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Abstract
It is important to understand how public transport passengers value on-board crowd-
ing since the outbreak of the COVID-19 pandemic. The main contribution of this study 
is to derive the crowding valuation of public transport passengers in a post-pandemic era 
entirely based on observed, actual passenger route choices. We derive passengers’ crowd-
ing valuation for the London metro network based on a revealed preference discrete choice 
model using maximum likelihood estimation. We find that after the passenger load on-
board the metro reaches the seat capacity, the in-vehicle time valuation increases by 0.42 
for each increase in the average number of standing passengers per square metre upon 
boarding. When comparing this result to a variety of crowding valuation studies conducted 
before the pandemic in London and elsewhere, we can conclude that public transport pas-
sengers value crowding more negatively since the pandemic. Furthermore, we found a ratio 
between out-of-vehicle time and in-vehicle time of 1.94 pre-pandemic and of 1.92 post-
pandemic, based on which we conclude that the relative waiting/walking time valuation did 
not significantly change since the COVID-19 pandemic. Our study results contribute to a 
better understanding on how on-board crowding in urban public transport is perceived in a 
European context since the outbreak of the COVID-19 pandemic.

Keywords COVID-19 · Crowding · Public transport · Revealed preference · Smart card 
data

Introduction

Context

In many urban public transport (PT) systems worldwide high passenger volumes result in 
high crowding levels on-board PT vehicles. The experience of (over)crowding in a PT sys-
tem has a negative impact on perceived travel times and attractiveness of the urban PT 
journey by passengers. This can result in changes in passenger route choice through the PT 
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network (for example found in Yap and Cats 2021), or deter travellers from using the PT 
system altogether and contribute to a mode shift to other, potentially less sustainable, travel 
modes. It is therefore fundamental to understand how PT passengers perceive their journey 
time under crowded circumstances. This can improve the accuracy of business cases and 
cost–benefit analyses when evaluating the expected cost and benefits of schemes which 
directly or indirectly result in reduced PT crowding levels (e.g. Jenelius and Cats 2015). 
Additionally, a more accurate understanding of passenger crowding valuation has the 
potential to improve the crowding parameters in strategic transport models and PT assign-
ment models, thereby improving passenger forecasts and model validation (see for example 
Hamdouch et al. 2011; Nuzzolo et al. 2012; Pel et al. 2014; Cats et al. 2016; Hänseler et al. 
2020).

Relevant literature

Passengers on-board crowded services perceive the in-vehicle time more negatively com-
pared to travelling using uncrowded PT services, which is typically expressed by an in-
vehicle time crowding multiplier that increases with higher on-board crowding levels. Over 
the last two decades, many studies have been performed aiming at inferring this in-vehicle 
time crowding multiplier as a function of the load factor or standing density (average num-
ber of standing passengers per  m2). Initially, most of these studies relied on stated prefer-
ence (SP) approaches where respondents were asked in (online) surveys to indicate which 
route or mode choice alternative they would choose based on hypothetical crowding sce-
narios. For example, SP studies of crowding valuations were performed for UK rail ser-
vices (MVA Consultancy 2008), metro and buses in Santiago de Chile (Batarce et al. 2016, 
Tirachini et  al. 2017), and RER services in Ile-de-France (Kroes et  al. 2014). Wardman 
and Whelan (2011) and Li and Hensher (2011) provide an extensive overview and meta-
analysis of SP based studies of PT crowding valuations by passengers up until 2011.

In more recent years there is an increasing number of studies using revealed prefer-
ence (RP) to estimate PT crowding valuation. By unlocking large-scale passenger demand 
data from Automated Fare Collection (AFC) systems and/or Automated Passenger Count 
(APC) systems such as load-weigh systems, passengers’ crowding valuation can be derived 
from empirically observed route and mode choice behaviour, rather than relying on stated 
choices elicited by means of SP experiments. SP approaches have the inherent limitation 
that there is a potential discrepancy between the stated behaviour by respondents in a sur-
vey compared to their actual behaviour, which can potentially bias the estimated coeffi-
cients. RP based crowding studies have been applied to case studies in Singapore (Tira-
chini et al. 2016), Hong Kong (Hörcher et al. 2017), the Netherlands (Yap et al. 2020) and 
Washington, DC (Yap and Cats 2021). For Singapore, Tirachini et al (2016) found that the 
in-vehicle time multiplier linearly increases with 0.18 for each increase in standing pas-
sengers per square metre, for example resulting in an in-vehicle time multiplier of 1.55 in 
the event of 3 standing passengers per  m2. Hörcher et al. (2017) found that for the Hong 
Kong metro the in-vehicle time multiplier at full capacity ranges between 1.72 and 1.98 
depending on the seat probability, while Yap and Cats (2021) found an average in-vehicle 
time multiplier of 1.84 when the on-board load equals the full capacity for the Washington 
DC metro system.

All above-mentioned studies estimate the perception of PT crowding based on data 
before the outbreak of the COVID-19 pandemic. One can expect that passengers per-
ceive crowding more negatively since the start of the pandemic as crowded environments 
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generally pose a higher risk of contracting COVID-19. Furthermore, one might hypoth-
esise that after the introduction of regulations focusing on social distancing and capacity 
limitations by many countries worldwide, people are less likely to feel comfortable in, or to 
accept, very crowded environments. It is thus important to understand how PT passengers 
perceive on-board crowding in this post-pandemic era, as changes in crowding perception 
might influence route and mode choice and might hamper a full demand recovery on PT 
routes being perceived as (over)crowded, imposing in effect new de-facto capacity limits.

More recently, a few studies have been performed which assess passengers’ post-pan-
demic crowding perception based on stated preferences elicited from choice experiments. 
Shelat et al. (2022) found that on-board crowding and COVID infection rates are the most 
important factors being perceived as a risk to use PT. Basnak et al. (2022) confirmed in 
a SP study that post-pandemic crowding perception in Santiago de Chile is higher than 
how it was perceived pre-pandemic, thereby also highlighting the perceived importance 
of wearing face coverings. Flügel and Hulleberg (2022) conclude based on an SP experi-
ment that crowding valuation in PT was significantly higher in November 2021 compared 
to November 2018 based on data collected in two Norwegian cities. Their results show that 
this crowding valuation reduced in May 2022, but still remains higher than pre-pandemic. 
Cho and Park (2021) conducted surveys in the Seoul metropolitan area before and after 
the COVID-19 pandemic, which showed that passengers perceive post-pandemic crowding 
impedance as 1.04–1.23 times higher than pre-pandemic. Bansal et al. (2022b) estimated 
several logit models by conducting a stated choice experiment during the COVID-19 pan-
demic to 961 pre-pandemic users of London Underground. They found an in-vehicle time 
multiplier of 1.73 when the metro operates at full capacity. Furthermore, they were able to 
test preferences for different stages of the epidemic as well as for different interventions, 
such as vaccination rate and mandating wearing face covering whilst travelling. However, 
as of yet no studies have been performed which use observed passenger route choices from 
large-scale AFC and APC systems to re-establish public transport crowding perception in 
the aftermath of the pandemic based on actual passenger behaviour rather than based on 
stated behaviour in surveys or choice experiments.

Study contribution

The main contribution of our study is in deriving the crowding valuation of public trans-
port passengers in a post-pandemic era entirely based on observed, actual passenger route 
choices. To the best of our knowledge, our study is the first one adopting a revealed pref-
erence approach to derive post-pandemic crowding perceptions, thereby adding to the 
emerging evidence from studies which derive post-pandemic crowding perceptions from 
SP surveys (see Table 1). By relying on large-scale, empirical passenger demand data, we 
derive crowding valuations based on more than 20,000 observed passenger journey data 
in the London PT network, which is a much larger sample size than for typical SP studies 
and therefore results in more robust estimates. Furthermore, this allows for a comparison 
of crowding perceptions with pre-pandemic crowding curves which were estimated using 
similar revealed preference approaches in past studies. In our study, we infer passenger 
crowding valuation by estimating a discrete choice model using maximum likelihood esti-
mation based on observed passenger route choices on Transport for London’s PT network. 
Our study results contribute to a better understanding of how on-board crowding in urban 
public transport is perceived in a European context since the outbreak of the COVID-19 
pandemic.
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A methodological contribution of our study is the use of data from APC systems to 
obtain the on-board train loads and crowding levels. Previously conducted RP based stud-
ies to PT crowding valuation merged AFC and Automated Vehicle Location (AVL) data 
to infer train loads. Especially in high-frequent and high-density metro systems this can be 
a challenging and complex process as a passenger-to-train assignment procedure needs to 
be implemented, combined with a route choice model when multiple feasible routes exist 
between the entry and exit station registered in the AFC data (see for example Zhu et al. 
2017) with a larger potential for modelling errors. Instead, in our study we rely on empiri-
cal train load observations directly derived from load-weigh systems. This means that we 
use a more direct approach to obtain train loads with the potential of faster and more accu-
rate train load estimations, as it only relies on the accurate calibration of the average pas-
senger weight (as opposed to a range of route choice and assignment parameters, some of 
which are subject to estimation in this study).

The remainder of this paper is structured as follows. In the Section “Methods and data” 
we discuss the data semantics, choice set generation and model specification. The model 
estimation results and policy implications are discussed in the Section  "Results and dis-
cussion", followed by conclusions and recommendations for further research in the Sec-
tion "Conclusions and recommendations".

Methods and data

In this section, we discuss the required data inputs (Section  "Data input"), choice set 
generation (Section  "Choice set generation"), choice identification from the data (Sec-
tion "Choice identification"), model specification (Section "Model specification") and the 
extraction of the attribute levels from the data (Section "Attribute levels").

Data input

As input for our study we use passenger demand and occupancy data derived from London, 
United Kingdom. We focus on the urban PT network of the Greater London Area, which is 
under the authority of Transport for London (TfL). Passengers travel through this network 
by using an Oyster card or a Contactless Payment Card (such as a bank card), meaning 
that passenger demand data is captured via the AFC system in place. We only focus on 

Table 1  Study contribution

PT crowding studies Stated Preference Revealed Preference

Pre-pandemic Li and Hensher (2011)
Wardman and Whelan (2011)
Kroes et al. (2014)
Batarce et al. (2016)
Tirachini et al. (2017)

Tirachini et al. (2016)
Hörcher et al. (2017)
Yap et al. (2020)
Yap and Cats (2021)

Post-pandemic Cho and Park (2021)
Bansal et al. (2022b)
Basnak et al. (2022)
Flügel and Hulleberg (2022)
Shelat et al. (2022)

This study
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journeys entirely made by bus or by metro (London Underground: LU) because passengers 
are required to touch in upon boarding a bus next to the bus driver and since 99% of the 
LU stations are equipped with closed ticket barriers. This means that demand data from the 
AFC system provides reliable, complete data on travel patterns. Journeys made on other 
rail modes (such as Docklands Light Rail and London Overground) are not included as 
many stations are ungated (Transport for London 2022). Bus and metro journeys amount to 
88% of the total number of journeys on TfL’s network, thus covering the vast majority of 
all journeys (Transport for London 2023).

For metro journeys in London each row in the AFC data consists of the location and 
time of the first station entry and of the last station exit. As passengers are required to touch 
in and out at the station gates, empirical data is directly available for both the station entry 
and exit. For buses, passengers are only required to touch in upon boarding, meaning that 
boarding stop, time and bus route are empirically available. The alighting location for most 
bus journeys is inferred using the well-known trip-chaining algorithm (based on Sánchez-
Martinez 2017) and otherwise scaled based on the inferred alighting probabilities for each 
downstream stop.

The data characteristics as discussed above imply that AFC data does not directly pro-
vide information on loads and crowding levels for the metro network. Passenger assign-
ment modelling is required to determine the most plausible route passengers take between 
the station entry and exit gate, as several plausible routes can exist between a certain sta-
tion pair in a high-density metro network such as London. As these route choice models 
typically require input parameters for waiting time and crowding valuation, relying on this 
data to estimate crowding valuation could lead to a self-fulfilling prophecy or to incor-
rect estimates if these choice model parameters are incorrect. Instead, for metro crowding 
information we therefore rely on APC data obtained from load-weigh data as independent 
data source. For selected metro lines of the TfL network (the Central Line and Victoria 
Line) the rolling stock is equipped with a load-weigh system, which provides on-board pas-
senger loads for each line segment by train and on average per 15-min time interval based 
on an implied average weight per passenger of 75 kg, which is validated based on on-board 
train surveys. London buses are not equipped with APC systems, meaning that bus load 
and crowding information is not directly available. Estimating the passenger load on-board 
buses by the accumulation of (observed) boarding and (inferred) alighting passengers for 
each bus trip relies on several assumptions to infer the most plausible alighting stop for 
bus passengers and to apply a scaling procedure for bus journeys where the alighting stop 
cannot be inferred by a destination inference algorithm. As a result, there is a much higher 
degree of uncertainty involved when estimating bus loads compared to metro loads. There-
fore, given our study purpose to rely as much as possible on directly observed crowding 
data, in this study we only focus on estimating the crowding valuation for metro journeys 
for which we can rely directly on APC data. Both metro and bus journeys are however 
included in the passenger journey dataset, and all other attribute values are derived for both 
modes.

In this study we estimate three different models:

• A pre-pandemic off-peak model based on 3–7 February 2020. We use this as an 
uncrowded baseline model to confirm whether the estimated in-vehicle time and wait-
ing/walking time coefficients are in line with previous RP based model results.

• A post-pandemic off-peak model based on 13–17 June 2022. This uncrowded model is 
estimated to assess whether base level in-vehicle time and waiting/walking time valua-
tions have changed since the COVID-19 pandemic.
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• A post-pandemic peak model based on the same period 13–17 June 2022. This model, 
focusing on AM and PM journeys, estimates the post-pandemic metro crowding valua-
tion based on load-weigh data which is available for this period.

During the selected post-pandemic period 13–17 June 2022 there were no COVID 
related restrictions in place anymore in London. After several lockdowns in 2020 and 
2021, all sectors were allowed to fully reopen since July 2021. Additionally, no capacity 
constraints or social distancing rules were in place when travelling by PT. Since February 
2022 passengers were not mandated to wear face covering anymore whilst using London’s 
PT network. This implies that June 2022 reflects a steady-state situation in the post-pan-
demic era where passengers have been able to experience regular PT travel conditions for 
several months.

For these models we extracted all AFC passenger demand data for 3–7 February 2020 
and 13–17 June 2022, as well as the available APC load-weigh data for 13–17 June 2022. 
Total PT passenger journeys are constructed by linking individual passenger transactions 
from the AFC data together using the linkage criteria of the transfer inference algorithm as 
set out by Gordon et al. (2013). Next, the ultimate origin stop and destination stop of each 
PT journey are both clustered into an origin zone and a destination zone by applying hier-
archical agglomerative clustering. Using this unsupervised learning approach, all bus and 
metro stops located within walking distance from each other (applying a complete linkage 
with a threshold of 350 Euclidean metres) are grouped together, which categorises all PT 
passenger journeys into an origin zone and a destination zone.

Choice set generation

Determining which journeys to include in the choice set for the purpose of this study is a 
non-trivial task. To generate a choice set we apply the following criteria and filtering rules:

• Exclude incomplete and unrealistic journeys. As a data cleaning step, journeys with 
unrealistic travel times (shorter than 5 min or longer than 120 min) are excluded, as 
well as journeys with 4 or more interchanges, as this points to either a data error or to a 
service disruption.

• Include metro journeys for which load-weigh data is available. Given the above-men-
tioned importance of relying on an independent data source for metro crowding levels, 
we only include passenger journeys made exclusively on lines with load-weigh data is 
available (Central and Victoria Line).

• Include metro journeys between station pairs with unambiguous routing. As we cannot 
empirically obtain the exact route metro passengers take between station entry and exit, 
we only include metro journeys for which the chosen route can be determined based on 
the network topology. This is required to reliably infer the appropriate in-vehicle time 
and waiting time corresponding to the route a passenger took between station entry and 
exit. For this, we calculate the 2-shortest paths between each metro station pair and 
only include station pairs for which either one feasible, acyclic path exists, or for which 
the 2nd shortest path ≥ 1.5 * 1-shortest path.

• Include journeys made in the appropriate time period. For the two uncrowded off-peak 
models, only journeys entirely made between 10–14 h or 20–23 h are included so that 
in-vehicle time and walking time coefficients are not distorted by uncaptured crowding 
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effects. To the contrary, for the crowded peak model only journeys entirely made in the 
AM peak (6–10 h) or PM peak (15–19 h) are included.

• Only include origin–destination pairs with a sufficient number of observations for at 
least two different observed paths. As we rely entirely on observed passenger route 
choices, we only include observed paths for each origin–destination pair in our choice 
set. To be able to derive crowding perceptions solely from observed route choices, the 
above implies that there need to be at least two observed paths between each clustered 
origin and destination zone, which are physically different from each other. To prevent 
including paths which are only chosen during unforeseen disruptions, we require that 
the path probability of each path is at least 5%. In addition, each path needs to be cho-
sen by at least five passengers per day on average.

• Include OD pairs with the appropriate crowding level. Once origin–destination zones 
with at least two different paths are identified, it is checked whether there is sufficient 
crowding on at least one of the paths to be able to estimate the peak-based crowding 
model. This implies that the load factor (the passenger load divided by the seat capac-
ity) of the metro path should exceed 50%, as above this level passengers start having to 
sit next to each other, which can result in an increased in-vehicle time valuation related 
to crowding. For the uncrowded off-peak model, the standing density of each path of an 
OD pair should not exceed 1 standing passenger per  m2, to only include paths and OD 
pairs where crowding is not expected to affect route choice behaviour.

• Exclude OD pairs with dominance. Exclude OD pairs where one route option is domi-
nant over the other paths in terms of crowding levels, in-vehicle time and waiting/walk-
ing time, as this does not add any explanatory power to the model.

Choice identification

The resulting choice set inputs for all three models are summarised in Table  2. As can 
be seen, the number of observations included in the choice set for the pre-pandemic 
uncrowded model equals 50,494; for the post-pandemic uncrowded model 46,400; and for 
the post-pandemic crowding model 20,970, resulting in a large number of observations for 
each of the models. As shown in Table 2, for most origin–destination pairs there are two 
different observed paths included. For a few OD pairs there are three physically distinctive 
paths satisfying all of the above criteria. Due to the abovementioned minimum crowding 
level requirement for the post-pandemic crowding model (Model 3), fewer OD pairs satisfy 
the specified threshold compared to the two uncrowded, off-peak models (Model 1 and 2), 
thus resulting in a lower number of observations included in the model.

Table 2  Choice set description

Model 1
Pre-pandemic 
uncrowded model

Model 2
Post-pandemic 
uncrowded model

Model 3 
Post-pandemic
crowding model

Observations 50,494 46,400 20,970
Number of OD pairs 407 377 60
Number of paths 820 764 126
Average number of paths per OD pair 2.01 2.03 2.10
Average observations per OD pair 124 123 350
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After applying the choice set generation criteria, there are no PT journeys with inter-
changes between bus and/or metro included in the final choice set for our case study. This 
implies that each OD pair included in the choice set is composed of one metro path alterna-
tive with unambiguous routing between the entry and exit station on either the Central Line 
or Victoria Line, together with one or two bus paths between that same OD pair.

Model specification

In order to derive passenger crowding valuation, we estimate a discrete choice model based 
on the observed route choices between the origin-destinations pairs included in the choice 
set. The AFC system in place provides the observed route choices for individual passengers 
i between origin stop o ⊆ S and destination stop d ⊆ S . Different observed paths between 
a certain OD pair included in the choice set are indicated by aod ∈ Aod . Each 15-min time 
interval is indicated by t , whereas entire time periods (AM peak, inter-peak, PM peak, 
evening) are indicated by T .

We adopt a standard utility maximisation framework. To prevent biased estimates due 
to possible correlations between unobserved components of the different path alternatives 
aod ∈ Aod , we explicitly account for overlap between paths using a path size correction fac-
tor as proposed by Ben-Akiva and Bierlaire (1999). By using a path size factor we add 
a deterministic term to the utility function which approximates the correlation between 
alternative paths. As a result, we can estimate a path sized logit (PSL) model with overlap 
correction whilst benefitting from a more convenient closed-form solution. Therefore, the 
total disutility of each path U(V , r, �) is composed of the structural, deterministic utility 
component V  , a path size factor r and a random error term � (Eq. 1). The probability Pa for 
choosing each path a can then be calculated using the closed-form function shown in Eq. 2.

In line with the suggested formulation by Dixit et  al. (2021), we adopt a node-based 
formulation of the path size correction factor r to reflect overlap between different PT route 
alternatives. Dixit et al. (2021) demonstrate that a node-based correction factor which cap-
tures the overlap between paths in terms of the number of decision points for passengers 
(boarding and transfer points) outperforms link based PSL models in terms of model fit 
when modelling PT route choices. This reflects the principle that overlap between differ-
ent PT paths is only relevant for PT passengers at locations where they can actually make 
a decision—at boarding and transfer stops—rather than across all links of a path once 
boarded a certain PT vehicle. The node-based path size term is defined in Eq. 3, where 
|sb

a
| is the number of decision nodes for path a and �s,a is the node-route incidence between 

decision node sb belonging to route a (following the definition of Duncan et al. 2020). In 
case all paths aod ∈ Aod are direct paths without interchanges, the first boarding stop is the 
only decision stop of each path (i.e. |sb

a
|=1). In that case, the node-based path size term 

converges to a simpler formulation as defined by Eq. 4. When there is no overlap between 
the decision nodes sb of all paths aod ∈ Aod , raod equals ln(1). In case |Aod| equals 2 and both 
paths overlap entirely in terms of decision nodes then raod equals ln(0.5), implying that a 
more negative value of raod indicates a higher degree of node overlap between different 

(1)Uaod
= Vaod

+ �psl ⋅ raod + �aod

(2)Paod
=

exp(Vaod
+ �psl ⋅ raod )∑

aod∈Aod
exp(Vaod

+ �psl ⋅ raod )
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paths. As each OD pair in the choice set consists of one metro path alternative together 
with one or two bus paths, overlap between paths can only occur between the two bus 
paths. When an OD pair only contains one metro and one bus path, there is no overlap and 
raod thus equals ln(1).

The structural part of the utility function V  is a vector of observable route attributes with 
their corresponding weights as defined for the uncrowded off-peak models 1 and 2 (Eq. 5) 
and for the crowding model (Eq.  6). The alternative specific constants for modes bus b 
and metro m are meant to capture a generic mode preference based on the non-observed 
attributes are reflected by ascb and ascm , respectively. We specify mode-specific in-vehicle 
time coefficients �b

ivt
 for bus and �m

ivt
 for metro, so that potential mode-specific differences in 

in-vehicle time valuation can be captured as previous studies found statistically significant 
differences between rail and bus in-vehicle time valuation (e.g. Bunschoten et al. 2013). A 
generic waiting/walking out-of-vehicle time coefficient �wtt is specified in the utility func-
tion as there is no strong behavioural evidence in studies so far of differences in passenger 
waiting time valuation between different PT modes. In our model �wtt  is specified, in such 
a way that �wtt directly reflects the ratio between waiting/walking time and in-vehicle time 
valuation.

In this study there was no unique or pseudonymised passenger identifier available based 
on the passenger smartcard-id due to privacy regulations related to the possibility of poten-
tially being able to identify individual passengers. This implies that it is not possible to esti-
mate a panel effects model which corrects for possible correlations between route choices 
made by the same passenger, if multiple journeys made by the same passenger are included 
in the choice set. Instead, we therefore report the robust t-statistic and robust p-value as 
sandwich estimator with the aim of preventing an overestimation of the model coefficients.

Attribute levels

The bus in-vehicle time tb
ivt

 can directly be calculated as the difference between the (inferred) 
alighting time and (observed) boarding time. The bus waiting time is calculated as half the 
actual headway between the specific bus each passenger boarded and its predecessor. Given 
the typically high frequencies of London bus routes within a metropolitan environment, we 

(3)raod = ln

⎛
⎜⎜⎜⎝

�
j∈1..

���sbaod
���

��
1

�sb
aod
�

�
∗

�
1∑

aod∈Aod
�s,a

��⎞
⎟⎟⎟⎠

(4)raod = ln

�
1∑

aod∈Aod
�s,a

�

(5)
V = ascb ⋅ b + �b

ivt
⋅ tb

ivt
+ �b

ivt
⋅ �wtt ⋅ t

b
wtt

+ ascm ⋅ m + �m
ivt
⋅ tm

ivt
+ �m

ivt
⋅ �wtt ⋅ t

m
wtt

(6)
V = ascb ⋅ b + �b

ivt
⋅ tb

ivt
+ �b

ivt
⋅ �wtt ⋅ t

b
wtt

+ ascm ⋅ m + �m
ivt
⋅ tm

ivt
⋅

(
1 +

(
�m
d
⋅ dm

))
+ �m

ivt
⋅ �wtt ⋅ t

m
wtt
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can justify the assumption that passengers arrive uniformly distributed at the bus stop. We use 
the actual headway rather than the scheduled headway between buses to calculate the passen-
ger wait time, meaning that the impact of possible service irregularities on extended wait times 
is reflected in the average wait time value. For metro journeys only the station entry and sta-
tion exit times are empirically observed from the AFC data. The uncrowded metro in-vehicle 
time tm

ivt
 is set equal to the scheduled run time between the relevant station pair in the relevant 

time period. Metro run times are not affected by traffic conditions and due to automated train 
operation (ATO) being in place on the two metro lines of consideration, there is very limited 
variation in metro in-vehicle times. The remainder of the time between station entry and exit is 
then attributed to out-of-vehicle time, which is the sum of walking time to/from the platform 
and waiting time at the platform. We cannot further disentangle tm

wtt
 into separate walking time 

and waiting time without having to make assumptions on the walking speed distribution of 
passengers and without considering the station layout of individual stations to determine walk-
ing distances, which is information that is not directly available. Since no PT journeys with 
interchanges between bus and/or metro are included in the final choice set as a consequence of 
the filtering rules applied, the inclusion of a bespoke coefficient capturing the valuation of PT 
transfers in the utility function becomes obsolete.

We use the standing density on-board the metro dm as a crowding metric, which reflects the 
average number of standing passengers per square metre as derived from load-weigh data for 
each route segment per 15-min time interval t . The standing density equals zero if the passen-
ger load q is smaller than the seat capacity �—implying that all passengers can have a seat—
and increases up to 4 standing passengers per  m2 when all surface available for standing � has 
been used. In this study we test three different metrics for capturing the crowding perception 
associated with the standing density: the average standing density across all links of a passen-
ger journey (Eq. 7), the standing density at the first link of a passenger journey upon board-
ing (Eq. 8), and the maximum standing density at the busiest point of the passenger journey 
(Eq. 9). This enables us to assess which formulation of standing density is most important for 
passenger’s crowding valuation. The coefficient �m

d
 is specified such that it reflects the in-vehi-

cle time crowding multiplier as function of the standing density. The 15-min average standing 
density as observed in the post-pandemic choice set does not exceed 3 standing passengers 
per  m2. This illustrates that post-pandemic metro crowding levels as observed for our case 
study are sufficiently high to be able to estimate a RP based crowding coefficient. To prevent 
extrapolation of our study results beyond the observed crowding range, we primarily focus on 
crowding levels up to 3 standing passengers per  m2 in our analysis.

The expected in-vehicle time tivt and out-of-vehicle time twtt are used as attribute values 
in the choice model for both the chosen path and non-chosen path(s) of each OD pair. The 

(7)d
avg

i
= max

⎛
⎜⎜⎝

∑
ei∈Ei

qe−�e

�e

�Ei� , 0

⎞⎟⎟⎠

(8)d
first

i
= max

(
qe1 − �e1

�e1

, 0

)

(9)dmax
i

= max

(
���

(
qei − �ei

�ei

, 0

))
∀ei ∈ Ei
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expected values are calculated as the average times observed across all individual passen-
ger journeys included in the choice set for each path aod ∈ Aod during each time period 
T  . The expected value of the standing density for a certain chosen or non-chosen path as 
included in the choice model equals the average value across all individual observations 
per 15-min time interval t for each path. In contrast to the average in-vehicle time and 
waiting/walking time which do not vary much within each time period T  , crowding levels 
are subject to more variation within each time period as demand is much more concen-
trated. When selecting a too large time interval to derive the average crowding level for, it 
can potentially average out unevenly distributed crowding levels across this time interval, 
thereby dampening the crowding level experienced and expected by passengers. Notwith-
standing, when the time interval t is set too short, passengers will not have a clear expecta-
tion of crowding levels of (for example) individual metro trips.

Results and discussion

This section first discusses the estimation results of the three different models (Sec-
tion "Results"), followed by a discussion on the implications of these results (Section "Dis-
cussion"). We refer to Model 1 for the uncrowded pre-pandemic model; to Model 2 for the 
uncrowded post-pandemic model; and to Model 3 for the post-pandemic crowding model.

Results

Maximum likelihood estimation is performed to infer the coefficients which best explain 
the observed passenger route choices for the three different models using PythonBiogeme 
(Bierlaire 2016). The Newton algorithm is used as iterative method to solve this non-linear 
optimisation problem, which converged after 9, 12 and 12 iterations for Model 1, Model 2 
and Model 3, respectively.

The initial and final log-likelihood, Rho-square and Rho-square-bar, Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) for all three models are reported 
in the model estimation summary in Table 3. From this table, it can be seen that the Rho-
square-bar of crowding model 3 (0.299) is 37% higher (8.1 percent point higher) compared 
to the Rho-square-bar of uncrowded post-pandemic model 2 (0.218). As mentioned in 

Table 3  Model estimation summary

Model 1
Pre-pandemic 
uncrowded model

Model 2
Post-pandemic 
uncrowded model

Model 3 
Post-pandemic
crowding model

Observations 50,494 46,400 20,970
Number of estimated parameters 5 5 5
Initial log-likelihood − 35,339 − 33,177 − 12,213
Final log-likelihood − 28,182 − 25,936 − 8,551
Rho-square 0.203 0.218 0.300
Rho-square-bar 0.202 0.218 0.299
Akaike Information Criterion (AIC) 56,377 51,884 17,113
Bayesian Information Criterion (BIC) 56,430 51,937 17,153
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Section 2, all three models are estimated using a closed-form path-sized logit model. As 
a result, all three PSL models reached convergence within a computation time of less than 
5 s on a regular i7 PC.

Model estimation results are presented in Table  4. By inspecting all estimated coef-
ficients, we can conclude that the signs of all coefficients are plausible and in line with 
a-priori expectations and findings reported by previous studies. All in-vehicle time coef-
ficients �b

ivt
 and �m

ivt
 show negative values as expected, whereas the ratio between waiting/

walking time and in-vehicle time �wtt expectedly shows a positive sign for both uncrowded 
models 1 and 2. For model 3, we have fixed the ratio between waiting/walking time and in-
vehicle time �wtt to the value found in the off-peak model estimated for the same post-pan-
demic date range, as we don’t reasonably expect a difference in average waiting time valu-
ation relative to in-vehicle time between peak and off-peak. Furthermore, the coefficient 
�m
d

 reflecting the crowding in-vehicle time multiplier is positive, confirming an increasing 
in-vehicle time valuation when on-board crowding levels increase. The absolute value of 
the robust t-value is larger than 1.96 for all estimated coefficients, which confirms that our 
results are statistically significant. Except for the standing density coefficient �m

d
 (robust 

p = 0.0274), the robust p-values of all other coefficients are smaller than 0.01, thus indicat-
ing that our results are highly significant.

Discussion

Results from uncrowded models

For all three models the alternative specific constant is positive for metro whilst fixed to 
zero for bus. This suggests that passengers have an overall preference for travelling by 
metro over bus based on the non-observed attributes in the choice model, all other things 
being equal. A possible explanation for this can be the typically higher level of reliability 
of metro services compared to bus due to their own right of way. Bus journey times in 
London have a much higher variability due to the impact of road traffic conditions. Another 
explanation can be that journeys by metro are perceived as more comfortable due to a 
higher driving comfort and typically less abrupt acceleration and deceleration, resulting in 
a general preference for metro over bus.

Based on the ratio between the metro and bus in-vehicle time coefficients �m
ivt

:�b
ivt

 of the 
uncrowded pre-pandemic model 1, we find that on average uncrowded in-vehicle time on-
board a metro is perceived 20% less negatively than uncrowded bus in-vehicle time. We 
know from earlier SP research on a so called ‘rail bonus’ that passengers value in-vehicle 
time on rail modes 67–80% less negatively compared to in-vehicle time by bus due to a 
higher perceived comfort level and—for example—the ability to spend in-vehicle time in 
a more productive way by doing work (Bunschoten et al. 2013). Our findings from the pre-
pandemic model are in line with this, confirming that passengers value metro in-vehicle 
time not as negatively as bus in-vehicle time. �wtt,the coefficient which reflects the ratio 
between waiting/walking time and uncrowded in-vehicle time, equals 1.94 for the pre-pan-
demic model. This implies that on average passengers value one minute of out-of-vehicle 
(walking or waiting) time as almost two minutes of in-vehicle time. This is in line with 
findings from many previous studies on PT walking and waiting time valuation. For exam-
ple, based on a meta-analysis Wardman (2004) shows that—despite varying with mode and 
journey length—waiting and walking time valuations are often centred around twice the 
value of in-vehicle time. Bovy & Hoogendoorn-Lanser (2005) found that waiting time is 
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valued 2.2 times as much as the in-vehicle time value based on SP research, whereas Yap 
and Cats (2021) found a ratio of 1.62 between waiting time and in-vehicle time based on 
an RP study of PT journeys in Washington, DC. This confirms that the estimation results 
from our pre-pandemic baseline model are in line with previous study results, thus provid-
ing confidence that our choice set generation criteria and proposed modelling approach are 
suitable for deriving passenger preferences for the post-pandemic era as well.

When analysing the results of the post-pandemic uncrowded model there are two inter-
esting findings. First, the ratio between the metro and bus in-vehicle time coefficients �m

ivt

:�b
ivt

 for model 2 shows that metro in-vehicle time is now on average valued 15% less nega-
tively compared to bus in-vehicle time. Whilst this still confirms a generic passenger pref-
erence for metro over bus regarding in-vehicle time, this result suggests that the relative 
attractiveness of the metro compared to bus has decreased somewhat in terms of in-vehicle 
time. A possible explanation is that since the COVID-19 outbreak passengers value travel-
ling in enclosed, underground environments such as a metro system more negatively than 
pre-pandemic, as these might be perceived as areas with higher infection risks. In contrast, 
bus travel on the surface with frequent door openings at stops and the possibility for pas-
sengers to open windows can be perceived as a travel mode providing better ventilation and 
thus reducing COVID-19 infection risks. Second, we see that on average out-of-vehicle 
time is perceived 1.92 times more negatively compared to uncrowded in-vehicle time in 
the post-pandemic model, as reflected by �wtt . As �wtt remains almost unchanged between 
the pre-pandemic and post-pandemic off-peak models, we can conclude that PT waiting/
walking time valuation relative to in-vehicle time did not significantly change since the 
COVID-19 pandemic.

For all three models the path size logit coefficient �psl—which reflects overlap between 
the route alternatives—is significant and negative. As mentioned in  the  Section “Model 
specification” of this paper, the node-based path size correction factor as used in this study 
becomes more negative when more alternatives of a certain OD pair share the same board-
ing or transfer stop. Therefore, the negative sign implies that overlap between PT route 
alternatives in terms of boarding / transfer stops is generally perceived as positive by pas-
sengers, as the utility decreases with fewer (or no) overlap between the paths of a certain 
OD pair. This is in line with the most recent findings from Dixit et al. (2021), who also 
found that passengers prefer (node-)overlapping routes compared to completely distinct 
routes, possibly due to a higher degree of resilience being provided whilst waiting at a 
certain PT stop.

Results from crowding model

For the post-pandemic crowding model the estimated metro crowding coefficient �m
d

 is sig-
nificant at a 95% significance level, with the robust t-statistic of 2.21 being larger than 
1.96. The value of this coefficient implies that after the passenger load on-board the metro 
reaches the seat capacity, the in-vehicle time valuation increases by 0.42 for each increase 
in the average number of standing passengers per square metre. This means that the in-
vehicle time multiplier increases from 1.0 when all seats are occupied without standing 
passengers, to 1 + (3*0.42) = 2.26 when a crowding level of 3 standing passengers per  m2 
is reached. It should be noted that this crowding coefficient reflects the average in-vehicle 
time valuation across both seated and standing passengers. As we cannot empirically infer 
which passengers had a seat during their journey, it is not possible to further disentangle 
this coefficient into separate coefficients for seated and standing passengers. In addition to 
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a linear crowding curve, we also tested a piece-wise linear function and quadratic func-
tion. However, no significant results were found for these functions, suggesting that the in-
vehicle time valuation increases linearly with an increasing standing density. This is in line 
with the findings from Hörcher et al. (2017) and Tirachini et al. (2016), who also found 
linear relations between standing density and the in-vehicle time crowding multiplier.

When we linearly extrapolate the estimated crowding coefficient—as observed crowd-
ing levels averaged per 15-min interval in our choice set did not exceed 3 standing pas-
sengers per  m2—we can estimate that the in-vehicle time multiplier would be equal to 2.68 
when a train operates at full capacity (assumed at 4 standing passengers per  m2). This indi-
cates that in the post-pandemic era metro passengers value in-vehicle time more than 2.5 
times as negative when travelling in very crowded circumstances, compared to uncrowded 
in-vehicle time. Since bus crowding levels are not explicitly incorporated in this model, it 
is possible that bus crowding is implicitly reflected in either the alternative specific con-
stant ascb or in-vehicle time coefficient �b

ivt
 for bus. This could explain why the bus in-

vehicle time coefficient is more negative relative to the metro in-vehicle time coefficient in 
this model, compared to the ratios �m

ivt
:�b

ivt
 found for the two off-peak, uncrowded models 1 

and 2 (a ratio of 0.55 compared to 0.80 and 0.85, respectively).
As mentioned in the Section “Attribute levels”, we tested three different crowding met-

rics for standing density, being the standing density a passenger experiences upon board-
ing, the average standing density across the entire passenger journey, and the maximum 
standing density at the busiest point of the journey for each individual passenger. The 
model using the crowding level upon boarding ( dfirst ) was the only model resulting in a 
statistically significant standing density crowding coefficient. This suggests that the PT 
crowding level upon boarding best captures passengers’ crowding valuation. An explana-
tion for this is that the crowding level upon boarding is related to the passenger’s seat prob-
ability, as this is an important determinant of whether a passenger will be able to have a 
seat during the entire journey. This is for example confirmed in the study to in-vehicle time 
valuation conducted by Hörcher et al. (2017) who found a statistically significant coeffi-
cient for standing probability in addition to the coefficient reflecting the standing density. 
Our results suggest that implementation of the ability of using either the first or average 
journey crowding level in appraisal processes can be a worthwhile direction to be explored.

In Fig. 1 we compare the in-vehicle time crowding curve as derived from our model to 
previous studies. For comparison purposes we show the in-vehicle time multiplier between 
0 and 4 standing passengers per  m2 for all studies and interpolate or extrapolate where 
required. We first discuss the results from three RP based studies which used a comparable 
methodology to our work to derive pre-pandemic crowding multipliers from large-scale 
passenger demand data. These results show that at 4 standing passengers per  m2 the esti-
mated metro network crowding multiplier is comparable for the three RP based studies, 
ranging between 1.65 in Hong Kong (Hörcher et  al. 2017), 1.73 in Singapore (Tirachini 
et al. 2016) and 1.84 in Washington, DC (Yap and Cats 2021). A RP based study to crowd-
ing valuation derived from observed, pre-pandemic route choices on an Asian metro net-
work by Bansal et al. (2022a)  yielded a crowding multiplier of 1.47 at extreme crowding 
levels. This is somewhat lower than found in the three above-mentioned RP studies, which 
might stem from the fact that the crowding multiplier in Bansal et al. (2022a)  was derived 
from compensatory route choices only.

Based on SP experiments conducted in Santiago de Chile before and after the pandemic, 
a pre-pandemic crowding multiplier of 2.01 was found at 4 standing passengers per  m2 
by Batarce et al. (2016). This multiplier is higher than the multipliers found in the three 
afore-mentioned pre-pandemic RP studies. When comparing this to the results of the SP 
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study performed in Santiago de Chile after the pandemic, one can see that the crowding 
curve—as average across the latent class models for male and female respondents as esti-
mated by Basnak et al. (2022)—is significantly steeper in the post-pandemic study. For a 
scenario where 100% of the passengers would wear face covering, the post-pandemic SP 
based crowding multiplier in Chile equals 2.54 at 4 standing passengers per  m2 compared 
to 2.01 pre-pandemic. These SP based studies in Chile thus provide strong evidence that 
respondents value crowding more negatively since the pandemic.

Specifically for London we refer to two pre-pandemic studies on crowding valuation. 
The first one is a RP study performed in the 1988 by Transport for London, of which the 
results are summarised in Transport for London’s Business Case Development Manual 
(Transport for London 2019). This study focused on metro station Seven Sisters, where 
during peak hours one third of the trains started from this station (empty) whilst the other 
two thirds of the trains started three stations further upstream. Crowding valuation was 
derived from platform observations whether waiting passengers decided to skip a crowded 
arriving train to wait for a next, empty train starting at this station. The resulting crowding 
multiplier of 2.32 at 4 standing passengers per  m2 is notably higher than other pre-pan-
demic studies, although this study has been performed several years ago using a different 
methodology than more recent RP studies. Secondly, we can derive a more recent average 
pre-pandemic crowding multiplier using the SP based coefficients estimated for seated and 
standing passengers by Whelan and Crockett (2009), based on the average seat and total 
capacity of London metro stock. At 4 standing passengers per  m2, the study by Whelan and 
Crockett (2009) results in an average pre-pandemic in-vehicle time multiplier of 1.77. Our 
equivalent RP based estimated crowding multiplier for London in the post-pandemic era of 
2.69 provides strong evidence that PT passengers value metro crowding substantially more 
negatively in London since the COVID-19 outbreak compared to both pre-pandemic stud-
ies in London, despite their differences in methodology. The crowding valuation found in 
our study is comparable to the post-pandemic crowding valuation derived from SP research 
for Santiago de Chile by Basnak et  al. (2022), which gives confidence in the magnitude 
of our estimated crowding coefficient. For interpretation purposes we remind the reader 
that there was no obligation anymore for passengers in London to wear face covering 
whilst travelling during the period of data collection in June 2022, thus reflecting crowding 

Fig. 1  In-vehicle time crowding multiplier as function of standing density
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valuation in a more steady-state rather than during different stages of COVID-19 pandemic 
recovery. The crowding multiplier of 1.73 at full capacity found in Bansal et al. (2022b) 
based on an SP experiment conducted in Spring 2021 among pre-pandemic users of Lon-
don’s metro system is lower than our results. This might be explained by the fact that this 
study separately estimated the impacts of vaccination rate, the daily number of COVID-19 
cases and mandatory face covering on the in-vehicle time multiplier, or because it is not 
certain whether all pre-pandemic users included in the experiment had experienced post-
pandemic metro travelling at that time.

Conclusions and recommendations

Conclusions

In this study we derive the crowding valuation of public transport passengers using Lon-
don’s metro network in the post-pandemic era entirely based on observed, actual passen-
ger route choices. In contrast to previous studies on post-pandemic crowding valuation, 
we adopt a revealed preference methodology which relies entirely on large-scale, empiri-
cal passenger demand data. Our study results contribute to a better understanding on how 
on-board crowding in urban public transport is perceived in a European context since the 
outbreak of the COVID-19 pandemic.

Based on the three estimated discrete choice models we can formulate three main 
conclusions. First, the average post-pandemic out-of-vehicle time valuation remains 
unchanged at almost twice the uncrowded in-vehicle time valuation. We found a ratio 
between walking/waiting time and in-vehicle time of 1.94 pre-pandemic and of 1.92 post-
pandemic, based on which we conclude that the relative waiting/walking time valuation did 
not change since the COVID-19 pandemic. Second, whilst our study results confirm that 
there is a generic passenger preference for metro over bus regarding in-vehicle time, we 
find that the relative attractiveness of metro compared to bus has decreased somewhat post-
pandemic in terms of in-vehicle time. This possibly echoes a more negative perception 
of metro travelling in a more enclosed, underground environment compared to bus travel. 
Third, our crowding model estimation results show that passengers’ average in-vehicle time 
valuation increases by 0.42 for each increase in the average number of standing passengers 
per square metre. In contrast, across the six studies to pre-pandemic crowding valuation 
as shown in Fig.  1, the in-vehicle time valuation increased on average by 0.22 for each 
increase in the number of standing passengers per square metre. Compared to the results 
of these SP and RP studies conducted before the pandemic in London and elsewhere we 
thus clearly see a steeper slope of the post-pandemic crowding curve as found in our study, 
based on which we can conclude that PT passengers value crowding more negatively since 
the COVID-19 pandemic.

Study limitations and recommendations

We formulate several study limitations and subsequent recommendations for further 
research. First, we recommend follow-up research dedicated to a more systematic moni-
toring of crowding valuation over time. A limitation of our work is that we only used data 
from June 2022. Although PT demand in London has stabilised by this period in time, we 
cannot assert whether this also holds for crowding perceptions. We therefore recommend 
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the estimation of crowding valuation for different cross sections in time, for example on a 
quarterly base since the start of the COVID-19 outbreak. This would enable monitoring 
the dynamics of crowding valuation. For example, it could provide insights into whether 
crowding valuation is reversing back towards pre-pandemic levels when passengers are 
more exposed to crowded environments again.

Second, we recommend studying the external validity of our work by expanding the 
study to different metro lines, cities and countries. Our study relies on PT route choice 
related to two metro lines in London equipped with load-weigh systems. We recommend 
to study crowding valuation on different metro and rail lines in London when APC systems 
allow for this, and to perform a wider comparison of post-pandemic crowding valuation 
between different cities and countries. This could provide insights into the representative-
ness of the data related to the two included metro lines. Additionally, it can highlight pos-
sible cultural differences in crowding valuation, as well as insights in the role of different 
public health measures (such as mandatory face covering or social distancing) between dif-
ferent countries on crowding valuation.

Third, in our study the model specifying the crowding level upon boarding was the 
only model yielding a statistically significant crowding coefficient and providing the best 
explanatory power, which we expect to be related to the passenger’s seat probability when 
boarding. However, most crowding valuation studies previously conducted found statis-
tically significant results when using the average crowding level of a passenger journey 
rather than the crowding level upon boarding. Follow-up research is therefore suggested 
to assess whether similar results would be found when valuing crowding during different 
cross-sectional time periods and for different cities or countries.

Fourth, we recommend exploring heterogeneity in crowding valuation between dif-
ferent passengers. In this study we have estimated the average passenger crowding valu-
ation based on a closed-form PSL model. An interesting direction for follow-up research 
would be to test the estimation of a latent class model and/or mixed logit model, to explore 
how much variation exists in crowding valuation between different passenger segments or 
between individual passengers.

Finally, we recommend assessing the extent to which the change in crowding percep-
tions impacts the effective capacity of PT networks and whether the higher crowding valu-
ations contribute to observed reductions in PT demand levels.
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