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Abstract
Ride-hailing services such as Lyft, Uber, and Cabify operate through smartphone apps and 
are a popular and growing mobility option in cities around the world. These companies can 
adjust their fares in real time using dynamic algorithms to balance the needs of drivers and 
riders, but it is still scarcely known how prices evolve at any given time. This research ana-
lyzes ride-hailing fares before and during the COVID-19 pandemic, focusing on applica-
tions of time series forecasting and machine learning models that may be useful for trans-
port policy purposes. The Lyft Application Programming Interface was used to collect data 
on Lyft ride supply in Atlanta and Boston over 2 years (2019 and 2020). The Facebook 
Prophet model was used for long-term prediction to analyze the trends and global evolution 
of Lyft fares, while the Random Forest model was used for short-term prediction of ride-
hailing fares. The results indicate that ride-hailing fares are affected during the COVID-19 
pandemic, with values in the year 2020 being lower than those predicted by the models. 
The effects of fare peaks, uncontrollable events, and the impact of COVID-19 cases are 
also investigated. This study comes up with crucial policy recommendations for the ride-
hailing market to better understand, regulate and integrate these services.

Keywords Ride-Hailing · Dynamic Pricing · Time Series Forecasting · Machine Learning · 
COVID-19 · Transport Policy

Introduction

Ride-hailing companies, which are also known as Transportation Network Companies 
(TNCs) in a broader sense, have become a common sight in cities around the world, and 
are one of the emerging mobility options that are revolutionizing door-to-door mobility 
services (Rangel et al. 2021). Ride-hailing companies such as Uber, Lyft, and Cabify use 
smartphone apps to provide their services, allowing the users to request a ride and receive 
information about the pick-up time, vehicle location, and the fare they will pay in advance 
(the app also makes payment easier for the users).
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Ride-hailing companies are becoming increasingly popular because of their availabil-
ity, convenience, and high quality of service (Rayle et al. 2016; Shokoohyar et al. 2020). 
These companies adjust their fares at any time using real-time dynamic algorithms 
(Chen and Sheldon 2015), whereas taxi fares are fixed and regulated. That means that 
when demand for ride-hailing services exceeds the supply of drivers, fares will automat-
ically rise. Dynamic pricing (also known as surge pricing) is an automated system based 
on the basic principles of demand and supply. As a result, during times of high demand, 
passengers pay a higher fare for rides. When fares are increased dramatically due to 
high demand, users are generally notified before requesting a ride (Rangel et al. 2021).

Despite the growing popularity of ride-hailing companies, many of their operational 
metrics remain opaque. The public knows little about dynamic pricing and, as a result, 
understanding fares turn out troublesome. While it is unclear how these prices are 
updated at any given time, the ride-hailing market and its stakeholders can benefit from 
the overall short- and long-term fare prediction. Fares accurately predicted, can be used 
by: (i) TNCs to better understand how fares change over time; (ii) customers to search 
for the cheapest fares; and (iii) drivers to monitor fare increases for higher prices (and 
hence potential revenue to collect).

The COVID-19 pandemic is prompting a new scenario with new mobility lifestyles, 
in which public health and social distancing have become critical challenges. In addi-
tion to mobility restrictions, some areas have restricted the use of public transport after 
it was identified as a vector for the spread of infection in densely populated areas (Buja 
et al. 2020; Tian et al. 2020). Fear of infection also discourages people from using pub-
lic transport (Wang 2014) and ride-hailing services (Shamshiripour et al. 2020), leading 
to a greater share in the use of active modes of transport (Abdullah et al. 2020; Bucsky 
2020; de Haas et al. 2020).

There are changes in travelers’ and drivers’ mode choice behavior as a result of unu-
sual occurrences such as technological emergence, pandemic conditions, etc. (Khoury 
et al. 2019). According to global economic reports, the global ride-hailing market would 
increase at a rate of 55.6% from 2020 to 2021 after the COVID-19 pandemic. From 
USD 75.39 billion in 2020, it is predicted to reach USD 117.34 billion by 2021. How-
ever, compared to the pre-COVID-19 estimate, the projection for 2021 is expected to 
be 2% lower (Shaheen et al. 2015). To reduce the potential of viral infection, initiatives 
such as creating barriers between the driver and the passenger, equipping the car with 
sanitizers, and installing digital thermometers to detect passengers’ body temperature 
may resuscitate the ride-hailing business (Khoury et al. 2019; Morshed et al. 2021). In 
that scenario, this paper addresses the following research question: “Were ride-hailing 
fares affected by the COVID-19 pandemic?”.

Thus, the objective of this paper is to investigate the impact of the COVID-19 pan-
demic on ride-hailing fares. To that end, the predictive capabilities of two models are 
analyzed: (i) a long-term prediction model (using a time series forecasting model); and 
(ii) a short-term prediction model (using a machine learning model). The difference 
between predicted 2020 fares trained on pre-COVID-19 data and actual 2020 fares can 
be used to analyze the pandemic’s impact. If indeed the COVID-19 pandemic affects 
ride-hailing fares, a long-term forecasting model trained on pre-pandemic data is likely 
to have difficulties when tested during the COVID-19 pandemic. Ride-hailing data was 
collected from the Lyft Application Programming Interface (API), collecting supply-
side data in two urban areas in the United States (i.e. Atlanta and Boston) over 2 years 
(from January 1st, 2019 to December 31st, 2020).
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On a general basis, this paper intends to: (i) propose a research design incorporating 
time series forecasting and machine learning models into the decision-making processes of 
agencies, stakeholders, and policymakers for the ride-hailing market; and (ii) explore pric-
ing strategies on transportation systems and services (i.e., ride-hailing companies) through 
the use of novel models, for transport policy purposes.

To better understand the behavior of Lyft fares in the two cities, two different tech-
niques (a time series forecasting model and a machine learning model) were employed. 
On the one hand, the Facebook Prophet model (a time series forecasting model) was used 
for long-term prediction to analyze trends and the global evolution of Lyft fares. On the 
other hand, the Random Forest model (a supervised machine learning model) was used for 
the short-term prediction of ride-hailing fares. Even though the two models have different 
approaches, the analysis of the fares predicted is complimentary. Furthermore, accurately 
forecasting ride-hailing fares is worth it for ride-hailing companies as they may provide 
information on demand peaks that these companies are currently unable to meet.

This paper presents some contributions to the ride-hailing market, as well as its stake-
holders (e.g., drivers and customers). First, total fares were predicted, not just the surge 
multiplier (as noted by Battifarano and Qian 2019, who analyzed data before the COVID-
19 pandemic). Second, two different short- and long-term prediction models were used to 
better understand the behavior of ride-hailing fares (focusing on applications of time series 
forecasting and machine learning models that may be useful for transport policy purposes). 
Third, data from two urban areas in the United States (namely Atlanta and Boston) col-
lected over a long period (a total of two years) was used to calibrate the models. Fourth, the 
period analyzed includes the most critical phases of COVID-19, allowing for the detection 
of the pandemic’s impact on ride-hailing fares. Finally, it provides crucial policy recom-
mendations for the ride-hailing market to better understand, regulate and integrate these 
services.

After the introduction, in the second section, the background and literature review are 
presented. The third section presents the two cities selected, followed by the fourth section 
describing the data for each case. In the fifth section, the methods used to obtain the results 
of this paper are discussed. In the sixth section, the results and discussion are presented, 
followed by conclusions and policy recommendations for the ride-hailing market.

Background and literature review

The scientific literature on ride-hailing has grown in recent years in tandem with the global 
popularity of these services. The contribution to ride-hailing can be divided into two main 
categories: (i) studies focusing on demand (riders); and (ii) studies focusing on the supply 
side of ride-hailing (drivers), being demand the focus of most research studies.

Regarding demand, studies can be classified into two groups. The first set of contri-
butions looks into ride-hailing users, both individually and in terms of trips, using data 
from surveys, as noted by Alemi et al. (2018) and Sikder (2019). According to Alemi et al. 
(2018), young people, people with a higher level of education, and people with a “technol-
ogy-oriented” lifestyle are more likely to use on-demand ride services. Furthermore, resi-
dents of urban areas reporting a lower use of their cars compared to the past are more likely 
to adopt these services (Sikder 2019).

The second set of contributions uses empirical data to investigate the impact of ride-
hailing services. Despite the limited amount of data available to date, several contributions 



 Transportation

1 3

are worth to be mentioned. To the best of the authors’ knowledge, at least three cities in 
the United States have publicly released ride-hailing trip data: Austin (Ride-Austin, 2017), 
Chicago (Chicago Data Portal, 2021), and New York City (TLC, 2020). Some studies have 
used these open-source databases to model the relationship between ride-hailing demand 
and other variables such as socioeconomic factors (Correa et al. 2017; Ghaffar et al. 2020; 
Yu and Peng 2019, 2020), built environmental factors (such as density, land use, infra-
structure, and transit accessibility) (Gerte et al. 2018; Yu and Peng 2019, 2020), weather 
conditions (Ghaffar et al. 2020) and transit supply/service (Correa et al. 2017; Ghaffar et al. 
2020; Lavieri et al. 2018; Soria et al. 2020; Yu and Peng 2020).

Aside from the above-mentioned studies, some researchers have focused their work on 
forecasting future demand. Time series models (Faghih et al. 2019) and machine learning 
models (Chen et al. 2021; Jin et al. 2020; Ke et al. 2017; Kontou et al. 2020; Yan et al. 
2020) have both been used to predict ride-hailing demand. The operator can make real-
time adjustments and assign drivers to riders based on the short-term prediction of ride-
hailing demand, maximizing service and revenue.

Given the lack of data on ride-hailing supply, researchers have obtained primary data 
through APIs provided by operators. Several contributions have been made in various 
aspects of ride-hailing supply. Jiao (2018) and Hall et  al. (2015), for example, studied 
dynamic pricing during a special event in Austin and New York City, respectively. In addi-
tion, Battifarano and Qian (2019) proposed a general framework for predicting the short-
term evolution of surge multipliers in real-time, with their model predicting Uber surge 
multipliers in Pittsburgh up to two hours in advance.

Other aspects of the supply side include the analysis of ride-hailing fare patterns (Ran-
gel et al. 2021), the impact of weather conditions on ride-hailing (Shokoohyar et al. 2020), 
the impact of ride-hailing systems on the traditional taxi sector (Akimova et  al. 2020; 
Berger et al. 2018), and the comparison of the two services (Cramer and Krueger 2016; 
Rangel et al. 2021).

Given that COVID-19 is rapidly becoming a major global issue, it is worth mentioning 
a new set of contributions to the ride-hailing literature related to the pandemic’s drastic 
changes in people’s mobility habits. Data from travel behavior surveys has primarily been 
used to study the impact of the COVID-19 pandemic on the transport sector, particularly 
ride-hailing services. For example, there is evidence that the demand for public transport 
has decreased dramatically as a result of the higher risk of exposure when compared to 
other modes of transport (Bucsky 2020; Loa et al. 2021). Another study by Shamshiripour 
et  al. (2020) investigated the perceived risk of different modes of transport in Chicago, 
finding that taxi and ride-hailing services are among the top three riskiest modes in peo-
ple’s minds.

Individual modes of transport (such as private vehicles, cycling, and walking) appear to 
be more popular during the COVID-19 pandemic, whereas shared modes (such as public 
transport, ride-hailing, and taxi) appear to be less popular due to perceived risks. However, 
according to Loa et al. (2021), the COVID-19 pandemic has had only a short-term impact 
on ride-hailing frequency, and it is unclear whether the pandemic will have a long-term 
impact on ride-hailing usage in Toronto. Awad-Núñez et al. (2021) investigated people’s 
willingness to use and pay for public transport and shared mobility services (such as car-
sharing, moped scooter-sharing, bike-sharing and kick scooter-sharing), as well as ride-
hailing and taxi services in Spain. They concluded that in the post-COVID-19 phase, peo-
ple’s willingness to pay for ride-hailing services is relatively high.

Another study was conducted by Du and Rakha (2020) during the COVID-19 pandemic 
to investigate ride-hailing trip changes depending on a range of variables. The Chicago 
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Data Portal open database was used to collect empirical data for this study. The number 
of total trips, number of pooled trips, number of single trips, travel frequency, trip travel 
times, trip distances, and variations in longer trips across census tracts and shorter internal 
trips within a census tract were all investigated by these authors. According to the find-
ings, the number of ride-hailing trips was significantly lower than those using personal 
vehicles during the COVID-19 pandemic. Due to less congestion, average travel distances 
became longer and average travel times shorter in most cases. In early March 2020, Uber 
and Lyft suspended trip pooling, thereby resulting in a significant drop in the number of 
pooled trips.

Despite the increasing interest in the impact of the COVID-19 pandemic on ride-hailing 
services, there are still some gaps in the literature. For example, no research has been done 
regarding the trends and changes in ride-hailing fares just before and during the COVID-19 
pandemic. In addition, fare forecasting models should be investigated to improve long-term 
prediction (to analyze trends and global evolution of ride-hailing fares) and short-term pre-
diction (to predict ride-hailing fares in a short period). These are the research gaps that this 
paper is attempting to tackle.

Cities selected

This section provides a brief description of the cities selected to analyze the trends and evo-
lution followed by ride-hailing fares before and during the COVID-19 pandemic. Atlanta 
and Boston were chosen since they are important employment centers in their respective 
regions with similar populations. However, they differ in urban morphology, transportation 
infrastructure, modal share, and other factors.

Atlanta, Georgia, has a population of 488,800 people (United States Census Bureau, 
2019) and 5.3-million inhabitants in its metropolitan area (United States Census Bureau, 
2010). Boston, Massachusetts, has a population of 684,379 people (United States Census 
Bureau, 2019) and 4.6  million inhabitants in its metropolitan area (United States Cen-
sus Bureau, 2010). The city of Atlanta is nearly three times the surface size of the city of 
Boston with a lower population density (about 29% less) and a lower median household 
income (about 16% less). These cities, however, reveal some similarities, particularly in 
terms of poverty, bachelor’s degree or higher, and employment rates (United States Census 
Bureau, 2019).

Regarding mobility, the two cities are among the most congested ones in the world 
(Global Traffic Scorecard, 2020). The commute trips by mode for the cities of Atlanta and 
Boston are presented in Table 1. Only commuting mode shares are considered.

Even though non-drive-alone modes are not so representative in both cities, Boston 
has higher percentages of transit and active modes of transport (e.g., walking and cycling) 
compared to Atlanta. The use of ride-hailing services (such as Lyft and Uber) is similar in 
both cities, at around 2% or less.

Ride-hailing services are a popular and rapidly expanding mode of transport in cities all 
over the world. The two largest ride-hailing companies in the United States are Lyft and 
Uber. Nevertheless, this paper only focuses on Lyft services due to the lack of data avail-
able from other ride-hailing companies operating in the cities (see more details in Sect. 4 
about data description).

Knowing how Lyft rides are calculated is important to better understand the cost of the 
ride. The Lyft ride price is comprised of the Lyft fare, tolls or local fees, and tips to the 
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driver. Factors taken into account when estimating a fare are: (i) ride route; (ii) ride type; 
(iii) ride availability; and (iv) demand (Lyft, 2022). For Lyft, the service fee p (total fare 
for a ride) is made up of two main parts (see Eq. 1).

The first component (base cost) includes regular fees such as one-off fees, service fees, 
and trip fees proportional to the trip’s duration and distance. The second component (surge 
pricing) reflects the result of Lyft’s surge pricing algorithm depending on supply and 
demand (S&D) imbalances (Schröder et al. 2020).

Lyft in the two cities offers a variety of service models (e.g., Lyft-type, Lyft Plus, and 
Lyft Lux), however, this paper primarily focuses on Lyft-type rides because it is the most 
popular service, which provides rides in regular vehicles for up to four people. Table  2 
describes the factors that influence Lyft fares in Atlanta and Boston in 2021, based on reg-
ular service. The price of a Lyft ride varies across cities, as well as each aspect of the 
fee structure. Lyft fares are generally higher in large, high-density cities, with higher base 
fares, as is the case in Boston, for example.

In the two cities, Lyft fares differ and are determined by the company’s policy, and 
the base cost considers the following factors: (i) the one-off fee, which remains constant 
regardless of the length or duration of the ride; (ii) the service fee, which is an additional 
fee added on a per-ride basis to support the Lyft Platform and related services (including 
a broad spectrum of operating costs and safety measures like insurance and background 
checks); (iii) the cost per minute; and (iii) the cost per mile. Surge pricing, also known as 
dynamic pricing, is a real-time dynamic algorithm used by their platforms to adjust prices 
(Chen and Sheldon 2015; Ngo 2015). Furthermore, the minimum fare is also included, 

(1)pservice fee = pbase cost + psurge pricing

Table 1  Travel to work by city 
area 2014–2018. (Adapted from 
The Transport Politic, 2018)

Mode Atlanta Boston

Drive Alone (Personal vehicle) 77% 65%
Carpool 9% 7%
Transit 3% 14%
Walk 0% 1%
Bike 1% 6%
Other (e.g., Taxi, Lyft, Uber) 2% 2%
Work from Home 8% 5%

Table 2  Factors that influence 
Lyft fares in Atlanta and Boston, 
based on regular service

*Reflects the time evolution of supply and demand (S&D) imbalances

Service fee Variable Atlanta Boston

Base cost One-off fee USD 1.12 USD 2.18
Service fee USD 3.90 USD 2.35
Cost per minute USD 0.17 USD 0.37
Cost per mile USD 0.87 USD 0.92

Surge pricing* S&D S&D
Minimum fare USD 5.30 USD 5.00
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which is a minimum fare for each service to compensate drivers in cases where short trips 
occur.

It is worth mentioning that the real-time dynamic algorithm (surge pricing) is not open 
data supplied by Lyft. This is the main reason why this research aims to better understand 
the behavior of ride-hailing fares, and how they are affected by the COVID-19 pandemic.

In the United States, the first case of COVID-19 was confirmed on January 21st, 2020, 
and the World Health Organization (WHO) declared COVID-19 a “pandemic” on March 
11st, 2020 (Javadinasr et al. 2022). The lockdown in Atlanta started on March 23rd, 2020 
(City of Atlanta, 2022), while it started in Boston on March 16th, 2020 (City of Boston, 
2021). Figure 1 shows the evolution of COVID-19 cases in these cities during 2020.

Atlanta reported a total of 21,486 COVID-19 cases in the year 2020, while Boston 
reported a total of 40,325 cases (almost twice as many as Atlanta). Atlanta’s peaks lag 
behind Boston’s, mostly occurring in July and December 2020, while Boston’s peaks have 
indeed occurred in May and December 2020.

Table  3 shows the impact of the pandemic on transport trends such as miles driven, 
travel times, and collisions in Atlanta and Boston, which are among the most congested cit-
ies in the world. Because of the COVID-19 pandemic, many people stopped sharing rides 
and avoided taking public transport. Overall, traffic congestion trends became “positive” 
as people largely avoided traffic jams associated with morning and afternoon commutes 
(Global Traffic Scorecard, 2020).

The city of Boston ranked first in 2019 as the most congested city in the United States, 
but saw 101  h saved in 2020, while the city of Atlanta saw only 62  h saved in 2020. 
Although Atlanta is less congested than Boston, the impact of COVID-19 on transport 
trends was relatively small in miles driven and collisions, which may be related to the 
lower supply of alternatives to driving, such as cycling and transit.

Data description

This section presents the data used to explore the trends and evolution followed by ride-
hailing fares before and during the COVID-19 pandemic. Data was collected using Lyft’s 
API in the two selected cities, Atlanta and Boston. It was not possible to obtain information 
from other ride-hailing companies operating in the cities since their APIs did not provide 
that information.

Using the web-scraping technique, a script was created in which the computer was 
taught to find the data that was deemed appropriate (Glez-Peña et al. 2013). These tools 
allow for the real-time collection of requested ride information while controlling for the 
latitude and longitude coordinates of the chosen origin and destination (OD) points.

The ODs of the requested rides were defined at 11 locations in Atlanta (see Figs. 2) and 
10 locations in Boston (see Fig. 3), which were used to collect information about ride-hail-
ing fares. These locations were chosen to cover the two cities uniformly. The spots included 
high-demand locations (e.g., airports, public transport stations, tourist areas, etc.). In addi-
tion, various points in central and peripheral locations were chosen to provide a variety of 
routes (within the city center, from the periphery to the center, and from the periphery to 
the periphery).

Ride-hailing demand is high at two special locations in Atlanta (i.e., Hartsfield-Jackson 
Atlanta International Airport and Garnett Transit Station) and Boston (i.e., Boston Logan 
International Airport and Back Bay Station). Then, using a GIS tool, another nine points 
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in Atlanta and eight points in Boston were chosen to uniformly cover the two cities, as 
previously stated. In the case of Boston, two points were chosen at Harvard University and 
Massachusetts Institute of Technology (MIT) university campuses, both of which are large 
academic centers with high demand located in the neighboring city of Cambridge. In the 
end, 11 locations in Atlanta were defined (making up a network with 110 potential routes) 
and 10 locations in Boston (defining a network with 90 potential routes).

For each ride requested through the Lyft API, the following data was gathered: (i) fare; 
(ii) trip distance; (iii) trip duration; and (iv) trip request time (with year, month, day, and 
hour information). The Lyft fare represents the cost of the ride as displayed by the app. 

Fig. 1  Evolution of COVID-19 cases during 2020 (Authors’ work based on the Fulton County Board of 
Health Epidemiology Division, 2022, and the Boston Public Health Commission, 2022)
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Table 3  Congestion rates in Atlanta and Boston. (Adapted from the Global Traffic Scorecard, 2020)

Congestion rates Atlanta Boston

2019 2020 2019 2020

Most congested city in the country 10th 22nd 1st 4th
Most congested city in the world 47th 174th 9th 36th
Hours lost in congestion 82 Hrs 20 Hrs 149 Hrs 48 Hrs
Cost of congestion per driver USD 1214 USD 299.97 USD 2205 USD 710.57
Inner-city last-mile speed 12 MPH 19 MPH 12 MPH 15 MPH
Peak speeds 27 MPH 41 MPH 17 MPH 27 MPH
Off-peak speeds 45 MPH 48 MPH 36 MPH 37 MPH
Change in miles driven – −13% – −26%
Change in collisions – −25% – −33%

Fig. 2  Atlanta city and selection of the ODs of the requested rides (Authors’ work using a GIS tool)
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The trip distance and duration indicate the distance and travel time required to travel to a 
specific OD, respectively. Note that the Lyft API’s estimated travel time is based on current 
traffic conditions.

Data were collected before and during the COVID-19 pandemic and stored at 1-hour 
intervals over 2 years (from January 1st, 2019 to December 31st, 2020), and 3,493,624 
entries were collected from 3,508,800 potential inputs (731 days × 24 h × 200 routes in 
both cities). Then, a data processing process began, which included, for example, the veri-
fication of missing values and data cleaning. Data cleaning was required in cases where the 
fare, distance, and travel time variables had zero values. After the data cleaning process, the 
final dataset ended up containing 3,493,508 entries (with 99.56% of representativeness).

In both cities, the dataset’s representativeness is high, and the variation in the dataset’s 
size after the data cleaning process is negligible. A preliminary exploratory analysis of the 
sample was conducted after gathering all the necessary data for the study. Table 4 shows 
the descriptive statistics for the final data sample.

As expected, the results show that the trip distance variable (DIST) is highly correlated 
with Lyft fare (FARE), being also the most significant variable for predicting ride-hailing 
fares. 

Fig. 3  Boston city and selection of the ODs of the requested rides (Authors’ work using a GIS tool)
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The year 2020 will be remembered for a global pandemic that devastated industries, 
businesses, and consumers, causing unprecedented economic and social disruption and 
reshaping people and goods movement across all modes of transport (Global Traffic 
Scorecard, 2020). As a result, many people stopped using ride-hailing services. Descrip-
tive statistics show that in 2020 travel time duration decreased, implying a reduction 
of hours lost in traffic congestion, which is consistent with the literature (see Table 3). 
In addition, Lyft fares increased in the two cities. Although it is well known that Lyft 
uses dynamic pricing algorithms based primarily on the balance between supply and 
demand, along with competition with other services, empirical evidence on the main 
factors explaining fares is still limited.

Figure  4 presents the general trends of ride-hailing fares before and during the 
COVID-19 pandemic, with average monthly fares for each city.

Lyft’s fares rise in the year of the pandemic in the two cities, but with different 
trends. As fares in Atlanta peaked in June and July 2020 (see subsection 6.3 for a vari-
ety of potential causes), fares in Boston showed a downward trend during this period. 
Figure  5 shows the boxplot graph for each city over the two years using the average 
monthly fares for Lyft in Atlanta and Boston. It should be noted that during the data 
cleaning process, no outliers of the Lyft fares were removed.

Table 4  Summary statistics of explanatory variables

* Although miles are commonly used in the USA, trip distance data has been converted to kilometers

Variable Typology Unit* Summary
statistics

Atlanta Boston

2019 2020 2019 2020

Lyft fare
(FARE)

Continuous USD Mean 16.973 19.851 18.713 19.010
SD 5.577 7.793 8.139 7.939
Min. 8.000 8.000 6.000 8.000
25% 12.000 15.000 12.000 12.000
50% 15.000 18.000 18.000 18.000
75% 21.000 24.000 21.000 24.000
Max. 140.000 142.000 210.000 160.000

Trip distance
(DIST)

Continuous Km Mean 15.117 14.943 8.163 8.359
SD 6.941 6.842 4.138 4.194
Min. 3.975 4.506 1.819 1.867
25% 9.479 9.447 4.731 4.876
50% 14.307 14.033 7.322 7.500
75% 19.425 19.119 11.024 11.121
Max. 50.936 39.590 21.259 20.149

Travel time
(TTIME)

Continuous Minutes Mean 20.094 18.292 18.371 17.914
SD 7.360 6.131 8.494 9.204
Min. 6.333 5.667 3.800 3.467
25% 14.983 13.983 12.600 11.433
50% 18.867 17.417 16.633 15.383
75% 24.217 20.083 21.967 21.467
Max. 73.250 71.867 103.817 86.067
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Methods

This section describes the methods used to explore the trends and evolution followed 
by ride-hailing fares before and during the COVID-19 pandemic, through a time series 
forecasting model (for long-term prediction) and the use of a machine learning model 
(for short-term prediction).

Fig. 4  Average monthly fares for Lyft, before the COVID-19 pandemic (blue line) and during the COVID-
19 pandemic (orange line)

Fig. 5  Boxplot of the average monthly fares for Lyft
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Time series forecasting for long‑term prediction

Predicting fares is key for business management. The time series model is used for fore-
casting purposes where time is a significant factor. It is also important because many pre-
dictions involve time-related components that must be carefully handled when the actual 
outcome is undetermined. Knowing the pattern of related data and their time is required to 
identify the root cause of a specific event (Kumar Jha and Pande 2021).

The following are the four major components of time series: (i) level, which is the base-
line for time-series data; (ii) trend, which is represented by a curve that may increase or 
decrease over time; (iii) seasonality, which is represented by a cycle or pattern over time; 
and (iv) noise, which represents variation in the observed data. The interactions between 
these components are typically classified as an additive (see Eq. 2) or multiplicative (see 
Eq. 3) model

.

On the one hand, in an additive time series, the components add up to form the time 
series, and the amplitude of seasonality is maintained as the trend increases. On the other 
hand, in a multiplicative time series, the components multiply to form the time series, and 
the amplitude of seasonality also increases with the trend. This research suggests testing 
additive and multiplicative models in each selected city, using the one with the best perfor-
mance metric.

 Because forecasting is frequently the primary goal of time series analysis, predic-
tive accuracy must be evaluated. In most cases, accuracy measures how well the model 
reproduces traditionally collected data (goodness-of-fit). The forecasting error (difference 
between the actual and predicted values) is frequently used as a measure of accuracy. The 
Root Mean Squared Error (RMSE) and the Mean Absolute Percentage Error (MAPE) are 
two commonly used metrics for evaluating the accuracy of forecasting models (Washington 
et al. 2011).

 The Root Mean Square Error (RMSE) metric is an error validation metric that meas-
ures the difference between real and predicted values. The difference is known as residuals, 
which are calculated from the standard deviation of the prediction errors (see Eq. 4). This 
metric uses the same dependent unit. In this paper, the dependent unit is the United States 
currency unit (USD), which corresponds to the Lyft fare validation error.

Second, the Mean Absolute Percentage Error (MAPE) is a statistic that measures the 
accuracy of a forecasting method. The MAPE is usually expressed as a percentage (see 
Eq. 5).

(2)y(t) = Level + Trend + Seasonality + Noise

(3)y(t) = Level × Trend × Seasonality × Noise

(4)RMSE =

√
∑N

i=1

(Actuali − Predictedi)
2

N

(5)MAPE =
1

N

∑N

i=1

||||

Actuali − Predictedi

Actuali

||||
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In 2017, Facebook launched Facebook Prophet, an open-source forecasting tool for 
making business predictions, which is used in this paper to estimate ride-hailing fares 
in the long term. This is a novel model for forecasting time series data that fits nonlin-
ear trends with annual, weekly, and daily seasonality, as well as holiday effects. It works 
best with time series with strong seasonal effects and historical data from multiple sea-
sons. Prophet is resistant to missing data and trend shifts, and usually handles outliers well 
(Chikkakrishna et al. 2019; Kumar Jha and Pande 2021).

According to Yang et  al. (2019), the following are the most important advantages of 
using the Facebook Prophet model:

• The model can be easily adjusted to take into account a variety of seasonal and trend 
changes.

• The fitting is very fast. Given that hundreds of models will be trained; this is a critical 
feature.

• Since each parameter’s role is clear, tuning it results in understandable changes in the 
solution.

• When regular sampling overtime is not required, sparse missing values do not need to 
be interpolated.

The Facebook Prophet model has proved to be useful in predicting travel behavior in 
recent years, especially in the field of transport. For example, Chikkakrishna et al. (2019) 
present a short-term traffic prediction study using Facebook Prophet, which was used to 
estimate traffic volumes, as well as allow unsmoothed data to better fit models. Another 
example is the study by Pontoh et al. (2021), which used Facebook Prophet to predict the 
monthly number of train passengers and to automatically detect changes in trends and sea-
sonal patterns.

The Facebook Prophet model was chosen in this paper to predict ride-hailing fares in 
Atlanta and Boston over a long period because it is an emerging technique with broad 
applicability. The entire approach for applying this model is presented in the results section 
(see subsection 6.1).

Machine learning model for short‑term prediction

Machine learning techniques offer advantages for extracting information from data and 
representing complex relationships in a data-driven manner. The Random Forest model, 
a machine learning technique, was used in this paper to predict the ride-hailing fare in 
the short term. Random Forest is a supervised learning algorithm that uses an ensemble 
of tree-structured learners (i.e., decision trees) to combine their predictions and generate 
a final prediction (Breiman 2001). Each base learner is a regression tree to predict a con-
tinuous outcome variable for regression problems (i.e., the response variable is continuous 
rather than categorical).

According to Yan et  al. (2020), the following are the most important advantages of 
using the Random Forest model:

• It is one of the most accurate general-purpose machine learning methods because of its 
ability to model complex nonlinear relationships between the input variables and the 
response variable.
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• It is sufficiently robust since its input variables can be of any type (numerical, categori-
cal, continuous, or discrete), and it is unaffected by skewed distributions, outliers, miss-
ing values, or irrelevant variables.

• It can limit overfitting without significantly increasing error due to bias.
• It requires only minor hyper-parameter tuning and is usually unaffected by their values 

to achieve good performance.
• It requires a short amount of training time.

The Random Forest model’s usefulness in predicting travel behavior has been demon-
strated in recent years, particularly in the field of transport. Cheng et al. (2019) present a 
review of recent studies that use the Random Forest method to solve transport forecast-
ing and classification problems, which are divided into four categories: (i) travel choice 
behavior; (ii) traffic incident predicting; (iii) traffic time/flow prediction; and (iv) pattern 
recognition.

Yan et al. (2020), for example, used the Random Forest to model ride-sourcing demand 
in Chicago, comparing predictive capabilities to those of the classic multiplicative model, 
finding that Random Forest is superior in terms of predictive accuracy and model fit (which 
can be calculated using Eq. 4 and/or Eq. 5). These results demonstrate how machine learn-
ing techniques can be used to improve travel demand forecasting. The Random Forest 
method also considers the importance of the input variables.

In this paper, the Random Forest was used to predict fares before and during the 
COVID-19 pandemic, as well as to identify the main issues to reach a greater prediction 
accuracy. This model was chosen to predict ride-hailing fares for the Lyft service in cit-
ies selected (one-hour forecast horizon) due to its strengths and wide applicability. Several 
input features were used (see data described in Sect. 4), including time data (with month, 
day, and hour information) and ride supply information (fare, trip distance, and trip dura-
tion) in the previous three hours to train two models: (i) one model for 2019, before the 
outbreak of COVID-19; and (ii) a model for 2020, during the pandemic.

To account for the seasonal effect, the model was trained using data from the first 21 
days of each month of the year, with the remaining days of each month being used for test-
ing. All experiments were subjected to a 5-fold cross-validation, with four of the five parti-
tions being used to train the classifier and the remaining used to test the results. In addition, 
the random partition process, which included five independent runs of 5-fold cross-valida-
tion, eliminated potential biasing and overfitting effects. The following configuration was 
chosen for training the Random Forest models after a hyperparameter tuning process:

• Number of trees in the forest (n_estimators): 30.
• The maximum number of splits of the tree (max_num_splits): 10.
• The minimum number of samples to split an internal node (min_samples_split): 2.
• The minimum number of samples for each leaf node (min_samples_leaf): 4.
• Number of features considered for splitting a node (max_features): 12.

Results and discussion

This section summarizes the main findings of the analyses conducted in this research. The 
results from the two techniques are presented, involving the application of the Facebook 
Prophet model and the Random Forest model, followed by the discussion.
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Application of the Facebook Prophet model for long‑term prediction

The Facebook Prophet model was applied to predict Lyft fares for the COVID-19 pandemic 
period (which began in mid-March 2020 in the two cities). For each city, the 2019 dataset 
(also known as the base year) was used for training and testing the model, and future Lyft 
fares were then estimated and compared to the year 2020 (also known as the comparison 
year) using model performance metrics. Each dataset (base year and comparison year) was 
converted into time series using two key features of the model: (i) the trip request time, 
which is a date-time type that assigns the data a certain sequence or order, and (ii) the Lyft 
fare, which is the target variable to be forecasted.

The data was grouped following an approach with spatial aggregation. Seasonal decom-
position calculated using moving averages for Atlanta and Boston before and during the 
COVID-19 pandemic is presented in the Appendix. The seasonal decomposition returns 
the average hourly fare values of all routes for 2019 and 2020, as well as the objects with 
the seasonal trend and residual attributes. Average Lyft fares increased in the year of the 
pandemic in the two cities, but with different trends, as mentioned before. In the case of 
Atlanta, the evolution of Lyft fare in the 2020 pandemic year follows nearly a linear trend, 
with exceptional behavior in June and July 2020 (see subsection 6.3 for a variety of poten-
tial causes). However, during that year in Boston, there was a downward trend with com-
mon values.

The seasonality of the time series in each period was verified using a statistical test 
based on the Augmented Dickey-Fuller test (Mushtaq 2011), as shown in Table  5, with 
the following hypotheses: (i) Null Hypothesis –  H0: Failure to reject the null hypothesis 
indicates that the series is not stationary, that is, it has a time-dependent structure; and (ii) 
Alternative Hypothesis –  H1: The null hypothesis is rejected, implying that the time series 
is stationary, without any time-dependent structure.

The p-values were all below 0.050, indicating that the null hypothesis  (H0) was rejected, 
so all series are considered stationary. Then, the Facebook Prophet model was applied. 
The model was trained and tested with a train/test ratio of 70/30 using the 2019 dataset as 
the base year. The data training sample was from January to mid-September, and testing 
occurred between mid-September and December. The results of this model for the two cit-
ies are shown in Fig. 6.

In Atlanta and Boston, the results reveal a multiplicative model, in which the trend and 
seasonal components are multiplied and then added to the error component. In each city, 
both additive and multiplicative models were tested, to select the one with the best perfor-
mance metric. Table 6 shows a comparison of the performance metrics of the models, in 
each city, using Train/Test in the base year (2019).

The models produced reasonable results in the RMSE and MAPE metrics. The perfor-
mance is better in the case of Atlanta compared to Boston, which may be related to the fact 
that surges and outliers of the Lyft fare in 2019 are higher in Boston than in Atlanta (see 
Figs. 4 and 5)

Table 5  Statistical Test – 
Augmented Dickey-Fuller test

Statistical Test Atlanta Boston

2019 2020 2019 2020

ADF test −3.998 −3.525 −5.709 −4.773
p-value 0.001 0.007 0.000 0.000
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Fig. 6  Training (in black) and testing (in blue) of the Facebook Prophet model in the base year (2019)

Table 6  Comparison of model 
performance metrics – Train/Test 
in the base year (2019)

Performance metrics Atlanta Boston

Root Mean Square Error (RMSE) USD 1.370 USD 3.458
Mean Absolute Percentage Error (MAPE) 6.561% 8.829%
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Lyft’s future fares for the comparison year (2020) were predicted using average hourly 
fares obtained from training and testing the Facebook Prophet model in Atlanta and Boston 
in the base year (2019), following what was shown in Fig. 6. However, to better understand 
the trends and evolution of Lyft’s fares, the results of the predicted values were grouped 
into average monthly fares for the year 2020 and compared with actual values for the same 
year (see Fig. 7).

The Facebook Prophet model presents the results of the Lyft fare forecast for the year 
2020 (represented by the blue line), as well as the lower and upper bounds of the uncer-
tainty interval around the final prediction (represented by the orange and green lines, 
respectively). The real values of Lyft’s fares in the year of the pandemic (represented by 
the red line) follow different trends in the two cities. The lockdown due to the COVID-19 
pandemic began in mid-March in both cities (see Sect.  3), and the predicted results are 

Fig. 7  Estimated average monthly fares for Lyft in comparison to 2020
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similar to those observed in January and February 2020, particularly in Boston. In the fol-
lowing months (mid-March to December 2020), the values observed in the 2020 pandemic 
year are lower than the ones predicted, which positively proves the research question in this 
paper, that ride-hailing fares were affected by the COVID-19 pandemic. The predicted val-
ues are closer to the actual values for the city of Atlanta, which has half the total reported 
COVID-19 cases as Boston (see Fig. 1). However, it is difficult to predict uncontrolled situ-
ations, especially in Atlanta, as Lyft’s fares grow and reach a peak in June and July 2020), 
extrapolating the predicted values of the model (see subsection 6.3 for a variety of potential 
causes).

Application of the Random Forest model for short‑term prediction

This subsection shows how the Random Forest model was used to predict the expected 
fare for the Lyft service in Atlanta and Boston with a one-hour prediction horizon. Several 
input features were used (see data described in Sect. 4), including time data and ride supply 
information in the previous three hours to train two models: (i) one model for 2019, before 
the outbreak of the COVID-19 pandemic; and (ii) a model for 2020, during the COVID-19 
pandemic.

The MAPE and RMSE metrics (see Eq.  4 and Eq.  5, respectively) were used to 
assess the model’s performance and compare it with other models in different scenarios. 
Table 7 shows the model forecast results, which group all potential routes from each city 
(spatial aggregation).

The MAPE results show how the Random Forest model performs well, with low per-
centage errors (below 1.6%) for Atlanta in 2019 and Boston in 2020, and slightly worse 
results for Atlanta in 2020 (3.970%) and Boston in 2019 (5.920%). In the case of Atlanta, 
worse performance was achieved in 2020, which could be related to the difficulties in pre-
dicting the large fare increase in June and July 2020 (see Fig. 4). In the case of Boston in 
2019, fare peaks (“surges”) were quite common, being difficult to predict by the model. It 
appears that the Random Forest model has problems predicting surges caused by supply 
and demand imbalances. That is the main reason for errors in the overall performance. 
According to Battifarano and Qian (2019), these changes can be extremely strong (up to 
eight times higher than the basic price) and rapid (less than an hour), making forecasting 
difficult and the model tending to underestimate fare peaks.

The Random Forest approach was also applied to each of the potential routes of the 
two cities to deepen the analysis. This was done with the understanding that short-term 
forecasting on specific routes can benefit both customers (who may have better knowledge 
to plan their trips) and drivers (who can increase their earnings by looking for routes with 
higher fares). A specific Random Forest model was retrained (in years 2019 and 2020) for 
each potential route in the two cities (i.e., 110 routes in Atlanta and 90 routes in Boston) 
using the same set of hyperparameters.

Table 7  Prediction results of the 
Random Forest approach for all 
routes in each city

City Train/Test in 2019 Train/Test in 2020

MAPE (%) RMSE (USD) MAPE (%) RMSE (USD)

Atlanta 1.570 0.622 3.970 2.052
Boston 5.920 2.077 1.530 0.760
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The MAPE metric was used to assess performance and predict results for each city using 
training and testing data from 2019 (before the outbreak of the COVID-19 pandemic). The 
results are shown in Fig. 8.

The 2019 prediction results in Atlanta and Boston for each possible route are reason-
able, though they perform worse than in the case of the spatial aggregation modeling (see 
Table 7). The MAPE average values are better in Atlanta (4.38%) than in Boston (9.50%), 
which again could be due to the difficulty of predicting surges, which are much more com-
mon in Boston.

In the case of Boston, “groups” of consecutive routes with similar performance are also 
noticed. Routes 19 to 36, for example, have MAPE values of around 5%, noting that they 
are all close to the city center (the first nine departing from the High Street and the next 
nine departing from the Old State House). These routes also have the best prediction results 
because they are less likely to experience surges. However, in the case of Atlanta, there are 
no such groups of routes with similar performances because the frequency of these peaks is 
not as important and remains reasonably steady throughout all routes.

Figure 9 shows the results of modeling per specific route in the two cities using training 
and testing data from the year 2020 (during the COVID-19 pandemic).

The COVID-19 pandemic marked the year 2020, but the models still have a relatively 
good performance (with MAPE metrics below 10%). In this case, the average MAPE value 
in Boston (4.05%) is slightly better than in Atlanta (7.96%). In the pandemic year, the surg-
ing-price factor is less important, and Atlanta’s worst performance is likely due to diffi-
culties in predicting significant and long-term fare increases in June and July 2020 (see 
Fig. 4), with possible causes discussed in the next subsection. In light of these results, it 
seems clear the need of training specific Random Forest models for the pandemic situation 
to assure good performance in fares prediction.

Discussion

The main findings of the prediction results of the models used in this paper are dis-
cussed in this subsection, particularly the possible causes of prediction problems (peaks 

Fig. 8  Predictions for each possible route for the year 2019



Transportation 

1 3

in the fares curves) and/or uncontrolled situations. Using different approaches, two 
forecasting models (Facebook Prophet and Random Forest models) were used to verify 
trends and developments in ride-hailing fares before and during the COVID-19 pan-
demic. It is noteworthy that these models contribute to achieving a better understanding 
of the behavior of Lyft fares in Atlanta and Boston in a complementary way.

The Facebook Prophet model was applied for long-term prediction to analyze trends 
and the global evolution of Lyft fares. With this method, Lyft fares were predicted using 
a time series model with data before the pandemic, and the results were compared to 
current values observed over the pandemic period (see Fig. 7).

On the other hand, the Random Forest model (a supervised machine learning model) 
was applied for the short-term prediction of ride-hailing fares. This type of prediction 
can help vacant drivers move from over-supply to over-demand regions. To that end, 
several input features (including time data and ride supply information from the previ-
ous three hours) were used to train a model for 2019 (before the COVID-19 outbreak) 
and another model for 2020 (during the pandemic), as shown in Table 7.

In addition, both models used spatial aggregation, primarily for long-term prediction 
(since the goal was to obtain general fare trends), though the short-term prediction also 
included forecasts for specific routes (see Figs. 8 and 9). This can benefit both custom-
ers (who may have more knowledge to plan their trips) and drivers (who can increase 
their earnings by getting to know routes with higher fares).

The results of the two models show that during the COVID-19 pandemic, ride-hail-
ing fares were highly affected, confirming the research question in this paper (namely, 
“Were ride-hailing fares affected by the COVID-19 pandemic?”). Furthermore, both 
models produced reasonable results according to the performance metrics used (see 
Tables  6 and 7), but it was difficult to predict the impact of the following cases: (i) 
fare peaks; (ii) uncontrollable events; and (iii) COVID-19 cases. The first case occurred 
primarily in Boston in 2019, due to the difficulty in predicting surges (see Fig. 8). The 
second case occurred mainly in Atlanta in 2020, with fares increasing and peaking in 
June and July 2020 (see Fig. 4 and Appendix), due to the occurrence of uncontrollable 
events. The third case occurs mainly in the city of Boston, which has almost doubled the 

Fig. 9  Predictions for each possible route for the year 2020
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total number of COVID-19 cases recorded in Atlanta in 2020 (see Fig. 1), and with fare 
predictions that are less close to the actual values (see Fig. 7).

Possible causes of these uncontrollable events include George Floyd’s racial protests 
in Georgia, United States (The New York Times, 2020), as well as the death of a black 
man at the hands of an Atlanta police officer (USA Today, 2020; WSB-TV, 2020). Pro-
testers stopped traffic on several roads in Atlanta, including Interstate-75, which crosses 
from north to south and even passes through the city center (see Fig. 2) and is ranked 10th 
among the top 25 worst corridors in the country (Global Traffic Scorecard, 2020). Accord-
ing to the 2019 American Community Survey, the city of Atlanta has a 51.0% of black 
population, twice as much as Boston (United States Census Bureau, 2019).

Conclusions and policy recommendations for the ride‑hailing market

This research examines ride-hailing fares before and during the COVID-19 pandemic using 
explanatory variables such as fare, trip distance, trip duration, and trip request time (with 
year, month, day, and hour information). To that end, two techniques were used: The Face-
book Prophet model for long-term prediction and the Random Forest model for short-term 
prediction. Both models were applied in two urban areas in the United States (namely, 
Atlanta and Boston).

Considering the lack of up-to-date official empirical data on ride-hailing demand, 
at least in the cities selected, ride-hailing fares can provide a reasonable proxy for esti-
mating demand levels. The authors recommend that transport authorities should require 
ride-hailing companies operating in their regions to provide data on fares to better under-
stand, regulate, and integrate these services with other transport modes, particularly public 
transportation.

The findings reveal that each model provides a complementary approach to understand-
ing Lyft fares. The results of both models indicate that ride-hailing fares were affected dur-
ing COVID-19, with values in 2020 being lower than those predicted using 2019 data. 
Although the two models have different approaches, both produced reasonable perfor-
mance metrics (particularly the MAPE metric, with values below 10% in both cases). How-
ever, both models had problems predicting the impact in some circumstances (e.g., fare 
peaks, unexpected events, and the impact of COVID-19 cases). Difficulties to estimate fare 
peaks were particularly noticeable in Boston in the year 2019, due to the frequent sudden 
fare surges. A relevant unexpected event happened in Atlanta in 2020, with fares increasing 
and peaking in June and July of that year due to racial protests that prompted the closure of 
the main highways, disrupting ride-hailing services and fares. Ride-hailing fare predictions 
were also less close to the actual values in the city of Boston, which has nearly doubled the 
total number of COVID-19 cases reported in Atlanta in 2020.

From a transportation policy perspective, the authors highlight several benefits of know-
ing/predicting ride-hailing fares for different stakeholders, especially: (i) public authorities; 
(ii) regulatory agencies; (iii) TNCs; (iv) customers; and (v) drivers.
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Knowing and predicting ride-hailing fares can help public authorities establish and 
implement policy measures to create a fair competitive framework with the taxi industry. It 
is also up to public authorities to find ways to promote greater coordination of ride-hailing 
services with other transport modes to promote their use where they can be most effective, 
incentivizing the connection with the public transportation network to achieve maximum 
global welfare. The techniques and findings of this paper can be used by regulatory agen-
cies to ensure fair competition among TNCs. The findings may also assist them in identify-
ing bad practices used among operators who seek to gain a dominant position to increase 
their earnings.

TNCs could apply the techniques and findings of this paper to better match supply and 
demand (e.g., the work schedule of drivers, and the location of vehicles closer to the places 
with more demand). The findings can assist customers in determining the cost of a ride in 
advance, allowing them to select the most cost-effective alternative for their trips based 
on their priorities. They can also help drivers keep track of fare increases to secure higher 
pricing and thus potentially larger earnings.

To sum up, better regulation in the ride-hailing sector is important for different stake-
holders, not only in the United States but all around the world. This research covers a wide 
range of topics and provides numerous opportunities for future research, such as: (i) using 
these methods to compare the different phases of the pandemic as well as the post-pan-
demic scenario to track changes in ride-hailing fares; (ii) extending the research methods to 
other urban areas and/or geographies to gain a broader perspective and compare the results 
to the findings of this paper; and (iii) comparing the results of other artificial intelligence 
models (e.g., using other machine learning models) for predicting ride-hailing fares.

Appendix

• Time Series Decomposition with Moving Averages. (See Figs 10, 11, 12 and 13)
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Fig. 10  Seasonal decomposition using moving averages in Atlanta in the year 2019
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Fig. 11  Seasonal decomposition using moving averages in Atlanta in the year 2020
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Fig. 12  Seasonal decomposition using moving averages in Boston in the year 2019
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Fig. 13  Seasonal decomposition using moving averages in Boston in the year 2020
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