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Abstract
Promoting sustainable transportation, ride-sourcing and dynamic ridesharing (DRS) ser-
vices have transformative impacts on mobility, congestion, and emissions. As emerging 
mobility options, the demand for ride-sourcing and DRS services has rarely been simul-
taneously examined. This study contributes to filling this gap by jointly analyzing the 
demand for ride-sourcing and DRS services and examining how it varies across neighbor-
hood-level built environment, transit accessibility and crime, behavioral, and sociodemo-
graphic factors. To achieve these objectives, unique geo-coded data containing millions 
of ride-sourcing and DRS trips in Chicago are spatially joined with up-to-date data on the 
built environment, transit accessibility, crime, active travel, and demographic factors. A 
novel Markov Random Field-based joint heterogeneous geo-additive copula framework is 
presented to simultaneously capture random, systematic, and spatial heterogeneity. Charac-
terized by a Frank copula structure, the demand for ride-sourcing and DRS services exhib-
ited a non-linear stochastic dependence pattern. With spatial heterogeneity and spillover 
effects, the stochastic dependence of ride-sourcing and DRS demand varied across time of 
day and was the strongest in compact and dense neighborhoods. Key aspects of the built 
environment related to urban design (pedestrian-oriented infrastructure), density, and land-
use diversity were positively associated with ride-sourcing and DRS demand—suggesting 
that sustainable mobility goals can be achieved by continuing to invest in more walkable 
neighborhoods. Active travel and telecommuting were positively linked with ride-sourcing 
and DRS demand. Complementary and substitutive effects for transit accessibility were 
found. Results show that increasing transit accessibility in areas with low levels of acces-
sibility (compared to those with high transit levels) could be more helpful in increasing 
the adoption of ride-sourcing and DRS services. Relative to ride-sourcing, the demand 
for DRS services appeared more responsive to improvements in pedestrian-infrastructure 
and transit accessibility. Quantification of non-linear associations with ceiling and over-
dose effects for the built environment, vehicle ownership, and transit accessibility provided 
deeper insights. The findings can help guide the development of policy interventions and 
investment decisions to further accelerate the adoption of mobility-on-demand systems.
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Introduction

Since the widespread developments in Information and Communication Technologies 
(ICT), there has been a marked shift in the attitudes of end-users towards shared consump-
tion and the ability to co-produce services. The proliferation of digital technologies has 
accelerated peer-to-peer based interactions enabling distributed/communal consumption. 
The emergence of shared ownership-based models across different sectors has enabled citi-
zens to access goods and services without the burden of private ownership. With success-
ful business models already developed across transportation, tourism, education, finance 
and food sectors, collaborative consumption is one of the ten disruptive ideas that will 
change the planet with a global market amounting to over $300 Billion by 2025 (Walsh 
2011; Coopers 2015).

Among other sectors, transportation has benefitted and will continue to benefit, the 
most from the emergence of collaborative consumption and services. Coupled with the 
advances in ICT, the shared economy model has led to the advent of mobility-on-demand 
services that have the potential to contribute to reaching several United Nation’s Sustain-
able Development Goals (SDGs) including sustainable cities and communities, responsi-
ble consumption and production, and climate action (Costanza et al. 2016, United Nations 
2021). Enabled by digital technology, smart phones and connectivity, ride-sourcing, ride-
splitting (or pooled rides), and car-sharing have emerged as key mobility-on-demand ser-
vices and have witnessed tremendous growth in the last decade (Morency 2007; Dias et al. 
2017; Stathopoulos and Sener 2017; Yu et al. 2017; Cui et al. 2020; Devaraj et al. 2020; 
Gomez et al. 2021; Su et al. 2021). Ride-sourcing services (e.g., Uber) match the drivers 
with riders using smartphone apps and sophisticated traffic assignment and routing algo-
rithms—equipping drivers of personal vehicles to monetize their skills and resources while 
providing more accessible and flexible mobility options to the riders. While ride-sourcing 
shares many similarities with taxi service, it provides more flexible and accessible mobility 
optimized by sophisticated assignment/routing algorithms packaged through smartphones. 
Also, research has shown that taxi and ride-sourcing services differ in terms of the charac-
teristics of wait times, the users, and the trips they serve (Rayle et al. 2016). The on-demand 
services have further expanded to ridesharing, also called ride-splitting and dynamic ride 
sharing (DRS), where multiple passengers following a similar route share the vehicle (with 
reduced fares) at the same time (as opposed to sharing the vehicle at different times). These 
emerging mobility-on-demand services have significant implications for future urban trans-
port systems, including lower private car ownership, reduced congestion, fuel consump-
tion, and climate change, and providing flexible accessibility in non-transit serving areas 
(Anderson 2014; Santi et al. 2014; Shaheen and Chan 2016; Tachet et al. 2017; Sperling 
2018; Stiglic et al. 2018; Zhang and Zhang 2018; Deka and Fei 2019; Ratti and Santi 2019; 
Wang and Yang 2019; Tu et al. 2020; Yan et al. 2020). The concept of shared mobility and 
on-demand services are also considered key to the successful adoption and deployment of 
automated vehicles (Stocker and Shaheen 2017). We note that despite the many potential 
benefits mentioned above, the overall effect of on-demand mobility on urban traffic and the 
city is still not clear and highly debated. For instance, on-demand mobility services can 
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lead to a reduction in transit ridership and may impact population health by substituting 
short-distance trips currently undertaken through active travel modes (Chen et al. 2019). 
Thus, more empirical research is needed to better understand the demand for on-demand 
mobility services and their impacts on transport infrastructure.

Despite the widespread deployment of on-demand mobility services, empirical research 
on the adoption and spatial distribution of disruptive shared mobility services is in its 
infancy. Large gaps exist regarding our knowledge of the user and neighborhood charac-
teristics associated with the use of ride-sourcing and DRS services—impeding investment 
decisions and implementation of policy/regulative measures. The built environment has 
remained a key policy lever to shape and provide active transportation supportive infra-
structure. Can we continue to invest in compact and more walkable neighborhoods to 
achieve active travel and sustainable mobility-related goals? Likewise, the potential com-
plementary and/or substitutive role of transit accessibility as it jointly relates to ride-sourc-
ing and DRS demand is rarely examined. From a behavioral standpoint, little is known 
about how individuals’ participation in active travel (walk, bike, and transit) correlate with 
the use of ride-sourcing and DRS services.1 From a transportation and public health stand-
point, examination of relationships between active travel and demand for emerging mobil-
ity services is important to understand how population-level physical activity may increase 
(or decrease) with technology-enabled travel options (Tribby et al. 2020). Answers to such 
questions can help guide the development of regulations, policies, and investment deci-
sions to capitalize on the benefits of on-demand mobility systems while minimizing their 
negative societal impacts.

To answer such questions, this study harnesses a unique publicly available geo-coded 
data source containing millions of ride-sourcing and DRS trips in Chicago. The large-scale 
trip-making data are spatially joined with detailed neighborhood-level built environment, 
behavioral, and sociodemographic data. The study contributes by jointly examining the 
demand for ride-sourcing and DRS services and how it varies across neighborhood-level 
behavioral, built environment, and socio-demographic factors. Methodologically, we pre-
sent a novel and comprehensive framework for examining the determinants of ride-sourc-
ing and DRS usage simultaneously capturing multiple layers of systematic, random, and 
spatial heterogeneity (discussed later in detail).

The rest of the paper is structured as follows. Section “Literature review” synthesizes 
the relevant literature along with identifying key conceptual and methodological gaps. 
The methodological framework and different data streams are explained in Sect.  “Meth-
odology”. Spatial distributions of ride-sourcing and DRS outcomes are discussed in 
Sect. “Results” along with a presentation of the results of empirical models. We discuss 
and synthesize the key findings in Sect. “Discussion and synthesis”. Limitations and ave-
nues for future research are discussed in Sect.  “Limitations and future work”, followed 
by conclusions of the study with a discussion of policy implications in Sect.  “Closing 
remarks”.

1 Compared to walking and biking, transit is not a fully active travel mode. While transit users typically 
undertake more walking and biking, they also undertake some sedentary travel at least for the part where 
the user is on-board a bus/train. However, for simplicity, we refer to walk, bike, and transit as active travel 
modes throughout the paper.
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Literature review

Previous studies are mostly based on individual-level stated/revealed preference survey 
data, interviews, and focus groups, asking travelers about their travel behavior/preferences 
of the use of mobility-on-demand services. More recently, a handful of studies have exam-
ined spatiotemporal data related to on-demand mobility services as public agencies in some 
US cities and elsewhere have publicly disseminated such data collected by service provid-
ers (e.g., Uber, Lyft). We synthesize the key literature using the two data sources next.

Stated/revealed preference‑based survey data

Given the profound impacts of on-demand mobility services highlighted earlier, a broad 
spectrum of studies has used focus groups and stated/revealed preference-based survey data 
to examine the determinants of ride-sourcing and DRS travel demand (Chan and Shaheen 
2012; Rayle et al. 2016; Clewlow and Mishra 2017; Dias et al. 2017; Alemi et al. 2018a, 
2018b; Sikder 2019; Azimi et al. 2020; Wali 2022). Rayle et al. (2016) analyzed data from 
380 intercept surveys collected in three ride-sourcing hotspots in San Francisco and found 
wait times for ride-sourcing to be more reliable and shorter than taxi services. A significant 
substitution effect of on-demand mobility vs. taxi was also observed (Rayle et al. 2016). A 
relatively greater substitution effect was observed for non-taxi-related trips with over half 
of ride-sourcing trips substituting other non-taxi modes. Contrarily, Sikder (2019) reported 
a complementary effect of ride-sourcing services on public transit (Sikder 2019). A host 
of sociodemographic factors are known to be correlated with the demand for ride-sourcing 
services. Early ride-sourcing adopters are reported to be high-income, more educated, and 
younger (Clewlow and Mishra 2017; Dias et al. 2017; Alemi et al. 2018a, 2018b). Racial 
differences are also observed in the adoption of ride-sourcing services—with Black indi-
viduals less likely to adopt ride-sourcing services (Sikder 2019). Attitudes and behaviors 
also exhibit an influence on ride-sourcing adoption. Individuals with high technological 
savviness and pro-environmental attitudes (such as ownership of plug-in electric vehicles 
and using active travel modes) tend to use ride-sourcing services more often (Alemi et al. 
2018a; Wali 2022). Compared to ride-sourcing, literature on the determinants of dynamic 
ridesharing (DRS) is scarce. Lavieri et al. (2018) examined subjective and objective factors 
associated with the adoption of ride-hailing trips and found that pooled ride-hailing sub-
stituted public transit and active travel modes. Older individuals and women had a lower 
propensity to choose a pooled ride-hailing mode (Kang et al. 2021).

Spatiotemporal disaggregate trip data

With the availability of spatiotemporal disaggregate trip-level data, a handful of studies 
have developed models to understand the demand for mobility-on-demand services. Using 
trip-level data from Austin, demand for ride-sourcing and its variations across sociode-
mographic and neighborhood characteristics has been analyzed at the Traffic Analysis 
Zone (TAZ) (Lavieri et al. 2018) and block group level (Yu and Peng 2020). Ride sourc-
ing demand was negatively associated with transit supply and the reverse was found for 
TAZs with greater retail employment density and presence of parks (Lavieri et al. 2018). 
Similarly, Yu and Peng (2020) found positive associations between different measures of 
densities (population, employment, and service job) and ride-sourcing demand (defined 
as an aggregated count of ride-sourcing trips per trip origin block group) (Yu and Peng 
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2020). Besides Austin, few studies have also examined the demand for ride-sourcing in 
Chicago. Marquet (2020) developed a truncated Poisson model on around 32 million ride-
sourcing trips in the city of Chicago and reported a positive correlation between walkabil-
ity (at trip origins and destinations) and ride-sourcing demand (Marquet 2020). Using the 
same Chicago dataset, Ghaffar et al. (2020) estimated a random-effects negative binomial 
model founding positive associations of population/employment density with ride-sourcing 
demand. For a comprehensive review of ride-sourcing studies using trip-level data, see 
Ghaffar et al. (2020).

Compared to the broad literature on ride-sourcing demand, only a few studies have 
examined the demand for shared rides using disaggregate trip-level data with a focus on 
built environment features. This could be since DRS is a newer mobility-on-demand ser-
vice available only in selected cities. The Transportation Network Company (TNC) data 
made available by the City of Chicago is unique in that it contains millions of DRS trips. 
Focusing on the demand for DRS, Dean and Kockelman (2021) and Xu et al. (2021) exam-
ined built environment determinants of DRS demand—reporting conflicting results com-
pared to the associations of the built environment with ride-sourcing demand discussed 
earlier. Using spatial error models, Dean and Kockelman (2021) reported negative associa-
tions between population density, pedestrian network density, and the proportion of shared 
trips in Chicago. Likewise, pedestrian network density was negatively correlated with the 
count of shared trips. With a focus on ride-splitting adoption rate, Xu et al. (2021) used 
random forest models for examining non-linearity in the built environment and sociode-
mographic factors (Xu et al. 2021). Several key built environment variables including walk 
score, population density, and employment were negatively correlated with shared rides 
but the authors noted that the relationships were rather weak.

Research gaps

Previous studies have provided valuable insights regarding the determinants of ride-sourc-
ing or DRS demand using disaggregate trip-level data. However, important gaps remain. 
First, no study (to our knowledge) has jointly examined the demand for ride-sourcing 
and DRS usage and how the demand for these two shared mobility services varies across 
the built environment, transit accessibility, behavioral, and sociodemographic factors. 
The demand for ride-sourcing and DRS can be correlated due to the presence of com-
mon observed and unobserved factors (Washington et  al. 2003; Dias et  al. 2017; Wali 
et al. 2021b). For example, older individuals or individuals with lower technological sav-
viness could be less likely to use either of the two shared mobility options. On the con-
trary, individuals with sustainable attitudinal predispositions are more likely to participate 
in ride-sourcing and DRS services. Ride-sourcing is also routinely offered where DRS is 
offered. Thus, understanding the joint dependency between the two services is fundamen-
tal. Second, no information exists about the nature (linear vs. non-linear) of the stochastic 
dependence between DRS and ride-sourcing services, and whether spillover effects exist 
in the spatial distribution of the stochastic dependence between the two emerging mobility 
options. A spatially referenced characterization of the stochastic dependence between the 
two on-demand services can better assist with the development of place-based regulations, 
policies, and future investment decisions. Third, almost all previous studies have focused 
on linear effects of the built environment and related factors and did not examine system-
atic heterogeneity in the effects of behavioral, built environment, and demographic corre-
lates as it relates to the demand for ride-sourcing and DRS services. Analysis of systematic 
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heterogeneity (non-linearity) intuitively and rigorously can shed light on the potential 
ceiling and overdose effects—enabling engineers and planners to identify strategies with 
greater impact to enhance ride-sourcing and DRS use.

Research objective and contribution

In view of the above gaps, the present study makes both conceptual and methodological 
contributions. The study presents a joint analysis of the demand for ride-sourcing and DRS 
services and how it varies across neighborhood-level built environments, transit accessibil-
ity, behavioral, and sociodemographic factors. A tractable pathway is presented from the 
neighborhood environments where we live to explain systematic differences across popula-
tion cohorts in the spatial distribution of ride-sourcing and DRS usage.

From a methodological perspective, the study contributes by simultaneously captur-
ing multiple layers of systematic, random, and spatial heterogeneity in a unified modeling 
framework. A comprehensive and novel geo-additive Markov Random Field-based hetero-
geneous copula framework is presented to simultaneously address the issues outlined in 
the previous section. A broad suite of (survival) Archimedean and elliptical copulas is har-
nessed to model the complex stochastic dependence between demand for ride-sourcing and 
DRS services. Within the joint copula framework, a Markov Random Field spatial model is 
used to capture spatial spillover effects in the joint stochastic dependence pattern. Finally, 
to unveil systematic heterogeneity in the effects of the behavioral, built environment, and 
sociodemographic factors, we integrate Generalized Additive modeling within the spatial 
copula-based framework enabling us to examine non-linearity with sensitivity towards the 
potential ceiling and/or overdose effects. To our knowledge, no previous study has simul-
taneously accounted for the aforementioned issues in a methodologically rigorous and uni-
fied manner. To achieve the objectives, a large-scale dataset containing over 40 million 
ride-sourcing and DRS trips in Chicago is spatially joined with neighborhood behavioral 
and sociodemographic profiles. Detailed built environment data are extracted from the 
most recent US EPA’s 2020 Smart Location Database.

Methodology

Data

The study used several data sources to compile information on the demand for ride-sourc-
ing and dynamic ridesharing services, participation in active travel, built environment, 
transit accessibility and crime, and sociodemographic factors. Regarding the demand for 
ride-sourcing and DRS services, TNC based ride-sourcing and DRS data published by the 
City of Chicago was used (https:// data. cityo fchic ago. org/ Trans porta tion). Starting from 
November 2018, the City of Chicago published an online portal of ride-sourcing and DRS 
trips made available by TNC companies every quarter. As of June 2021, the digital reposi-
tory contains data on over 190 million trips. Detailed trip-level attributes are made avail-
able including start and end time, fare, duration, length, and pick-up/drop-off locations. As 
discussed elsewhere {Dean, 2021 #124}, the city removed Personally Identifiable Informa-
tion (PII) by spatially aggregating the pick-up/drop-off locations at the census-tract level. 
Likewise, timestamps were rounded to the nearest quarter (15 min) interval. The spatial 
aggregation at the census-tract level means that we only have data on which census tracts 

https://data.cityofchicago.org/Transportation
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the pick-ups and drop-offs occurred.2 Note that these data are spatially referenced at the 
census-tract level and individuals who undertook the trips cannot be identified.3 This study 
collected data for six months starting from November 2018 and ending in April 2019. 
Trips outside the boundary of City of Chicago and those with missing locations for pick-
up/drop-off, missing fare, duration/length were removed. To capture routine travel demand 
patterns, trip lengths greater than the 99.9th percentile value (27 miles) were removed. The 
final cleansed dataset contained over 33 million trips (27,427,395 ride-sourcing trips and 
5,686,013 ridesharing trips) distributed over 793 census tracts in Chicago.

To obtain information on the built environment and land-use patterns, the trip-level data 
were spatially joined (at the census tract level) with objectively assessed environmental 
data extracted from the most recent 2020 Smart Location Database (SLD) by U.S. Envi-
ronmental Protection Agency (http:// urban desig n4hea lth. com/ proje cts/ sld- update). Com-
pared to the last SLD version (assembled in 2014) used in all relevant studies on this topic, 
the 2020 SLD exhibits significantly greater nationwide transit coverage and is based on an 
improved assessment of the built environment and land-use variables. By using the most 
recent SLD version, the present study captures an up-to-date profile of built environment, 
land-use, and transit accessibility in Chicago. Neighborhood (census-tract) level data on 
different types of crime for the city of Chicago were collected from the Crime Open Data-
base (CODE) (https:// osf. io/ zyaqn/). Three years of crime data from CODE (2016 to 2018) 
were used to capture the potential intermediate and lag impacts of different types of crime 
on ride-sourcing and DRS use.

The trip and built environment data were complemented by information on active 
travel-related behaviors and sociodemographic factors. Census-tract level socioeconomic 
variables (race, gender, income, unemployment, education, internet accessibility) were cal-
culated from the “Detailed Tables” in the American Community Survey (ACS) using the 
population counts for each category of socioeconomic variables. To capture the commut-
ing patterns in each neighborhood, responses to journey to work-related questions were 
used to calculate neighborhood-level participation rates in telecommuting and active travel 
(transit, walk, bike) (ACS 2019). Telecommuting (also referred to as teleworking) refers 
to working from home through the use of digital technology (ACS 2019). The journey to 
work-related questions captures commute mode choice including car, truck, van, taxicab, 
motorcycle, transit, light rail, subway/elevated rail, walk, and bicycle. Note that the ACS 
journey to work question does not include ride-sourcing or DRS travel modes. The most 
recent five-year estimates from the ACS were used to increase the statistical reliability of 
the neighborhood-level socioeconomic and travel behavior measures.4

2 Census tracts are small, relatively permanent, polygons defined by the US Census Bureau covering a 
well-defined geographic area. Census tract is second smallest geography (beside census block group) for 
which consistent and uniform census data are publicly made available by the US Census Bureau. On aver-
age, census-tracts contain around 4000 inhabitants and provide greater spatial granularity with around 
73,000 census tracts nationwide compared to only 43,000 ZIP codes in the United States.
3 Note that socio-demographic information about the ride-sourcing and DRS users is not available in these 
data. Since census tract serves as the unit of analysis, we integrate the ride-sourcing and DRS data with 
publicly available most recent census tract level built environment and sociodemographic data described 
next.
4 Note that the American Community Survey (ACS) is different from the Decennial Census survey that 
is conducted once every decade. Compared to the ACS, Decennial survey asks a limited set of questions 
including age, sex, race, and home-ownership status. The ACS data are used in this study since it is con-
ducted more frequently (monthly) and provides information on a much broader set of factors described 
below. For differences between the ACS and the Decennial Census, see https:// www. census. gov/ progr ams- 
surve ys/ acs/ about/ acs- and- census. html.

http://urbandesign4health.com/projects/sld-update
https://osf.io/zyaqn/
https://www.census.gov/programs-surveys/acs/about/acs-and-census.html
https://www.census.gov/programs-surveys/acs/about/acs-and-census.html
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The two dependent variables of interest are related to the neighborhood-level demand of 
ride-sourcing and DRS services. The two dependent variables are specified as the count of 
ride-sourcing trips per 100 inhabitants in a census tract (ride-sourcing rate) and the count 
of dynamic ridesharing trips per 100 inhabitants (dynamic ridesharing rate). Distributions 
of dependent and independent variables are shown and discussed in Sect. “Results”.

Methodological framework

At a basic level, the two response outcomes can be independently modeled via two uni-
variate linear regression models given the continuous nature of the two dependent vari-
ables. While (statistically) consistent, univariate models have several shortcomings limit-
ing our understanding of the complex mechanisms through which built environment and 
sociodemographic factors may influence the demand for DRS and ride-sourcing services. 
First, using independent multivariate models cannot capture the joint dependence between 
the demand for ride-sourcing and DRS services arising due to correlations among unob-
served factors (random heterogeneity). To gain a deeper understanding, capturing the joint 
dependence is important especially when the two mobility services are significantly cor-
related (as we demonstrate later). Second, the traditional joint model does not shed light on 
the nature (linear vs. non-linear) of the stochastic dependence and the extent of spillover 
effects in the spatial distribution of the joint dependence between DRS and ride-sourcing 
services (spatial heterogeneity). Finally, it ignores potential non-linear impacts (with ceil-
ing and overdose effects) of exogenous variables on the demand for ride-sourcing and DRS 
services (systematic heterogeneity).

In this section, we present a novel and comprehensive modeling framework to jointly 
model the demand for ride-sourcing and DRS services and to simultaneously examine ran-
dom (unobserved), spatial, and systematic (observed) heterogeneity in the context of two 
emerging mobility services. For brevity, we directly start with the exposition for the joint 
modeling framework and do not discuss the univariate models. Assume ℵ(Y1, Y2|X1,X2 ) 
denote the joint cumulative distribution function (CDF) for ride-sourcing ( Y1 ) and DRS 
demand ( Y2 ) conditional on vectors of exogenous variables associated with ride-sourcing 
and DRS demand ( X1 , X2 ). The conditioning of the joint distribution on exogenous vari-
ables is fully general and X1 and X2 can contain a different set of independent variables. 
With a different set of independent variables impacting the marginal densities underlying 
the joint distribution, a richer model structure can be developed. For example, statistically 
insignificant exogenous factors in the specification for one of the two marginal densities 
can be easily dropped. Using a copula framework, the joint cumulative distribution func-
tion can be expressed as a combination of marginal cumulative distributions functions such 
as (Nelsen 2007; Trivedi and Zimmer 2007; Sener et al. 2010):

where: ℵ1

(
Y1|X1

)
 and ℵ2

(
Y2|X2

)
 indicate the marginal CDFs of ride-sourcing ( Y1 ) and 

DRS demand ( Y2) taking values on a uniform [0,1] grid conditioned on the set of exog-
enous variables ( X1,X2 ); C� is a uniquely defined copula device that tracks the stochastic 
dependence between Y1 and Y2 ; and � is the copula parameter measuring the (linear/non-
linear) stochastic dependence between ride-sourcing and DRS demand. The copula-based 
parameterization in Eq.  (1) is extremely effective because it separates the modeling of 

(1)ℵ(Y1, Y2|X1,X2) = C𝜗(ℵ1

(
Y1|X1

)
,ℵ2

(
Y2|X2

)
;𝜗)
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stochastic dependence from the statistical modeling of the underlying (univariate) distribu-
tions characterizing the joint distribution (Nelsen 2007).

Copula devices for joint stochastic dependence modeling

A broad spectrum of Archimedean and elliptical copulas is employed to model the neigh-
borhood-level stochastic dependence between ride-sourcing and DRS demand. Among the 
elliptical class of copulas, Gaussian and student-t copulas are implemented. Both copulas 
can capture positive as well as negative dependence structures, thus termed comprehensive 
copulas (Bhat and Eluru 2009), but student-t copula exhibits fatter tails enabling mode-
ling of tail dependence patterns. Contrarily, the (often) undesirable property of asymptotic 
independence is rooted in Gaussian copula—implying that extreme tail events (low levels 
of ride-sourcing and DRS demand, and vice versa) are independent. Both are also symmet-
ric copulas since the stochastic dependence in the lower and upper distribution tails tend 
to be equal. To explore moderate levels of stochastic dependence patterns (both positive 
and negative), Farlie–Gumble–Morgenstern (FGM) and Plackett copulas are implemented. 
While useful, the above copulas can only capture linear form of stochastic dependence pat-
terns. Archimedean copulas (including the Clayton, Joe, Gumbel, and Frank copulas) are 
another popular class of mathematical structures able to model different forms of non-lin-
ear stochastic dependence patterns. For a graphical illustration of the dependency structures 
implied by the different copulas discussed above, its mathematical expositions, and associ-
ated generator functions, see (Bhat and Eluru 2009; Wali et  al. 2018). Finally, to model 
inverted dependence patterns, we employ survival versions of asymmetric Archimedean 
copulas (Clayton, Joe, and Gumbel). With a rotation of 180 degrees, the survival asymmet-
ric copulas allow capturing positive dependence structures but with inverted tail depend-
encies compared to the unrotated copulas. For example, a standard (unrotated) Clayton 
copula is driven by a positive dependence but with the dependence in the left tail stronger 
compared to the dependence in the right tail. A 180 degrees rotation of the Clayton copula 
allows positive dependence but with weaker left tail and stronger right tail dependence. 
Note that the right tail dependence structure in survival Clayton copula is stronger than an 
unrotated Gumbel copula. For details on survival copulas, see (Wali et al. 2018).

Marginal distribution modeling

Independent of the modeling of stochastic dependence patterns, the marginal distributions 
for ride-sourcing ( Y1 ) and DRS ( Y2) demand are characterized through cumulative and 
probability distribution functions denoted by ℵ𝜅(Y𝜅|𝜇𝜅 , 𝜎𝜅) and f�(Y�|�� , ��) , respectively, 
for � = 1 (ride-sourcing demand) and � = 2 (DRS demand) (Nelsen 2007); �� and �� rep-
resent the location (mean) and shape (dispersion) parameters of the two marginal distribu-
tions. In this study, we model the marginal distributions of the two outcomes with (log) 
normal densities (discussed further in Sect. “Results”).

Specification of exogenous variables

As demonstrated elsewhere (Wali and Khattak 2022), to capture systematic and spa-
tial heterogeneity patterns, we jointly model the (location) parameters of the marginal 
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distributions (ride-sourcing and DRS demand) as well as the copula dependence parameter 
( C� ) as a function of exogenous variables in an additive fashion (explained next).

Systematic heterogeneity treatment To capture non-linear effects of exogenous variables 
(reflecting systematic heterogeneity), we jointly model the demand f�(Y�|�� , ��) for ride-
sourcing ( Y1 ) and DRS ( Y2) as a function of exogenous variables with linear-in-parameter 
as well as smooth function effects in a generalized additive modeling (GAM) framework 
(Wood 2006):

where: Q is an index for the number of observations (census tracts); [ �o, �o] are inter-
cept terms, XQ1 and XQ2 are the vectors of exogenous variables with a linear influence on 
demand for ride-sourcing and DRS services; [ �1, �1 ] are vectors of estimable parameters 
associated with XQ1 and XQ2;WQ1 and WQ2 are vectors of exogenous variables with a non-
linear influence on the demands for two emerging mobility options; [ fi1, fi2] are non-para-
metric smooth functions to capture the contours of relationships between exogenous factors 
in WQ1 and WQ2 with Y1 and Y2 . Potential systematic heterogeneity in the stochastic depend-
ence patterns is modeled similarly (Wali and Khattak 2022):

where: �o is an intercept term for the geo-additive nested model for the copula dependence 
parameter, ZQ and ℶQ are matrices of exogenous variables linearly and non-linearly influ-
encing the joint dependence between ride-sourcing and DRS demand. The combination of 
parametric and non-parametric terms in Eqs. 2 through 4 offers a parsimonious structure to 
capture systematic heterogeneity in the effects of exogenous variables. For estimating the 
non-parametric smoothers, low rank think plate regression splines are used—allowing the 
creation of basis expansions underlying each smoother in a data-driven manner (compared 
to subjective/user-defined identification of knot locations for nonlinear modeling or auto-
matic identification of kernels using black-box machine learning methods) (Wood et  al. 
2015b). For more details about thin plate regression splines and smooth parameters estima-
tion, see (Wood et al. 2015b) (Wali et al. 2021a). The trade-off between penalizing smooth 
wiggliness and badness of fit is achieved by implementing an unbiased risk estimator-based 
regularization scheme. For more details, see (Wood et al. 2015a).

Spatial heterogeneity treatment Related to the stochastic dependence between ride-
sourcing and DRS services, the GAM-based exposition in Eq. (4) allows the joint depend-
ence pattern to vary across observations in a linear and non-linear fashion but does not 
account for spatial heterogeneity. The demand for emerging mobility services is known to 
be spatially clustered/correlated. Given the spatial similarities/differences across space, it 
is reasonable to expect that the joint dependence between ride-sourcing and DRS services 
could indeed vary across space. We expand the GAM exposition in Eq. (4) to incorporate 

(2)f1
(
Y1|X1

)
= �o + �1XQ1 +

Q∑

i=1

fi1
(
WQ1

)

(3)f2
(
Y2|X2

)
= �o + �1XQ2 +

Q∑

i=1

fi2
(
WQ2

)

(4)𝜗 = 𝛾o + 𝛾1ZQ +

Q∑

i=1

fi
(
ℶQ

)
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a Markov Random Field (MRF) based spatial model to capture the spatial spillover effects 
in the stochastic dependence pattern among the two outcomes. Since the geographical area 
(Chicago) is split up into discrete (contiguous) census tracts, the MRF-based nested model 
exploits the place-based information in neighboring census tracts (Sørbye and Rue 2014). In 
particular, the GAM-based formulation for � presented earlier is expanded as:

where: �Q is the (k × Q) matrix of exogenous variables; �kVk
bkVk

 indicate smooth functions 
for the kth factor in �Q represented as a linear combination of Vk basis functions bkVk

(
�kQ

)
 

and linear regression parameters �kVk
 . For a spatial Markov Random Field model based 

on the proximity structure of all census tracts in the sample, �kVk
bkVk

(
�kQ

)
 transforms to 

�Q
(
�Q

)
 ; where �Q now contains the area labels for all Q census-tracts in the sample and 

�Q is a vector of (census-tract specific) spatial random parameters [�1, �2, �2,… , �Q]
�—

distributed as NQ(0, �
2

e
�−1) for a generalized inverse of ( Q × Q) adjacency matrix (�) . 

Represented as �
[
q,m

]
, for q = 1, 2, 3,… ,Q and m = 1, 2, 3,… ,Q , the matrix � con-

tains the spatial structure of the neighborhoods (census-tracts), with elements indicated 
by �qq = Nq (where Nq is the total number of adjacent census-tracts for census-tract q ), 
�qm = −1 if census-tracts q and m are adjacent, and �qm = 0 if census-tracts q and m are 
non-adjacent—ensuring that the smoothing parameter reflects the spatial structure of the 
neighborhoods. To link an observation i with corresponding spatial random parameters in 
�Q , a proximity matrix is defined as P

[
i, q

]
= [1 if i belongs to census-tract q , 0 otherwise], 

and q = 1, 2, 3,… ,Q.
Collectively, the framework presented in this study expands previous work and the state 

of the art in copula modeling where only the joint stochastic dependence was modeled as a 
linear (Yasmin et al. 2014; Nashad et al. 2016) or generalized additive/non-linear function 
of exogeneous factors (Wali and Khattak 2022). These studies did not model the potential 
spatial heterogeneity in the joint dependence between the unobserved factors underlying 
the response outcomes, e.g., ride-sourcing and DRS demand (as is done in the present 
study). In implementing the heterogeneous copula dependence structures, we use alterna-
tive parameterization forms. For comprehensive copulas (Gaussian, Frank, FGM, and 
AMH copulas), we use an identity link as shown in Eq. 5. For non-comprehensive (sur-
vival) copulas with dependence parameters spanning � ∈ [−1,∞) (such as Clayton cop-
ula), we use a log identity function log(�)—re-parametrizing � as 
exp(𝛾o + 𝛾1ZQ +

∑Q

i=1
fi
�
ℶQ

�
+
∑Vk

Vk=1
𝛿kVk

bkVk

�
𝜓kQ

�
) . For those with dependence parame-

ters strictly positive (e.g., Gumbel-Hougard copula), we use a log(� − 1) parametrization.
Finally, referring to the copula-based exposition in Eq.  1, with ℵ1 and ℵ2 being con-

tinuous with probability densities f1 and f2 , the joint density (f ) for ride-sourcing and DRS 
demand can be written as:

And, the joint log-likelihood function can be expressed as:

(5)𝜗 = 𝛾o + 𝛾1ZQ +

Q∑

i=1

fi
(
ℶQ

)
+

Vk∑

Vk=1

𝛿kVk
bkVk

(
𝜓kQ

)

(6)

f
(
Y1Q, Y2Q

)
=

𝜕2ℵ
(
Y1Q, Y2Q

)

𝜕Y1QY2Q
=

𝜕2C𝜗

(
ℵ1

(
Y1Q),ℵ2(Y2Q

))

𝜕ℵ1(Y1Q)𝜕ℵ2(Y2Q)
×
𝜕ℵ1(Y1Q)

𝜕Y1Q
×
𝜕ℵ2(Y2Q)

𝜕Y2Q
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where: � is a matrix containing all the parameter estimates from the copula-based geo-
additive Markov Random Field-based spatial model detailed above. In summary, the meth-
odological framework accounts for three different layers of random, systematic, and spa-
tial heterogeneity: (1) joint stochastic dependence between the demand for ride-sourcing 
and DRS services arising due to common unobserved factors (modeled through a copula-
based framework), (2) systematic heterogeneity in the effects of exogenous variables on 
the demand for ride-sourcing and DRS services and on the joint stochastic dependence 
between the two (modeled through a nested GAM framework), and (3) spatial heterogene-
ity in the joint stochastic dependence between ride-sourcing and DRS services (modeled 
through a nested Markov Random Field model).

Results

Study area characteristics

To contextualize the forthcoming results and help readers infer potential similarity pat-
terns, Table 1 presents summary statistics on demographic, socioeconomic, housing and 
transport, internet, and computer accessibility factors for the study area (Chicago). For 
comparison, summary statistics are also provided for the 11 largest (most populous) US 
cities and the entire nation. Regarding demographics, gender and age distributions of the 
population are almost similar across the three categories (Chicago, 11 largest US cities, 
and nationwide). The percentages of white alone populations in Chicago and the 11 largest 
US cities (50% and 57.8%) are significantly lower than the percentage nationwide (76.3%). 
Compared to the nation, the percentages of foreign-born populations in Chicago and the 11 
largest US cities are significantly larger. Regarding socioeconomic status, the percentage 
of the population living in poverty and the per capita income in Chicago are larger than 
nationwide trends but similar to the trends in the 11 largest US cities. The mean owner-
occupied housing rates of 45% and 46.1% in Chicago and the 11 largest cities are signifi-
cantly lower than the nationwide rate of 64%. Chicago is more congested with an average 
35.1-min commute. Around 88% and 79% of the households in Chicago have access to 
computers and broadband internet, respectively (compared to around 90% and 82% nation-
wide). In terms of education, the percentage of the population in Chicago having at least a 
high school degree is slightly lower than the nationwide average. As expected, Chicago is 
substantially denser in terms of population density compared to the entire nation. Despite 
Chicago being unique in certain aspects, the above statistics indicate that the demographic, 
socioeconomic, housing, and transportation fabric of Chicago seems to be representative of 
the largest US cities, and more broadly, seem representative of the large urban areas in the 
United States.

Spatial distribution of ride‑sourcing and dynamic ridesharing demand

Figure  1 illustrates the spatial distribution of the response outcomes: ride-sourcing and 
dynamic ridesharing demand—revealing spatial heterogeneity in ride-sourcing and DRS 

(7)

ll(𝜔) =

Q∑

i=1

log
{
C𝜗

(
ℵ1

(
Y1Q|𝜇1Q, 𝜎1Q

)
,ℵ2

(
Y2Q|𝜇2Q, 𝜎2Q

))}
+

Q∑

i=1

2∑

𝜅=1

log
{
f𝜅
(
Y𝜅Q|𝜇𝜅Q, 𝜎𝜅Q

)}



1821Transportation (2023) 50:1809–1845 

1 3

rates across the census tracts in Chicago (Fig. 1a). The demand for ride-sourcing and DRS 
services is highest in the downtown Chicago area which is unsurprising since central busi-
ness districts (CBD) exhibit larger attractions and greater activity (Fig. 1a). To gain high-
level insights into the distributions across time of day, Fig. 1b–d show the ride-sourcing 
and DRS rates across midday, AM, and PM periods. Compared to the overall data, the 
magnitude of ride-sourcing and DRS demand lowered in the midday, AM, and PM periods. 
The mean (standard deviation) ride-sourcing and dynamic ridesharing rates per 100 indi-
viduals (over the six-month period) are: 890.9 (2084.3) and 199.4 (365.3) [overall data]; 
155.2 (302.7) and 41.4 (54.6) [AM period]; 222.1 (551.1) and 59.1 (137.9) [PM period]; 
and 146.5 (369.9) and 31.1 (54.8) [Midday/Noon Period]. Compared to the overall data, 
the ride-sourcing and DRS rates are intuitively lower during the specific periods. Some 
spatial variations in the demand for ride-sourcing and DRS across different periods can 
also be seen. For example, the demand for ride-sourcing and DRS services were more 

Table 1  Comparison of study area characteristics

The statistics are based on publicly available data provided by the US Census QuickFacts (US Census 
2021). The 11 largest cities include New York City (NY), Los Angeles (CA), Chicago (IL), Houston (TX), 
Phoenix (AZ), Philadelphia (PA), San Antonio (TX), San Diego (CA), Dallas (TX), San Jose (CA), and 
Austin (TX)

Variables Chicago city, Illinois Average across 
11 largest cities

US

Demographics
Persons aged < 18 years (%) 20.90% 22.56% 22.30%
Persons aged > 65 years (%) 12.40% 11.83% 16.50%
Persons aged < 65 years with disability (%) 7.00% 7.45% 8.60%
Female (%) 51.40% 50.60% 50.80%
White alone (%) 50.00% 57.82% 76.30%
Black alone (%) 29.60% 16.65% 13.40%
Asian alone (%) 6.60% 10.59% 5.90%
Two or more races (%) 2.80% 3.54% 2.80%
Foreign born persons (%) 20.60% 25.53% 13.60%
Income and poverty
Median household income (in 2019 USD) $58,247 $64,180.73 $62,843
Per capital income (past 12 months) (in 2019 USD) $37,103 $35,737.00 $34,103
Persons in poverty (%) 18.40% 17.10% 11.40%
Housing and transportation
Owner-occupied housing unit rate 45.00% 46.15% 64.00%
Household size (persons per household) 2.48 2.70 2.62
Mean travel time to work (mins) 35.1 29.80 26.9
Internet and computer accessibility
Households with a computer (%) 87.90% 90.73% 90.30%
Households with a broadband internet (%) 78.80% 82.52% 82.70%
Education
High school graduates or higher (%) 85.10% 82.94% 88.00%
Bachelor’s degree or higher (%) 39.50% 36.72% 32.10%
Population density
Population / sq. mi (2010) 11,841.80 7550.45 87.4
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spread out throughout the city during the PM periods—with neighborhoods farther away 
from the downtown core producing more ride-sourcing and DRS trips (Fig. 1c).

To gain further insights into the spatial distribution of trip flows, we created an ori-
gin–destination matrix calculating the total number of all trips, ride-sourcing, and rideshar-
ing trips between each pair of origin–destination census tracts (leading to a total of 200,956 
flows/O–D pairs). For computational reasons and to focus only on key trip flows for visu-
alization purposes, we used minimum and maximum trip flow thresholds of 50 and 200, 
respectively (leading to over 26,000 O–D pairs).

Figure 2 shows the trip flows for these O–D pairs revealing interesting patterns. First, 
we see a semi-monocentric pattern of the city with most flows ending around downtown 
(see the yellowish concentration in trip flow plasma for all trips in Fig.  2). Geographic 
clustering is noted in the demand for shared mobility, with the demand dominating in the 
downtown area and with some uptake on the outskirts of the city. Many small clusters 
of flows in the outer region are observed, e.g., near the two airports on the far west of 
the map in Fig. 2. Finally, to note here is the remarkable spread in accessibility (in terms 

Fig. 1  Choropleth maps of ride sourcing and dynamic ridesharing demand by pick-up census tracts. a–d 
show the ride-sourcing and dynamic ridesharing demand for the overall data, AM peak [7 AM–10 AM], 
PM peak (2 PM–6 PM], and Midday/Noon (10 AM–2 PM], respectively. Please zoom in for better legibility
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Fig. 1  (continued)

Fig. 2  Ride-sourcing and dynamic ridesharing trip flows (origin–destination Pairs) in Chicago. Since the 
data are census-tract specific, the origin–destination flows shown above indicate the flows between differ-
ent census tracts. The starting and ending points indicate the centroids of the origin and destination census 
tracts. Longer flows indicate greater distances. Please zoom in for better legibility



1824 Transportation (2023) 50:1809–1845

1 3

of accessing farther locations) offered by shared mobility services. The second and third 
sub-plots in Fig. 2 illustrate the distribution of demand for ride-sourcing and ridesharing 
trips, respectively. Ride-sourcing still dominates in the city center but with sizeable clus-
ters around the airports as well. However, for ridesharing, the cluster dominates in the city 
center but diminishes around the airports. This suggests that ridesharing trips are more 
frequent in dense areas where more non-utilitarian (leisure) travel is likely to take place.

Descriptive statistics

Table 2 shows the descriptive statistics of the two response outcomes and key exogene-
ous variables. Regarding the demand for the two shared mobility services, the mean ride-
sourcing and dynamic ridesharing rates (trips per 100 inhabitants) were 890.92 and 199.46 
over the six months, respectively (Table  2). As was shown in Fig.  1 earlier, substantial 
heterogeneity is observed in ride-sourcing and dynamic ridesharing rates across the census 
tracts (see the standard deviations in Table 2). Thus, it is of interest to examine what factors 
drive the observable demand for ride-sourcing and dynamic ridesharing services and how 
the demand for the two is jointly related.

Regarding neighborhood commute patterns, the average travel time to commute was 
around 35 min. Almost half of the individuals in the sampled census tracts drove alone to 
their work. Participation in active travel modes for commuting is also observed. Around 
28%, 1.5%, and 5.2% of the individuals in the sampled census tracts took transit, walked, 
and biked to their work—with substantial variations across the neighborhoods. Interest-
ingly, around 5% of the individuals participated in teleworking. By harnessing data on 
travel behavior, we examine the relationships between active travel and demand for emerg-
ing mobility services.

A broad spectrum of density, design, diversity, and transit measures are considered to 
capture the built environment and transit accessibility profiles across the sampled neigh-
borhoods. The sampled census-tracts show remarkable variation in terms of density (resi-
dential, population, employment), diversity, and design features. The sampled census tracts 
exhibited greater street connectivity for pedestrian activities. Besides pedestrian-oriented 
intersections, we also include design measures for multi-modal and pedestrian infra-
structure to better reflect the support for pedestrian and bicycle travel. The average facil-
ity miles of multi-modal and pedestrian links per square mile are 9.98 and 19.55, respec-
tively. To examine how transit accessibility correlates with the demand for ride-sourcing 
and dynamic ridesharing services, several transit measures are also included in the analysis 
(Table 2). The average distance to the nearest transit stops from the population-weighted 
centroid was 265 m whereas around 21% of employment existed within 0.25 miles of a 
transit stop. Descriptive statistics for crime-related variables are shown in Table 2.

Regarding demographics, individuals in the sampled neighborhoods were almost evenly 
split between men and women and between white and non-white. The average neighbor-
hood is young with around 37% of individuals aged between 18 and 39 years. Around 15% 
of Chicago’s population has a graduate degree with some neighborhoods reaching 75%. 
As expected, the majority of residents have access to cellular Internet but there are some 
neighborhoods where over 40% of the residents do not possess cellular internet coverage.



1825Transportation (2023) 50:1809–1845 

1 3

Ta
bl

e 
2 

 D
es

cr
ip

tiv
e 

st
at

ist
ic

s o
f r

es
po

ns
e 

ou
tc

om
es

 a
nd

 k
ey

 e
xo

ge
no

us
 v

ar
ia

bl
es

Va
ria

bl
e

M
ea

n
SD

M
in

M
ax

D
at

a 
so

ur
ce

O
ut

co
m

e 
va

ria
bl

es
R

id
e-

so
ur

ci
ng

 tr
ip

 ra
te

 (#
 o

f r
id

e-
so

ur
ci

ng
 tr

ip
s p

er
 1

00
 p

op
ul

at
io

n)
89

0.
92

20
84

.4
0

0.
22

22
,8

37
.2

5
C

ity
 o

f C
hi

ca
go

 D
at

a 
Po

rta
l

R
id

es
ha

rin
g 

tri
p 

ra
te

 (#
 o

f r
id

es
ha

rin
g 

tri
ps

 p
er

 1
00

 p
op

ul
at

io
n)

19
9.

46
36

5.
30

0.
02

40
03

.7
5

R
id

e-
so

ur
ci

ng
 tr

ip
 ra

te
 (l

og
-fo

rm
)

5.
31

1.
79

−
1.

51
10

.0
4

R
id

es
ha

rin
g 

tri
p 

ra
te

 (l
og

-fo
rm

)
4.

30
1.

50
0.

02
8.

30
C

om
m

ut
e 

(a
ct

iv
e)

 tr
av

el
W

or
k 

co
m

m
ut

e 
(m

in
s)

35
.6

7
5.

53
17

.8
2

53
.5

5
A

m
er

ic
an

 C
om

m
un

ity
 S

ur
ve

y 
5-

Ye
ar

 E
sti

m
at

es
 (2

01
4–

20
18

)
D

riv
e 

al
on

e 
(%

)
50

.0
5

15
.6

0
10

.8
9

85
.9

3
Tr

an
si

t (
%

)
28

.5
8

12
.9

8
3.

65
63

.8
8

B
ik

in
g 

(%
)

1.
54

2.
23

0
14

.7
0

W
al

k 
(%

)
5.

27
8.

23
0

62
.1

7
Te

le
w

or
k 

(%
)

4.
83

3.
61

0
18

.0
9

B
ui

lt 
en

vi
ro

nm
en

t v
ar

ia
bl

es
 d

en
si

ty
G

ro
ss

 re
si

de
nt

ia
l d

en
si

ty
 (H

U
/a

cr
e)

16
.4

1
20

.0
7

0.
82

29
8.

63
20

20
 E

PA
 sm

ar
t l

oc
at

io
n 

da
ta

ba
se

G
ro

ss
 p

op
ul

at
io

n 
de

ns
ity

 (p
eo

pl
e/

ac
re

)
33

.2
0

27
.7

1
3.

29
40

7.
58

G
ro

ss
 e

m
pl

oy
m

en
t d

en
si

ty
 (j

ob
s/

ac
re

)
11

.9
3

52
.5

3
0

11
02

.5
5

D
iv

er
si

ty
5-

tie
r e

m
pl

oy
m

en
t e

nt
ro

py
 [*

 b
y 

10
0]

60
.7

8
20

.3
5

0
99

.9
5

D
es

ig
n

To
ta

l r
oa

d 
ne

tw
or

k 
de

ns
ity

30
.5

7
6.

40
9.

76
69

.4
3

Fa
ci

lit
y 

m
ile

s o
f m

ul
ti-

m
od

al
 li

nk
s p

er
 sq

ua
re

 m
ile

9.
98

5.
46

0
26

.3
5

Fa
ci

lit
y 

m
ile

s o
f p

ed
es

tri
an

-o
rie

nt
ed

 li
nk

s p
er

 sq
ua

re
 m

ile
19

.5
5

6.
77

1.
24

44
.7

9
St

re
et

 in
te

rs
ec

tio
n 

de
ns

ity
 (w

ei
gh

te
d,

 a
ut

o-
or

ie
nt

ed
 in

te
rs

ec
tio

ns
 e

lim
in

at
ed

)
17

5.
67

84
.2

0
22

.3
4

75
8.

90
Tr

an
si

t (
ac

ce
ss

ib
ili

ty
)

D
ist

an
ce

 fr
om

 P
O

PU
LA

TI
O

N
 w

ei
gh

te
d 

ce
nt

ro
id

 to
 n

ea
re

st 
tra

ns
it 

sto
p 

(m
et

er
s)

26
5.

18
98

.2
1

0
93

2.
08

Pr
op

or
tio

n 
of

 e
m

pl
oy

m
en

t w
ith

in
 ¼

 m
ile

 o
f fi

xe
d-

gu
id

ew
ay

 tr
an

si
t s

to
p

0.
21

0.
29

0
1.

00
Re

gi
on

al
 C

en
tra

lit
y 

In
de

x—
Tr

an
si

t [
* 

by
 1

00
]

47
.6

8
17

.1
1

3.
33

96
.1

4



1826 Transportation (2023) 50:1809–1845

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Va
ria

bl
e

M
ea

n
SD

M
in

M
ax

D
at

a 
so

ur
ce

C
rim

e 
(#

 o
f o

ffe
ns

es
)

A
ss

au
lt

26
1.

77
23

1.
30

1
18

30
.0

0
C

rim
e 

op
en

 d
at

ab
as

e 
(C

O
D

E)
B

ur
gl

ar
y

48
.9

2
33

.4
3

0
20

1.
00

N
ar

co
tic

46
.7

3
11

1.
48

0
13

56
.0

0
H

om
ic

id
e

2.
05

3.
04

0
22

.0
0

Tr
ip

 re
la

te
d 

va
ria

bl
es

A
ve

ra
ge

 tr
ip

 d
ur

at
io

n 
(m

in
s)

18
.4

7
3.

00
11

.5
2

34
.5

4
C

ity
 o

f C
hi

ca
go

 d
at

a 
po

rta
l

A
ve

ra
ge

 tr
ip

 d
ist

an
ce

 (m
ile

s)
5.

48
1.

49
2.

79
14

.1
0

A
ve

ra
ge

 tr
ip

 fa
re

 (U
S 

do
lla

rs
)

9.
91

1.
64

7.
33

25
.7

2
W

ee
ke

nd
 (%

)
29

.8
2

9.
12

0
77

.6
8

W
ee

kd
ay

 A
M

 (%
)

22
.7

1
9.

85
0

59
.3

7
W

ee
kd

ay
 N

oo
n 

(%
)

10
.7

4
3.

78
0

32
.6

9
W

ee
kd

ay
 P

M
 (%

)
18

.6
7

7.
46

0
78

.5
4

W
ee

kd
ay

 E
ve

ni
ng

 (%
)

12
.1

4
4.

60
0

32
.2

0
W

ee
kd

ay
 O

ve
rn

ig
ht

 (%
)

5.
91

2.
98

0
41

.5
4

W
ee

ke
nd

 A
M

 (%
)

3.
70

1.
46

0
8.

89
W

ee
ke

nd
 N

oo
n 

(%
)

6.
05

1.
69

0
21

.4
0

W
ee

ke
nd

 P
M

 (%
)

7.
25

2.
45

0
25

.7
7

W
ee

ke
nd

 E
ve

ni
ng

 (%
)

7.
16

3.
20

0
25

.8
5

W
ee

ke
nd

 O
ve

rn
ig

ht
 (%

)
5.

65
5.

61
0

57
.1

4
So

ci
o-

de
m

og
ra

ph
ic

 fa
ct

or
s



1827Transportation (2023) 50:1809–1845 

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Va
ria

bl
e

M
ea

n
SD

M
in

M
ax

D
at

a 
so

ur
ce

B
la

ck
 (%

)
35

.9
0

39
.5

7
0

10
0.

00
A

m
er

ic
an

 c
om

m
un

ity
 su

rv
ey

 
5-

ye
ar

 e
sti

m
at

es
 (2

01
4–

20
18

)
W

hi
te

 (%
)

46
.0

0
32

.2
7

0
97

.4
9

M
al

e 
(%

)
48

.2
9

4.
74

25
.2

3
64

.4
0

Ed
uc

at
io

n:
 le

ss
 th

an
 h

ig
h 

sc
ho

ol
 (%

)
15

.5
7

11
.4

3
0

56
.1

6

Ed
uc

at
io

n:
 g

ra
du

at
e 

de
gr

ee
 (%

)
14

.8
9

13
.2

6
0

75
.7

3

Lo
w

 in
co

m
e 

(%
)

40
.6

2
19

.2
1

3.
86

92
.0

5

H
ig

h 
in

co
m

e 
(%

)
26

.2
8

18
.5

2
0

79
.0

1

A
ge

: 1
8–

39
 y

ea
rs

 (%
)

36
.9

5
12

.3
1

14
.8

2
88

.4
0

U
ne

m
pl

oy
ed

 (%
)

6.
09

4.
61

0
27

.8
3

C
el

lu
la

r i
nt

er
ne

t a
cc

es
s (

%
)

80
.2

9
9.

54
42

.4
0

10
0.

00

N
 =

 79
3 

ce
ns

us
 tr

ac
ts

; S
D

 is
 st

an
da

rd
 d

ev
ia

tio
n;

 A
ll 

va
ria

bl
es

 a
re

 a
t t

he
 c

en
su

s-
tra

ct
 le

ve
l; 

A
M

 [7
 A

M
–1

0 
A

M
], 

M
id

da
y/

N
oo

n 
(1

0 
A

M
–2

 P
M

], 
PM

 (2
 P

M
–6

 P
M

], 
Ev

en
in

g 
(6

 
PM

–1
0 

PM
], 

N
ig

ht
/O

ve
rn

ig
ht

 (1
0 

PM
–7

 A
M

)



1828 Transportation (2023) 50:1809–1845

1 3

Modeling results

Several models are defined next that jointly estimate ride-sourcing and DRS rates as a 
function of built environment, transit accessibility and crime, active travel, and sociode-
mographic factors while treating different layers of random, systematic, and spatial het-
erogeneity. To derive the models, a systematic process was followed considering variable 
importance (based on literature) and specification parsimony. The statistical significance 
criterion was set at a 90% confidence level. We used information criterion (Akaike Infor-
mation Criterion) based model selection mechanisms to compare the different models with 
different sets of exogenous variables and treating different layers of random, systematic, 
and spatial heterogeneity. A difference of over 5 points between the AICs of two alternative 
models would favor the model with the lowest AIC. Likelihood-ratio tests were also per-
formed to compare the alternative modeling structures.5 To deal with distributional skew-
ness, a natural log transformation was used for the two response outcomes.

Initially, two univariate (independent) models were estimated for the two response out-
comes: modeling ride-sourcing and DRS rates as a function of exogenous variables shown 
in Table 2. The demand for ride-sourcing and DRS is strongly correlated with a Pearson 
and Kendall τ correlation coefficients of 0.92 and 0.83, respectively. To account for this 
correlation arising due to observed and unobserved factors, an elliptical Gaussian copula-
based joint model was estimated. Accounting for the correlation between the ride-sourcing 
and DRS demand led to substantial improvement in log-likelihood and AIC (with one extra 
estimable (copula dependence) parameter—the log-likelihood for the Gaussian copula-
based joint model increased by over 696 points and the AIC reduced by over 1390 points). 
This highlights the importance of accounting for joint stochastic dependence in estimating 
the demand for ride-sourcing and DRS services.

Non‑linear stochastic dependence between demand for ride‑sourcing and DRS 
services

While the Gaussian copula-based joint model led to substantial improvements, it is none-
theless characterized by a linear form of joint dependence between the unobserved factors 
influencing the demand for ride-sourcing and DRS services. Following the discussion in 
Sect. 3.2.1, a broad spectrum of comprehensive and non-comprehensive copula-based joint 
models was next developed to capture varying levels of non-linear stochastic dependence 
patterns between the demand for ride-sourcing and DRS services. To examine asymme-
try in joint stochastic dependencies, asymmetric copula-based models were also estimated. 

5 For comparing alternative model structures, a chi-square distributed likelihood ratio (LR) test statistic 
is formulated as: −2 × 

[
LLR − LLU

]
—where LLU refers to the log-likelihood of the un-restricted model 

and LLR refers to the log-likelihood of the restricted model. In this study, the restricted models are those 
that restrict the stochastic dependence, assume systematic and/or spatial homogeneity (as discussed in 
Sect.  3.2), whereas the unrestricted models allow non-linear stochastic dependence (through copulas), 
systematic heterogeneity (through geo-additive framework), and/or spatial heterogeneity (through Markov 
Random Fields). If the more advanced (unrestricted) model is statistically superior, then the LR test statistic 
comparing the unrestricted and restricted models should be greater than the critical χ2 value associated with 
the additional degrees of freedom in the unrestricted model (i.e., additional estimable parameters to capture 
stochastic dependence, systematic, and/or spatial heterogeneity). In selecting the critical χ2 values, we use a 
99.9% level of confidence.
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Finally, survival variants of asymmetric Archimedean copulas were implemented to model 
inverted dependency patterns.

Table  3 shows the goodness-of-fit statistics for the twelve (12) elliptical and Archi-
medean copula-based structures for ride-sourcing and DRS demand. Among all compet-
ing copula-based models, the Frank copula-based joint model for ride-sourcing and DRS 
demand resulted in best fit (labeled as Model 1 in Table  3). With the same number of 
estimable parameters (degrees of freedom) between the Gaussian and Frank copula mod-
els, the log-likelihood for Frank copula-based joint model increased by 59 points, and the 
AIC reduced by over 117 points (Table 3). This finding emphasizes the presence of non-
linearity in the joint stochastic dependence of unobserved factors driving the demand for 
ride-sourcing and DRS services. Compared to Gaussian copula, Frank copula implies a 
stronger dependence in the center of the bivariate distribution and weaker dependence in 
the tails. The copula dependence parameter for the Frank copula-based structure was 19.46 
with an associated Kendall’s � of 0.81 (on a scale from −1 to 1). This shows that even after 
conditioning on observed exogenous variables, the demand for ride-sourcing and DRS ser-
vices are strongly correlated based on latent factors and that the unobserved factors jointly 
increase/decrease the neighborhood-level demand for ride-sourcing and DRS services.

Systematic and spatial heterogeneity in the demand for ride‑sourcing and DRS 
services

We developed a series of models to capture systematic and spatial heterogeneity in the 
effects of exogenous factors on the demand for ride-sourcing and DRS services. The best-
fit Frank copula-based joint model discussed in the earlier section was expanded with a 
GAM-based framework—incorporating systematic heterogeneity arising from non-linear-
ity in the effects of exogenous factors on ride-sourcing and DRS demand (Model 1A in 
Table 3). Accounting for non-linearity in the joint model led to a 76-points reduction in 
AIC for the Frank copula-based GAM model, indicating substantial improvement in model 
fit over the Frank copula model assuming linear covariate effects. Following the methodo-
logical discussion in Sect. 3.2., Model 1A was further expanded to account for heterogene-
ity in the joint dependence pattern across Chicago neighborhoods (Model 1B in Table 3). 
In this model, the � copula dependence parameter was allowed to vary across census tracts 
as a function of exogenous variables. Doing so led to a further 13 unit decrease in AIC for 
Model 1B (compared to Model 1A), suggesting substantial improvements in model good-
ness of fit while elucidating the variations in the joint dependence between the two mobil-
ity services as a function of independent variables.

Finally, we expanded Model 1B to incorporate structured spatial heterogeneity (as 
discussed in Sect.  3.2.3.2) in the joint stochastic dependence between ride-sourcing and 
DRS demand (Model 1C in Table 3). In a holistic framework, Model 1C simultaneously 
accounted for the joint stochastic dependence between ride-sourcing and DRS demand, 
systematic heterogeneity in the effects of covariates on the two response outcomes, system-
atic and spatial heterogeneity in the joint dependence patterns across Chicago neighbor-
hoods. Accounting for all the different sources of heterogeneity led to a 115-unit decrease 
in AIC for Model 1C compared to Model 1B. Likewise, the LR test statistic was 206.12 
[−2 × ((−759.63 + −656.57)], which is greater than the critical �2 value (for a 99.9% confi-
dence level) of 80.07 for 45 degrees of freedom (i.e., the additional estimable parameters in 
the spatial Markov Random Field GAM-based Frank copula model (Model 1C) compared 
to Model 1B (96.71–51.46)) (Table 3). This substantial improvement in the goodness of fit 
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for Model 1C supports our hypothesis about the existence of structured spatial heterogene-
ity in the joint stochastic dependence between ride-sourcing and DRS demand.

Besides substantial improvements in model goodness of fit, the more advanced Model 
1C also provides key behavioral insights. We briefly discuss the behavioral insights related 
to joint stochastic dependence and spatial heterogeneity next. The empirical findings 
related to systematic heterogeneity are synthesized in the next section. Table 4 shows the 
estimation results for the best-fit geo-additive Markov Random Field-based joint hetero-
geneous copula model (Model 1C). In particular, the joint stochastic dependence implied 
by Frank copula varied as a function of the proportion of neighborhood trips undertaken 
during weekend PM periods (Table 4). With a β estimate of 0.529 (t-statistic of 1.82), the 
joint dependence between latent factors underlying the demand for ride-sourcing and DRS 
services increased as more trips were undertaken during weekend PM periods (Table 4). 

Table 3  Model selection and goodness of fit statistics for joint geo-additive markov random field based het-
erogeneous copula models

LL(β) is log-likelihood at convergence; AIC is Akaike Information Criterion; � is the copula depend-
ence parameter; � is Kendall’s Tau measure of joint dependence; K is the number of estimable parameters 
(degrees of freedom); N is the sample size; (*) indicates heterogeneous copula joint dependence measures 
(shown in Figs. 3 and 4); (–) indicates Not Applicable

Models LL (β) AIC � τ K N

Univariate models
Ride-sourcing rate −793.83 1627.66 – – 20 793
Dynamic ridesharing rate −778.32 1592.64 – – 18 793
Total −1572.15 3220.29 – – 38 793
Joint models
Symmetric Copula
Gaussian copula −876.05 1830.10 0.93 0.75 39 793
Farlie-Gumbel-Morgenstern (FGM) copula −1404.47 2886.95 1.00 0.22 39 793
Best-fit homogenous copula: frank copula (Model 1) −817.07 1712.14 19.46 0.81 39 793
Student-t copula −827.45 1734.89 0.95 0.81 39 793
Asymmetric copula
Ali-Mikhail-Haq (AMH) copula −1208.44 2494.89 1.00 0.33 39 793
Gumbel-Hougard (G-H) copula −851.20 1780.40 4.60 0.78 39 793
Hougard copula −851.20 1780.40 0.22 0.78 39 793
Joe copula −956.92 1991.84 6.69 0.75 39 793
Clayton copula −993.39 2064.77 5.27 0.73 39 793
Rotated asymmetric copula (180-degrees rotation)
Survival G–H copula −869.89 1817.78 4.49 0.78 39 793
Survival Joe copula −991.46 2060.92 6.05 0.72 39 793
Survival Clayton copula −957.91 1993.82 5.94 0.75 39 793
Heterogeneous geo-additive MRF copula models
Generalized additive (non-linear) frank copula model 

(model 1A)
−767.22 1635.81 20.66 0.81 50.68 793

Generalized additive (non-linear) frank copula model 
with heterogeneous stochastic dependence (model 1B)

−759.63 1622.20 20.98* 0.82* 51.46 793

Generalized additive (non-linear) frank copula model 
with heterogeneous stochastic dependence and MRF 
based spatial heterogeneity (model 1C)

−656.57 1506.57 23.43* 0.83* 96.71 793
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This finding is illustrated in Fig. 3, which shows the contour plots for the variations in joint 
dependence patterns between ride-sourcing and DRS demand. The strong synergy between 
ride-sourcing and DRS services during weekend PM periods is expected since the demand 
for on-demand mobility services is generally higher during weekends when leisure/recrea-
tional trip-making is more likely (Rayle et al. 2016). Previous research has also revealed 
that social-recreational activities during PM peak are more flexible compared to recrea-
tional trip-making during off-peak and late-evening activities (Bhat 1998)—which could 
facilitate the use of DRS services during weekend PM periods.

In addition, the best-fit Model 1C highlights the spatially heterogeneous profile of joint 
dependence patterns across neighborhoods in Chicago. Figure 4 shows that the structured 
spatial effect is smoother for the copula dependence parameter revealing spillover effects. 
Precisely, the Frank copula parameter varied between 0.36 and 37.84 corresponding to 
Kendall’s � of 0.10 and 0.89, respectively. This demonstrates that the stochastic depend-
ence between the two mobility options varies in space—with the strongest dependence in 
the downtown Chicago area and weakest in the outskirts (especially around the two air-
ports). Such deeper insights cannot be obtained from simpler models ignoring spatially 
structured heterogeneity effects. The new finding that the joint stochastic dependence 
between ride-sourcing and DRS services is strongest in downtown has important behavio-
ral implications. Behaviorally, this highlights the strong link between density/urban com-
pactness and mobility-on-demand services. The Chicago Loop (being the main section of 
Downtown Chicago) is one of the densest places nationwide with a population density of 
11,841/sq. mi. Dense and walkable places can influence individual decisions related to 
participation in shared mobility in several ways. For example, transportation consumption 
in urban environments with high-density and more mixed land use clusters is smaller due 
to shorter distances between housing, work, and leisure. With less reliance on motorized 
transportation, private (automobile) ownership could become unappealing whereas, using 
alternative forms of transportation (such as shared mobility) only adds a marginal cost thus 
becoming more attractive in denser areas. Likewise, urban environments with high-density 
clusters likely have limited public rights-of-ways (parking, curb space) thus encouraging 
the use of shared mobility services.

Discussion and synthesis

Based on the results of best-fit Model 1C (Table 4), the findings related to the joint impacts 
of the built environment, transit accessibility and crime, active travel, and socioeconomic 
factors are discussed next. The β parameter estimates from the joint model in Table 4 can 
be interpreted as elasticities since the two response outcomes are log-transformed. If a 
one-unit change is made to an exogenous variable, we would expect a 100*β, or precisely 
a 100 ∗

(
e� − 1

)
, percent change in the response outcomes. When the explanatory fac-

tors are also log-transformed, the β quantifies the percent change in Y with a one percent 
change in X (untransformed exogenous variables). Non-linear effects are modeled through 
thin-plate regression splines as discussed earlier. The smoothed spline effects cannot be 
represented with a single β estimate and are summarized in terms of degrees of freedom 
(Table  4)—where the degrees of freedom (roughly) suggest the number of piece-wise 
slopes tied together to approximate a non-linear relationship (Wood et al. 2015a; Wali et al. 
2021a). A statistically significantly greater than one degree of freedom suggests the pres-
ence of non-linear relationships. In discussing systematic heterogeneity effects, we present 
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visualizations summarizing how the demand for ride-sourcing and DRS services non-line-
arly vary as a function of specific variables.

Built environment

The environmental features in the final model capture key aspects of the built environment 
related to urban design (pedestrian-oriented infrastructure), density, land-use diversity (mix 
of employment types), and transit accessibility. Related to urban design, we found a posi-
tive association between pedestrian-oriented infrastructure (facility miles of pedestrian-
oriented links per square mile) and the demand for ride-sourcing and DRS services. In 
addition, greater provision of pedestrian-oriented infrastructure non-linearly influenced the 
demand for the two services (degrees of freedom of 1.12 and 2.56 in the equation for ride-
sourcing and DRS demand) (Table 4). However, the extent of non-linearity was greater for 
DRS demand (see Figs. 5 and 6). In particular, when the pedestrian-oriented infrastructure 
density increased beyond 20 mi per sq. mi., a sharp increase in the demand for DRS ser-
vices was observed (Fig. 6). These results suggest that while pedestrian-oriented connec-
tivity can support both mobility-on-demand services, the demand for DRS services seems 
more responsive to changes in pedestrian-oriented connectivity. The relatively higher 
impact of greater pedestrian-oriented links on DRS services is intuitive. Greater pedes-
trian-oriented infrastructure likely generates more non-motorized traffic, helping both the 
demand and supply side of DRS services, i.e., supporting the use of DRS services and 
increasing the likelihood of matching passengers traveling to nearby destinations. Like-
wise, more compact, denser neighborhoods had a greater demand for ride-sourcing ser-
vices. A one percent increase in residential density was associated with a 0.073% increase 
in ride-sourcing rate (Table 4). Regarding diversity, more mixed land use was associated 

Fig. 3  Estimated heterogeneous joint dependence patterns between unobserved factors underlying the 
demand for ride-sourcing and dynamic ridesharing services. The contours are based on the Best-Fit Geo-
Additive Markov Random Field-Based Joint Heterogeneous Copula Model–Model 1C. The intensity of 
joint dependence is shown by a rainbow plasma; Red color shows the portion where the joint dependence 
is strongest; Blue color shows the portions with weakest joint dependence; Isolines (lines indicating con-
stant values) are tighter in regions where the joint dependence is stronger and vice versa (for blue regions). 
(Color figure online)
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with greater demand for ride-sourcing as well as DRS services (Table 3). A one percent 
increase in employment entropy was correlated with a 0.003% and 0.002% increase in ride-
sourcing and DRS demand, respectively. Land-use mix captures the composition of dif-
ferent activity types within a census tract. Greater land-use mix indicates neighborhoods 
(e.g., in the downtown area) with a variety of activity types (offices, restaurants, banks, 
shops, and other activities), thus increasing accessibility (Cervero 1989). Like density and 
compactness, note that land-use mix is a necessary but not sufficient condition for walkable 
neighborhoods. While more mixed land-use developments offer greater activity choices, 
these activity types must be sufficiently connected through the provision of pedestrian-ori-
ented infrastructure to enable safer accessibility of vulnerable road users to different activ-
ity types. Collectively, these new findings highlight the effectiveness of denser, compact, 
connected, and more diverse neighborhoods with greater provision of pedestrian-oriented 
infrastructure in increasing the demand for ride-sourcing as well as DRS services. Such 
neighborhoods offer several benefits that are conducive to shared mobility services. For 
example, denser and compact neighborhoods with greater provision of pedestrian-oriented 

Fig. 4  Markov random field-based structured spatial heterogeneity in the joint dependence between ride-
sourcing and dynamic ridesharing demand. Based on Best-Fit Geo-Additive Markov Random Field-Based 
Joint Heterogeneous Copula Model–Model 1C
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infrastructure are more supportive of active travel and exhibit greater productions/attrac-
tions while providing safer and greater access to ride-sourcing and DRS services. Like-
wise, mobility-on-demand services are more attractive in walkable neighborhoods since 
such an urban environment provides users with accessible mobility without the burden 
of private vehicle ownership. Dean and Kockelman (2021) found negative associations 
between greater pedestrian infrastructure and the number of shared trips. Likewise, Xu 
et al. (2021) found negative associations (in certain ranges) of walk score, population, and 
employment density with ride-splitting adoption rate, whereas at certain value ranges, the 
contours remained flat. Our ability to detect positive and non-linear relationships discussed 
above can be due to the use of more recent built environment data as well as a methodo-
logically rigorous empirical framework treating different layers of random, systematic, and 
spatial heterogeneity. In summary, the findings suggest that sustainable and shared mobil-
ity-related goals can be achieved by continuing to invest in compact and more walkable 

Fig. 5  Non-linear impacts on demand for ride-sourcing services. The contours are based on Best-Fit Geo-
Additive Markov Random Field-Based Joint Heterogeneous Copula Model–Model 1C

Fig. 6  Non-linear impacts on demand for dynamic ridesharing services. The contours are based on Best-Fit 
Geo-Additive Markov Random Field-Based Joint Heterogeneous Copula Model–Model 1C
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neighborhoods. While more walkable and compact neighborhoods support shared mobil-
ity-related goals, an implicit assumption is that shared mobility services would not substi-
tute trips undertaken by healthier and active travel modes (walk, bike, transit). To this end, 
it is important to examine the complementary effects (if any) of active travel and transit 
accessibility on shared mobility services (discussed next).

Transit accessibility

With regards to transit accessibility, neighborhoods with greater transit accessibility (com-
pared to the metro region) had a higher demand for ride-sourcing and dynamic ridesharing 
services. Revealing significant systematic heterogeneity, the effects of transit accessibility 
were found to be non-linear both for ride-sourcing and DRS services (Fig.  5 and 6). A 
sharp increase in the demand for ride-sourcing and DRS services, in a piecewise non-linear 
fashion, is observed up until a transit regional index score of 60 (on a scale from 0 to 100). 
Importantly, ceiling and/or overdose effects are also observed. For ride-sourcing demand, 
a ceiling effect is observed when transit accessibility increases beyond 60 (Fig. 5). With 
regards to DRS demand (Fig. 6), an overdose effect is observed when transit accessibility 
increases beyond 60 leading to reductions in the demand for DRS services. Overall, the 
positive effect of increasing transit accessibility in areas with low levels of transit accessi-
bility may be capturing the complementary role of ride-sourcing and DRS services in pro-
viding first- and last-mile connectivity. On the other hand, the ceiling and overdose effects 
suggest that the complementary role of shared mobility services may diminish in areas 
with great transit accessibility. As can be seen, the treatment of systematic heterogeneity 
enabled richer insights into the complex mechanisms through which transit accessibility 
interacts with the demand for shared mobility services.

Additionally, Figs. 5 and 6 reveal that relative to the demand for ride-sourcing services, 
the demand for DRS services appears more responsive to an increase in transit accessibil-
ity (reflected by the steeper curvature of transit regional centrality index in Fig. 6). This 
new finding concerning the positive but differential impacts of transit accessibility on ride-
sourcing and DRS services is not unexpected. Compared to ride-sourcing, DRS services 
offer lower privacy, and users of DRS services are more likely to undertake transit trips as 
well (Zhang and Zhang 2018). Thus, increasing transit accessibility is likely to generate 
more demand for DRS services. On the other hand, ride-sourcing offers greater privacy 
and may serve as an attractive alternative for users who otherwise would have taken the 
trip using a taxi or personal vehicle in the absence of ride-sourcing services. Past research 
has shown that trips undertaken with ride-sourcing services replaced taxi trips the most, 
with car owners most likely to have driven themselves if ride-sourcing services were absent 
(Rayle et al. 2016). On the contrary, non-car owners were most likely to substitute ride-
sourcing for transit services.

Collectively, compared to neighborhoods with high levels of transit accessibility, the 
above findings suggest that increasing transit accessibility in areas with low levels of 
accessibility could be more helpful in increasing the adoption of ride-sourcing and DRS 
services. Greater distances to transit stops are also positively correlated with the use of 
ride-sourcing and DRS services (Table  4). A one percent increase in the distance from 
the population centroid to the nearest transit stop is associated with a 0.158% and 0.141% 
increase in the demand for ride-sourcing and DRS services (Table 4). These findings sug-
gest a potential substitution effect of ride-sourcing and DRS services when transit services 
are inconvenient or inaccessible. In line with the present study, Ghaffar et al. (2020) found 
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a positive relationship between greater transit supply (number of bus stops) and ride-sourc-
ing demand.

Commuting patterns, active travel, and neighborhood crime

In terms of commuting and active travel patterns within a neighborhood, the results sug-
gest that neighborhoods where greater percentage of individuals used transit and walking 
for work commute had higher rates of ride-sourcing and dynamic ridesharing. A one per-
cent increase in the percentage of individuals who walked for work commute was associ-
ated with a 2.9% and 2.5% increase in the demand for ride-sourcing and DRS services 
(Table 4). In agreement with the literature (Zhang and Zhang 2018), similar positive asso-
ciations were observed for transit use and ridesharing demand. The strong effect sizes 
reflect the synergies between active travel and shared mobility systems and, when con-
sidered together with the transit accessibility-related findings discussed earlier, highlight 
the potential for integrating public transit and shared mobility services for providing more 
accessible and multimodal transportation. At the same time, these findings could be con-
cerning since ride-sourcing and DRS services could be replacing active travel trips. While 
clear complementary associations are observed, the data used in this study did not allow an 
examination of potential substitution effects of ride-sourcing/DRS services on active travel. 
Thus, future studies can benefit from identifying potential substitution effects. Neighbor-
hoods with greater average commute distances had on-average lower ride-sourcing and 
DRS rates (Table 4). A one-minute increase in average commute distance was associated 
with a 1.24% and 1.81% reduction in ride-sourcing and DRS demand. This finding is in 
agreement with Dean and Kockelman (2021), who reported a negative association between 
work commute distance and ridesharing. Compared to ride-sourcing and DRS services, 
carsharing could be a more attractive alternative for commute travel since most of the com-
mute occurs during peak/congested periods when ride-sourcing and DRS services are more 
expensive (Wali 2022). The relatively greater negative effect of commute distances on DRS 
services is intuitive since people are unlikely to use DRS services for work-related travel 
given the added uncertainty and travel times. Neighborhoods with a greater percentage of 
telecommuting workers exhibited greater ride-sourcing rates. A one percent increase in tel-
ecommuting was correlated with a 0.8% increase in ride-sourcing rate. Literature shows 
potential reductions in work-related trip making and VMT for telecommuters (Walls and 
Safirova 2004), and they may not feel the need to privately own vehicles. With an induced 
travel effect related to non-work or leisure travel (Kim et al. 2015), telecommuters may rely 
more on shared mobility services.

Related to the effects of crime, neighborhoods with greater assault offenses had a higher 
demand for ride-sourcing and DRS services. A possible reason for this finding is that indi-
viduals (especially those with no private vehicles) may consider shared mobility services to 
be safer compared to active travel or transit modes in neighborhoods with high crime rates 
(Ghaffar et al. 2020). On the contrary, the results show a lower demand for ride-sourcing and 
DRS services in neighborhoods with greater drugs and narcotics-related offenses (Table 3). 
This finding could be reflecting the negative effect of perceived safety risk (in terms of higher 
frequencies of violent/unwanted interactions) in ridesharing vehicles in neighborhoods with 
greater narcotics and drug use (Roughton 2020). Further research is needed on the associa-
tions between different types of assault offenses and the demand for shared mobility services. 
For example, there is a common feeling that on-demand mobility services are unsafe, espe-
cially for women. With several accidents reported on media, individuals have grown more 
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wary about safety of on-demand mobility services that are perceived as less safe than other 
on-demand mobility options that are better regulated (e.g., taxi).

Vehicle ownership and sociodemographic factors

Previous studies have shown a positive relationship between zero-vehicle households and 
demand for ride-sourcing (Ghaffar et al. 2020) or DRS services (Dean and Kockelman 2021). 
With an effective degree of freedom of 5.06 (chi-square value of 8.27) (Table 4), we found 
a non-linear interaction between zero-vehicle households and DRS demand (Fig.  6). An 
increase in zero-vehicle households in a neighborhood is correlated with a greater demand 
for ridesharing services. However, ceiling and overdose effects are observed for an increase 
in no-vehicle households beyond 25% (Fig.  6). The ceiling/overdose impacts of no-vehicle 
households may be tracing income effects—neighborhoods with a larger proportion of house-
holds having no vehicle may be comprised of low-income individuals who are relatively less 
willing to use ridesharing services (Bansal et al. 2020). Neighborhoods with a greater propor-
tion of younger individuals have a higher demand for ride-sourcing/DRS services, whereas 
the reverse is true for neighborhoods with a greater proportion of less-educated individuals. 
Neighborhoods with a higher percentage of individuals with a bachelor’s degree have lower 
rates of DRS. We note that this ACS-derived variable does not capture university students and 
only considers residents aged 25 or more. More educated individuals and/or university popu-
lations are reported elsewhere to have a greater willingness to use ridesharing services (Dias 
et al. 2017). In terms of race, neighborhoods with a greater proportion of Black individuals 
had lower demand for ride-sourcing services. Previous studies have also reported a negative 
association between race-ethnicity composition (including Black individuals) and demand for 
ride hailing services (Marquet 2020). Regarding temporal factors, weekday PM and week-
end noon periods were associated with a greater demand for ride-sourcing and DRS services, 
respectively (Table  4). These findings are in agreement with previous studies suggesting a 
positive correlation between weekdays and ride hailing demand (Marquet 2020), and between 
weekends and ridesharing demand (Dean and Kockelman 2021). The positive association 
between weekends and DRS services demand could be due to a higher propensity of social-
recreational trip-making on weekends, but also due to the decline in transit coverage on week-
ends. Likewise, due to a greater demand and lower supply, surge pricing is usually activated 
on weekends making DRS services more attractive when the fares are higher (Brown 2020).

Limitations and future work

This study has several limitations. Consistent with other studies, a limited sample of ride-
sourcing and ridesharing trips was used containing over 33 million trips and spanning over 
six months (November 2018–April 2019). The authors could not analyze the entire data for 
computational reasons. The six-month study period covers Chicago’s cold weather, and our 
results may not be generalized to other times of the year—especially when the demand for 
on-demand mobility services could be lower during summers (Gerte et al. 2018). We tested 
and controlled for potential time-of-day effects on ride-sourcing and DRS demand, and the 
stochastic spatial dependence between the two. As discussed, the strong spatial dependence 
observed between the two mobility services was robust to potential time-of-day impacts 
on the joint stochastic dependence of ride-sourcing and DRS services. Future studies can 
expand these results by separately analyzing the spatial dependency between ride-sourcing 
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and DRS services across different periods. Another limitation is that aggregate census-tract 
level demand for ride-sourcing and ridesharing services was analyzed. Common to most 
of the existing studies, this was due to the privacy filters put in place by the City of Chi-
cago to protect PII data. Aggregate data mask individual-level heterogeneity and future 
studies can benefit from analyzing individual-level ride-sourcing and dynamic ridesharing 
data. However, the methodologically rigorous framework presented in the study captured 
the random, systematic, and spatial heterogeneity to the extent made possible by the use of 
aggregate data. Revealed preference-based survey data can enable individual-level analy-
ses of ride-sourcing/carsharing use but are usually limited by sample sizes and may suffer 
from recall bias. In addition, due to the lack of large-scale real-world trip data, they do 
not provide insights into the aggregate spatial distribution of ride-sourcing and rideshar-
ing services. The study provided new insights into the (non-linear) complementary and 
substitutive effects of the built environment, transit accessibility, and active travel. There 
is a need to examine the potential complementary and substitutive effects at the individual 
level (such as those available in Household Travel Surveys). Also, while built environ-
ment and active travel were both associated with the demand for ride-sourcing and DRS 
services, the impacts of the potential interactions between active travel and built environ-
ment were unexplored. As part of ongoing work, the authors are examining such complex 
effects using individual-level data. The different data streams utilized in this study do not 
have an exact temporal alignment. However, compared to the existing studies on this topic, 
the present study captures an up-to-date profile of neighborhood-built environment in Chi-
cago by harnessing the most recent U.S. EPA Smart Location Database. Finally, despite the 
methodologically rigorous framework, causal inferences must be avoided given the cross-
sectional nature of the study.

Closing remarks

This study contributes by presenting a joint analysis of the demand for ride-sourcing and 
dynamic ridesharing services and examined how this demand varies across neighborhood-
built environments, transit accessibility, behavioral, and sociodemographic factors. Meth-
odologically, a novel and comprehensive generalized geo-additive Markov Random Field-
based joint heterogeneous copula framework was presented—simultaneously capturing 
different layers of random (unobserved), systematic (observed), and spatial heterogeneity. 
To achieve the objectives, unique large-scale geo-coded data containing millions of ride-
sourcing and DRS trips were used. The travel behavior data were spatially joined with up-
to-date neighborhood-level data on the built environment, transit accessibility and crime, 
active travel, and sociodemographic factors.

The analysis enhances our understanding of the demand for ride-sourcing and DRS 
services in conceptual and methodological ways. Key aspects of the built environ-
ment related to urban design (pedestrian-oriented infrastructure), density, and land-use 
diversity were positively correlated with the demand for ride-sourcing and DRS ser-
vices—suggesting that sustainable and shared mobility-related goals can be achieved by 
continuing to invest in compact and more walkable neighborhoods. While pedestrian-
oriented connectivity was positively correlated with ride-sourcing and DRS demand, 
the demand for DRS services was more responsive to improvements in pedestrian-ori-
ented infrastructure. Neighborhoods with greater transit accessibility (compared to the 
metro region) had a higher demand for ride-sourcing and dynamic ridesharing services. 
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Additionally, relative to the demand for ride-sourcing services, the demand for DRS ser-
vices appeared more responsive to an increase in transit accessibility. A potential sub-
stitutive effect of accessibility to transit stops on ride-sourcing and DRS services was 
found. Related to travel behavior, active commute travel (transit use, walking) and tel-
ecommuting were strongly and positively correlated with higher ride-sourcing and DRS 
demand—highlighting the synergies between active travel and shared mobility systems. 
Contrasting associations of assault and drug/narcotics-related offenses with ride-sourc-
ing and DRS demand were quantified. Collectively, the findings suggest that compact 
and walkable environments with greater provision of pedestrian-oriented infrastructure 
can be useful to support sustainable development goals. When taken together with the 
generally positive role of transit accessibility, the positive links between active travel 
and shared mobility services highlight the potential for integrating public transit and on-
demand mobility services for providing accessible and multimodal travel options.

New methodological insights were also obtained enhancing our understanding of the 
complex interactions between ride-sourcing and DRS services. First, the demand for 
ride-sourcing and DRS services was strongly correlated based on latent factors jointly 
influencing the neighborhood-level demand for ride-sourcing and DRS services. Cap-
tured by a Frank copula structure, the joint stochastic dependence was found to be 
non-linear. Second, systematic and spatial heterogeneity was observed in the stochas-
tic dependence between ride-sourcing and DRS demand as well as the factors influ-
encing the demand for the two mobility options. Besides latent factors, the stochastic 
dependence between ride-sourcing and DRS services was relatively stronger during the 
weekend PM period. In addition, characterized by a Markov Random Field structure, 
structured spatial heterogeneity in the stochastic dependence between the two mobility 
options was observed. With spillover effects, the joint dependence between ride-sourc-
ing and DRS demand was strongest in the downtown Chicago area and weakest in the 
outskirts (especially around the airports). Behaviorally, this highlights the strong link 
between density/urban compactness and mobility-on-demand services. The spatial spill-
over effect was robust to the effects of time-of-day on the joint stochastic dependence of 
ride-sourcing and DRS services. Finally, systematic heterogeneity was observed in the 
effects of the built environment, vehicle ownership, and transit accessibility exhibiting 
ceiling and overdose effects. Complementary and substitutive effects of transit accessi-
bility were found. Analysis of ceiling and overdose effects showed that increasing tran-
sit accessibility in areas with low levels of accessibility (compared to neighborhoods 
with high levels of transit) could be more helpful in increasing the adoption of ride-
sourcing and DRS services. The joint analysis of the two mobility-on-demand services 
enabled the quantification of the differential impacts of built environment and transit 
accessibility on the demand for ride-sourcing and DRS services. Overall, the conceptual 
and methodological findings presented in this paper can help guide the development of 
policy interventions and investment decisions to capitalize on the benefits of on-demand 
mobility systems.
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