) is a supermartingale: to see this, fix n ≥ 1 and apply (3.3) conditionally
with respect to Fn , with x̃ := Xn , ỹ = Yn , t̃ = Tn , X̃ = Xn+1 and T̃ = Tn+1. Let
us verify the assumptions: the inequalities x̃ p ≤ t̃ , x̃ ≤ ỹ and X̃ p ≤ T̃ are evident;
the inequalities E(X̃ |Fn) ≤ x̃ and E(T̃ |Fn) ≤ t̃ follow from the supermartingale
property of X and T (T is a supermartingale, since it is the Snell envelope of the
sequence (X p

n )n≥1). Thus, (3.3) yields

B(Xn,Yn, Tn) ≥ E

[
B

(
Xn+1, Xn+1 ∨ Yn, Tn+1

)|Fn

]

= E

[
B(Xn+1,Yn+1, Tn+1)|Fn

]
.
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Combining this with (3.1) yields

E(X∗
n ∨ y) ≤ EB(Xn,Yn, Tn) ≤ EB(X1,Y1, T1) = B(x, y, sup

τ∈T
EX p

τ ) ≤ B(x, y, t).

Here in the last inequality we have used the fact that the function t �→ B(x, y, t) is
nondecreasing; this follows immediately from (3.2), applied to x+ = x− = x and
t+ = t− < t . Taking the supremum over all n and all X ∈ S(x, y, t), we obtain the
bound B(x, y, t) ≤ B(x, y, t). This finishes the proof. ��

4 Proof of Theorem 1.1

We will prove that the function B admits the following explicit formula:

B(x, y, t) =
{
y + x

p−1 log
(

te
xy p−1

)
if y ≤ (t/x)1/(p−1),

y + t y1−p/(p − 1) if y > (t/x)1/(p−1).

This will clearly yield the assertion of Theorem 1.1, which is nothing else but the
explicit formula for B(V, V, t). Denote expression on the right above by B(x, y, t).

4.1 Proof of B ≤ B

In the light of Theorem 3.1, it suffices to verify that B ∈ C. The condition (3.1) is
obvious, and the main problem is to establish (3.2). First, we easily check that the
functions x �→ B(x, x ∨ y, t) and t �→ B(x, y, t) are nondecreasing. Consequently,
in the proof of (3.2) we may restrict ourselves to the case x = αx− + (1 − α)x+ and
t = αt− + (1 − α)t+. Since the region {(x, t) : x p ≤ t} is convex, it is enough to
prove the following. For any h ∈ R and any (x, y, t) ∈ D, the function

ϕ(s) = B(x + sh, (x + sh) ∨ y, t + s)

(defined for those s, for which (x + sh, (x + sh)∨ y, t + s) ∈ D) is concave. We start
from observing that ϕ is of class C1; this follows immediately from the fact that B
is of class C1 and By(x, x, t) = 0 (the latter condition guarantees that the one-sided
derivatives ϕ′(s−) and ϕ′(s+) will match for x + sh = y). To deal with the concavity
of ϕ on the set {s : x + sh ≤ y}, we must prove that the matrix

[
Bxx (x + sh, y, t + s) Bxt (x + sh, y, t + s)
Bxt (x + sh, y, t + s) Btt (x + sh, y, t + s)

]

(defined for y �= (t + s)/(x + sh)) is nonpositive-definite. Substituting x̃ = x + sh
and t̃ = t + s if necessary, we may assume that s = 0. Now, if y < (t/x)1/(p−1), then
the matrix equals
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[
−(

(p − 1)x
)−1 (

(p − 1)t
)−1(

(p − 1)t
)−1 −x/((p − 1)t2)

]
,

which clearly has the required property; if y > (t/x)1/(p−1), the situation is even
simpler, since all the entries of thematrix are 0. Finally, it remains to show the concavity
of ϕ on {s : x + sh > y}. Because (x + sh)p ≤ t + s (see the definition of D), we
have y <

(
(t + s)/(x + sh)

)1/(p−1) and hence

ϕ(s) = x + sh + x + sh

p − 1
log

(
(t + s)e

(x + sh)p

)
.

A direct differentiation yields

ϕ′′(s) = − h2

x + sh
− (x − th)2

(p − 1)(t + s)2(x + sh)
≤ 0

and the claim follows.

4.2 Proof of B ≥ B

Now we will use the second half of Theorem 3.1, which states that B ∈ C. We will
also exploit the following additional homogeneity property ofB: for any (x, y, t) ∈ D
and λ > 0 we have

B(λx, λy, λpt) = λB(x, y, t). (4.1)

This condition follows at once from the very definition of B and the fact that X ∈
S(x, y, t) if and only if λX ∈ S(λx, λy, λpt).

For the sake of clarity, we have split the reasoning into a few parts.

Step 1. Let δ be a small positive number. Using (3.2), we can write

B(1, 1, 1) ≥
(
1 − 1

(1 + δ)p

)
B(0, 1, 0)+ 1

(1 + δ)p
B(1+δ, 1+δ, (1+δ)p). (4.2)

Thus, using (3.1) and (4.1), the right-hand side is not smaller than

1− 1

(1 + δ)p
+ 1

(1 + δ)p
B(1+ δ, 1+ δ, (1+ δ)p) = 1− 1

(1 + δ)p
+ B(1, 1, 1)

(1 + δ)p−1 .

(4.3)
Combining the above facts, we get

B(1, 1, 1) ≥ (1 + δ)p − 1

(1 + δ)
(
(1 + δ)p−1 − 1

) ,

so letting δ → 0 gives

B(1, 1, 1) ≥ p

p − 1
. (4.4)
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Step 2. Now we provide a lower bound for B(1, 1, t), where t is larger than 1. We
argue as in the previous step, applying (3.2) and combining it with (3.1) and (4.1).
Precisely, we fix a small positive δ and write

B(1, 1, t) ≥ δ

1 + δ
B(0, 1, 0) + 1

1 + δ
B

(
1 + δ, 1 + δ, t (1 + δ)

)

≥ δ

1 + δ
+ B

(
1, 1,

t

(1 + δ)p−1

)
. (4.5)

By induction, this implies

B(1, 1, t) ≥ nδ

1 + δ
+ B

(
1, 1,

t

(1 + δ)n(p−1)

)
,

if only (1+δ)n(p−1) ≤ t . Nowwe fix a large positive integer n, put δ = t1/(n(p−1)) −1
(so that (1 + δ)n(p−1) = t) and let n → ∞. Then the above bound gives

B(1, 1, t) ≥ B(1, 1, 1) + log t

p − 1
,

which combined with (4.4) yields

B(1, 1, t) ≥ p

p − 1
+ log t

p − 1
. (4.6)

Step 3. The next move in our analysis is to prove the estimate B(x, y, t) ≥ B(x, y, t)
for y ≤ (t/x)1/(p−1). We proceed as previously: first apply (3.2) to obtain

B(x, y, t) ≥ y − x

y
B(0, y, 0) + x

y
B

(
y, y,

t y

x

)

(here we use the assumption y ≤ (t/x)1/(p−1); if this inequality does not hold, the
point (y, y, t y/x) does not belong to D andB(y, y, t y/x) does not make sense). Next,
using (3.1), (4.1) and finally (4.6), we get

B(x, y, t) ≥ y − x

y
· y + x

y
· yB

(
1, 1,

t

xy p−1

)

≥ y − x + x

(
p

p − 1
+ log(t/(xy p−1))

p − 1

)
= B(x, y, t).

Step 4. Now we will deal with B(1, y, 1) for y > 1. By (3.2), (3.1) and (4.1), we have

B(1, y, 1) ≥ (1 − y−p)B(0, y, 0) + y−p
B(y, y, y p)

≥ (1 − y−p)y + y1−p
B(1, 1, 1).
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Combining this with (4.4), we obtain

B(1, y, 1) ≥ y + y1−p

p − 1
. (4.7)

Step 5. This is the final part. Pick (x, y, t) ∈ D such that y > (t/x)1/(p−1) and apply
(3.2) and then (3.1) to get

B(x, y, t) ≥ αB(0, y, 0) + (1 − α)B

(
x

1 − α
, y,

t

1 − α

)

≥ αy + B(x, y(1 − α), t (1 − α)p−1),

where α = 1 − (x p/t)1/(p−1). For this choice of α, we have x p = t (1 − α)p−1 and
hence, by (4.1) and (4.7),

B(x, y, t) ≥ αy + xB

(
1,

y(1 − α)

x
, 1

)

≥
(
1 −

(
x p

t

)1/(p−1)
)
y + x

[
1

p − 1

(
x

y

)p−1 t

x p
+ y

x

(
x p

t

)1/(p−1)
]

= B(x, y, t).

This completes the proof of the inequalityB ≥ B on thewhole domain. Thus, Theorem
1.1 follows.

4.3 On the construction of extremal examples

The arguments presented in Steps 1–5 can be easily translated into the construction of
extremal supermartingales X (“extremizers”) corresponding to B(x, y, t), i.e., those
for which the supremum defining B(x, y, t) is almost attained. The purpose of this
section is to explain how to extract this construction from the above calculations. The
reasoning will be a little informal, as our aim is to present the idea of the connection.

First we look at the value B(1, 1, 1), which was studied in Step 1. What about
the extremal X ∈ S(1, 1, 1)? For a fixed δ > 0, consider a Markov process
((Xn,Yn, Tn))n≥0 starting from (1, 1, 1), satisfying the following two requirements.

(i) Any point of the form (λ, λ, λp) (with some λ > 0) leads to (0, λ, 0) or to
(λ(1+ δ), λ(1+ δ), λp(1+ δ)p) with probabilities 1− (1+ δ)−p and (1+ δ)−p,
respectively.

(ii) The states of the form (0, λ, 0) are absorbing.

Then one can check that the process X is a supermartingale. If we stop it after a large
number N of steps, we obtain the desired extremizer: that is, if we take sufficiently
small δ and sufficiently large N , then EX∗

N can be made arbitrarily close to B(1, 1, 1).
One might wonder why we have introduced the more complicated three-dimensional
process (X,Y, T ) above. The reason is that the moves described in (i) and (ii) are
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closely related to the inequality (4.2) and the bound (4.3) on which Step 1 rests. To
explain this more precisely, note first that (4.2) encodes the Markov move from (i): to
make this more apparent, combine (4.2) with (4.1) to get

B(λ, λ, λp) ≥
(
1 − 1

(1 + δ)p

)
B(0, λ, 0)

+ 1

(1 + δ)p
B(λ(1 + δ), λ(1 + δ), λp(1 + δ)p).

Thus, a starting state appears on the left, while the destination states can be found
on the right, with the appropriate transition probabilities constituting the appropriate
weights. The condition (ii) is connected to the bound (4.3): generally speaking, all
the states (x, y, t) at which we use the majorization B(x, y, t) ≥ y in the above
considerations, need to be assumed absorbing.

To gain more intuition about this interplay, let us look at Step 2, which concerns
the value of B(1, 1, t) with t > 1. We will construct a supermartingale X ∈ S(1, 1, t)
for which the supremum defining B(1, 1, t) is almost attained. As previously, we fix
δ > 0 and actually handle an appropriate three-dimensional process ((Xn,Yn, Tn))n≥0
starting from (1, 1, t). To do this, combine the first inequality in (4.5) with (4.1) to
obtain

B(λ, λ, λpt) ≥ δ

1 + δ
B(0, λ, 0) + 1

1 + δ
B

(
λ(1 + δ), λ(1 + δ), λpt (1 + δ)

)
.

This gives us some information about the dynamics of the triple (X,Y, T ). Namely,
we impose the condition

(i’) Any point of the form (λ, λ, λpt) (with some λ > 0 and t > 1) leads to (0, λ, 0)
or to (λ(1+ δ), λ(1+ δ), λpt (1+ δ)) with probabilities δ/(1+ δ) and 1/(1+ δ),
respectively.

Furthermore, in the second inequality of (4.5), we use the bound B(0, λ, 0) ≥ λ; this
suggests that the requirement (ii) above should be valid.

Now, suppose that δ is chosen appropriately as in Step 2: δ = t1/(n(p−1)) − 1 for
some large positive integer n. Then, after n steps, the process (X,Y, T ) gets to the point
((1+δ)n, (1+δ)n, (1+δ)np)with positive probability. Now the procedure described in
(i’) does not apply since the point is not of appropriate form. In Step 2 we encountered
a similar phenomenon: the number B(1, 1, 1) came into play and the arguments of
Step 2 did not apply. To overcome this difficulty, we exploited Step 1. Here we do the
same and apply the procedure (i) to the point ((1+ δ)n, (1+ δ)n, (1+ δ)np). In other
words, the Markov process (X,Y, T ) is given by the starting position (1, 1, t) and the
conditions (i), (ii) and (i’). It remains to stop the process X after a large number of
steps to obtain the extremizer corresponding to B(1, 1, t).

The remaining extremal processes, corresponding to the values of B at remaining
points, are found similarly. We leave the details to the reader.
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5 Lack of prophet inequalities for L p bounded variables

In the final part of the paper we show that if the condition (1.2) is replaced by

X1, X2, . . . are nonnegative and sup
n

EX p
n ≤ 1, (5.1)

then no non-trivial prophet inequality holds. To prove this, wewill exploit the results of
Sect. 4. Fix an arbitrary positive number K . We have B(1, 1, t) → ∞ as t → ∞, and
hence there is a positive integer L and a finite nonnegative supermartingale (Yn)Nn=1
on ([0, 1],B([0, 1]), | · |) which satisfies Y1 ≡ 1,

sup
τ∈T

EY p
τ ≤ L and EY ∗ ≥ EY1 + K . (5.2)

Now we construct L “distinct” copies of Y which evolve on pairwise disjoint time
intervals. Precisely, consider a sequence X = (Xn)

LN
n=1 defined as follows:

• If ω ∈ [0, 1/L), then Xn(ω) = Yn(Lω) for n = 1, 2, . . . , N and Xn(ω) = 0 for
other n.

• If ω ∈ [1/L , 2/L), then Xn(ω) = Yn−N (Lω − 1) for n = N + 1, N + 2, . . . , 2N
and Xn(ω) = 0 for other n.

• If ω ∈ [2/L , 3/L), then Xn(ω) = Yn−2N (Lω − 2) for n = 2N + 1, 2N +
2, . . . , 3N and Xn(ω) = 0 for other n.

• …
• If ω ∈ [1−1/L , 1), then Xn(ω) = Yn−(L−1)N (Lω− (L−1)) for n = (L−1)N +
1, (L − 1)N + 2, . . . , LN and Xn(ω) = 0 for other n.

The variables X1, X2, . . ., XLN are nonnegative and enjoy the following properties.
First, note that the conditional distribution of XmN+n on [m/L , (m+1)/L) coincides
with the distribution of Yn , so EX

p
mN+n = EY p

n /L and thus

sup
1≤n≤LN

EX p
n = sup

1≤n≤N
EY p

n /L ≤ 1,

by the first inequality in (5.2). Next, if ω ∈ [m/L , (m + 1)/L), we have X∗(ω) =
Y ∗(Lω−m) and hence EX∗ = EY ∗. Finally, we will prove that supτ∈T EXτ = EY1.
The inequality “≥” follows by considering the stopping time given by τ̃ (ω) = mL+1
for ω ∈ [m/L , (m + 1)/L). To prove the reverse bound, note that while computing
supτ∈T EXτ we may restrict to stopping times which on each [m/L , (m +1)/L) take
values {mL + 1,mL + 2, . . . , (m + 1)L}. Indeed, if τ is an arbitrary stopping time,
then τ̄ = (τ ∨ τ̃ ) ∧ (τ̃ + L − 1) has this property and EXτ ≤ EX τ̄ . Therefore, since
Y is a supermartingale, we have

E(Xτ |[m/L , (m + 1)/L)) ≤ E(XmL+1|[m/L , (m + 1)/L)) = EY1

and hence EXτ ≤ EY1.
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Consequently, by the second estimate in (5.2), the sequence X satisfies

EX∗ ≥ sup
τ∈T

EXτ + K .

Since K was arbitrary, no universal prophet inequality holds under (5.1). This com-
pletes the proof.
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