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Abstract

Freight forecasting models have been significantly improved in recent years, especially
in the field of goods vehicle behavior modeling. On the other hand, the improvements to
commodity flow modeling, which provide inputs for goods vehicle simulations, were lim-
ited. Contributing to this component in urban freight modeling systems, we propose an
error component logit mixture model for matching a receiver to a supplier that considers
two-layers in supplier selection: distribution channels and specific suppliers. The distribu-
tion channel is an important element in freight modeling, as the type of distribution chan-
nel is relevant to various aspects of shipments and vehicle trips. The model is estimated
using the data from the Tokyo Metropolitan Freight Survey. We demonstrate how typical
establishment survey data (i.e. establishment and outbound shipment records) can be used
to develop the model. The model captures the correlation structure of potential suppliers
defined by business function and provides insights on the differences in the supplier choice
by distribution channel. The reproducibility tests confirm the validity of the proposed
approach, which is currently integrated into a metropolitan-scale agent-based freight mod-
eling system, for practical use.
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Introduction

Urban freight has become a globally important policy subject. Efficient operations of urban
freight systems are critical in the metropolitan regions that become larger and denser. Fur-
thermore, the evolution of logistics and supply chain practices has rapidly transformed the
way freight operations take place. In this context, it is of utmost importance to develop a
comprehensive and flexible urban freight simulator that can analyze the impacts of relevant
policies such as land use changes, vehicle restrictions, the use of urban freight consoli-
dation centers, the designation of loading/unloading spaces, crowdsourced deliveries, and
other “smart” measures for freight operations.

Several urban freight modeling systems have been proposed in the literature (e.g.
Boerkamps et al. 2000; Fischer et al. 2005; Wisetjindawat et al. 2005, 2006; Hunt and Ste-
fan 2007; Nuzzolo and Comi 2014; Moeckel and Donnelly 2016; Alho et al. 2017) and,
overall, freight modeling has been advanced significantly during the last few decades. How-
ever, the models for the commodity flows within a metropolitan area are underdeveloped
(Comi et al. 2012). This is attributable to the heterogeneity of urban freight agents and
the commodities handled as well as the difficulty of obtaining data, particularly disaggre-
gate data. For urban freight, it is especially important to consider the nuances of sourcing
behaviors by receiver type, such as offices, stores, restaurants, logistics facilities, factories,
cultural and educational facilities, and residential facilities, which are relevant to commod-
ity flows. Due to the data limitations, it is quite common to use aggregate economic statis-
tics such as input—output tables to estimate commodity flows in freight traffic simulations
(Ben-Akiva and de Jong 2013). On the other hand, a lot of efforts and resources were spent
on collecting disaggregate data until this day. Several metropolitan-scale establishment sur-
veys, which are also called commodity flow surveys, were conducted in recent years or are
currently ongoing for informing urban freight models (Hunt et al. 2006; Alho and e Silva
2015; Toilier et al. 2016; Cheah et al. 2017; Oka et al. 2018). Exploring urban freight mod-
eling approaches that make full use of those survey data is one of the important research
topics.

One of the research gaps in urban commodity flow modeling is the consideration of
distribution channels. Without the consideration of distribution channels, the model, for
example, cannot differentiate direct and indirect shipments that go through logistics facili-
ties, i.e. warehouses, distribution centers, truck terminals, and other intermediate facilities.
While many freight models that deal with commodity flows were proposed in the past,
the use of the facilities is considered mostly in the context of inter-city commodity flows
(Huber et al. 2015); only a small number of the models explicitly consider the use of logis-
tics facilities in the urban commodity flow estimation. Although an entire supply chain
does not fit within a metropolitan region in many cases, the spatial distribution of urban
logistics facilities is suspected to influence freight traffic flows (Dablanc and Rakotonarivo
2010; Sakai et al. 2015a). Furthermore, without considering the distribution channels, one
cannot analyze the impact of the changes in urban structure. If some factories that have
mainly been serving local markets move out, the local demands should be served by other
suppliers, which could be other factories in the area or the logistics facilities that receive
goods from outside. This paper aims to fill this research gap by proposing and testing a
new approach that reproduces aggregated logistics chain structures within a metropolitan
area through the estimation of the commodity flows. Here, we define a “logistics chain” as
the connection between the locations of production and consumption, consisting of means
of transportation, mainly goods vehicles in urban freight, and the intermediate locations
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that goods go through. Our approach is particularly appealing as it requires only typical
establishment survey data, i.e. establishment and outbound shipment records.

For the model specification, we assume that commodity flows are demand-driven; a
receiver, directly or indirectly through the cost minimization principle, determines a distri-
bution channel (defined by the supplier function type, i.e. factory, logistics facility, office/
store), and a supplier which has a specific location. While this is a strong assumption, it
makes a simple and robust model specification possible. We present a framework for the
supplier choice model and develop an error components logit mixture model that considers
the complex correlation structure among alternative suppliers. We use the data from the
Tokyo Metropolitan Freight Survey (TMFES) conducted in 2013 to estimate the model. The
focus of this paper is the modeling approach, but the estimated parameters in the models
using Tokyo’s data also provide interesting insights on the supplier choice mechanism. The
proposed framework is integrated into a comprehensive metropolitan-scale agent-based
modeling system, named “SimMobility” (Adnan et al. 2016). The SimMobility accommo-
dates various decisions and behavioral aspects related to urban freight traffic, ranging from
those based on long-term “strategic” visions, e.g. business characteristics and overnight
parking locations for goods vehicles, to those relevant to daily logistics operations, e.g.
vehicle touring, route choice, and delivery/pick-up parking (Alho et al. 2017). The pro-
posed approach is also applicable to the commodity flow estimation in other existing urban
freight modeling systems.

The rest of the paper consists of the following: in second section, the recent develop-
ments of freight models are reviewed, focusing on disaggregate commodity flow estima-
tions and the consideration of distribution channels in the models; in third section, a pro-
posed model structure and the calibration data are presented; in fourth section, the model
specifications and the estimation process are detailed; in fifth section, the estimated models
and the elasticity effects are discussed; in sixth section, tests for the model reproducibility
are presented; and finally, in seventh section, the conclusions of this research are provided.

Literature review

In the last two decades, a number of freight forecasting models were proposed, considering
the behaviors of individual agents and/or the decision-making processes in logistics opera-
tions (Chow et al. 2010; Comi et al. 2012; De Jong et al. 2013). These models are used for
testing various logistics practices and policies, for which traditional aggregate-level freight
models are not suited. Chow et al. (2010) provide a review of the two emerging groups
of freight forecast models, “logistics models” and “vehicle touring models”, and De Jong
et al. (2013) summarize the recent model development (2004 and after) mainly focusing on
European models. There are various behavioral aspects that are considered in freight mod-
els, such as freight/trip production and consumption, commodity flow, mode choice, ship-
ment frequency and size, vehicle scheduling and routing, and vehicle parking. The com-
modity flow estimation, the focus of this research, is one of the most essential components
in a forecast model regardless of its scale, i.e. regional, national or urban.

A large number of approaches for the commodity flow estimation were proposed in the
past, most of which are based on aggregate data. As disaggregate (i.e. establishment level)
commodity flow data are often not available, the zone-to-zone level commodity flow esti-
mation is still widely applied. Even recently proposed urban freight modelling systems,
such as Nuzzolo and Comi (2014) and Moeckel and Donnelly (2016), treat commodity
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flows at an aggregate level. However, the aggregate models are passible of aggregation
biases. Furthermore, the aggregate commodity flows have limitations for their use in
a microsimulation of logistics behaviors (Ben-Akiva and de Jong 2013). Ben-Akiva and
de Jong propose an Aggregate-Disaggregate-Aggregate (ADA) freight model system that
specifies the procedure to disaggregate zone-to-zone flows to establishment-to-establish-
ment flows. The ADA freight model system was implemented in the Swedish national
freight transport model (SAMGODS) (Abate et al. 2018). Zhao et al. (2015) propose
another approach to disaggregate zone-to-zone flows to firm group-to-firm group flows
through a linear programing (LP) problem. They solve the market system optimum of com-
modity flows with the constraints on zone-to-zone flows, obtained from Freight Analysis
Framework Version 3 (FAF3) data, for California, U.S.

Regarding fully disaggregate approaches, Boerkamps et al. (2000) propose the concep-
tual structure of Goodtrip model, one of the earliest urban freight microsimulation mode-
ling systems. In the Goodtrip model, the commodity flows are estimated at an actor-to-actor
level. Activity type (such as “consumers, supermarkets, stores, offices, distribution centers
of retailers, and producers”) is determined for taking the differences in flows by shipper
and receiver types (type of “linkage”) into account. However, the choice of the linkage
type is not considered and the use of intermediate facilities is not modelled. An urban
freight microsimulation model proposed by Wisetjindawat et al. (2005) includes “purchas-
ing decision module” that consists of three components: distribution channel choice, (sup-
plier) location choice, and supplier choice, all proposed to be multinomial logit models,
for estimating commodity flows. In “distribution channel choice” model, the distribution
channel is defined by supplier industry type (e.g. warehousing industry and manufactures),
but not by function type (e.g. warehouse and factory). Although the work of Wisetjindawat
et al. is pioneering, they do not fully describe the model estimation method and the impli-
cations from the estimation. Roorda et al. (2010) propose another conceptual framework
for an agent-based logistics microsimulation. The proposed “commodity contract formula-
tion” process is corresponding to the commodity flow estimation. In the model, a customer
chooses a supplier from a choice set that can fulfill the requirements on order size and
frequency. Similarly, Liedtke (2009) proposes “sourcing module” in which suppliers are
chosen based on production size, commodity usefulness, and distance, for INTERLOG, a
national level freight simulator. Both Roorda et al. and Liedtke do not explicitly consider
distribution channels and logistics chain structures. There are also a couple of novel prac-
tices of the commodity flow estimation in the disaggregate freight modeling, taking deter-
ministic modeling approaches. Gliebe et al. (2015) propose the use of a Bayesian game-
based approach for connecting buyers and sellers. The proposed procurement market game
(PMG) buyer—seller matching model was developed as a part of the meso-scale freight
forecasting model for the Chicago Region (RSG 2015). Furthermore, Livshits et al. (2017)
propose an agent-based computational economics (ACE) approach for the market-clearing
process that matches buyers and suppliers in an agent-based behavioral freight model for
the Arizona Sun Corridor Megaregion.

Despite the recent developments of disaggregate models for the commodity flow esti-
mation, there is room for improving the consideration of the choice of distribution chan-
nel, particularly for urban freight modeling systems. In the existing urban freight mode-
ling systems, the function type of an agent is underrepresented and often associated with
industry type. However, it is fair to hypothesize that factories, warehouses and offices have
quite different behavioral characteristics even if all those belong to manufacturing indus-
try. Consideration of logistics facilities (such as warehouses and distribution centers) is
especially important in simulating commodity flows. Huber et al. (2015) review more than
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a hundred freight models and find that only a small number of models consider the use of
logistics facilities. Proposing one of such models, Davydenko and Tavasszy (2013) apply
a unique approach to address the use of intermediate facilities, by extending the SMILE
model lineage. The SMILE model is an aggregate, national level freight model developed
by Tavasszy et al. (1998). The proposed logistics chain model, which has a multinomial
logit structure, chooses intermediate locations for Production-Consumption (P-C) flows,
and estimates commodity flows (i.e. shipment ODs). The above-mentioned model of RSG
(2015) for the Chicago Region also considers the decisions of indirect/direct shipments
(in their “distribution channel model”) and, for an indirect shipment, a local warehouse in
the study area is assigned as the first or last transfer stop; however, the warehouse location
is simply based on the random selection. The similar structure with the RSG’s distribu-
tion channel model is proposed for the Arizona Sun Corridor Megaregion, although the
model was not estimated due to the data limitation (Livshits et al. 2017). Focusing on the
logistics chains that go through intermediate facilities within a metropolitan area, Sakai
et al. (2017) propose a logistics chain model, which pairs freight demand generating loca-
tions with logistics facilities, which become the origins or destinations of shipments. They
estimate the models by commodity type and the type of demand locations. The estimated
models are used for estimating indirect commodity flows. Alternatively, rule-based and/or
optimization methods that consider the use of warehouses can be applied to estimate com-
modity flows (e.g. Friedrich 2010). However, the required data for such models is not com-
patible with the extension of the approach to replicate the entire urban commodity flows in
a metropolitan area.

In this paper, we improve and expand the framework of Wisetjindawat et al. (2005) and
Sakai et al. (2017) for the estimation of the commodity flows within a metropolitan area,
covering various distribution channel types. We contribute to the state-of-the-art urban
freight models by proposing a method to model the multi-level decision of supplier func-
tion choice (i.e. distribution channel) and supplier choice. The model is particularly inno-
vative by considering the distribution channels based on business function for the urban
commodity distribution and aggregately reproducing the parts of logistics chains that are
within the study area. It should be noted that our approach does not replicate the entire
logistics chains that go beyond the scale of a metropolitan area. In fact, the data for the
entire logistics chains are extremely difficult to obtain through a survey. However, the pro-
posed approach in this paper just requires the shipment and supplier records, both of which
are usually covered in a standard establishment survey for urban freight.

Model structure and calibration data
Analytical settings

In this paper, we define a shipment as a quantity of goods shipped together from one
location to another without transshipment. A shipment based on this definition is also
called a “leg”. Logistics chains that connect producers and consumers consist of legs
as shown in an illustrative logistics chain (Fig. 1). We use “daily attraction” (DA) as
the unit of the data points for the analysis. A DA is defined as a daily freight attraction
associated with a receiver facility that has specific function and location, which should
be supplied by one of potential suppliers. In the simulation context, DAs, or freight
attraction at another time scale, should be estimated by a freight attraction model. We
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Fig. 1 Illustrative logistics chain consisting of two legs

consider five receiver function types: office/store/restaurant (OSRR), logistics facility
(LFR), factory (FCR), cultural and educational facility (CEFR), and residential facility
(RFR). The superscript “R” indicates that those are receiver establishments. We define
a supplier as an establishment, categorized into one of three function types: office/store
(0SS, logistics facility (LFS), or factory (FCS). As with receiver functions, the super-
script “S” indicates that those are suppliers. Each supplier is associated with a geo-
graphical location and every supplier handling a required commodity type is a potential
origin of a shipment for a receiver demanding goods.

The aim of the proposed model is to select a supplier, which is associated with one
of three function types, for a DA at a receiver, who also has its own function type, for
estimating intra-metropolitan commodity flows. In other words, the model estimates the
shipment OD (or commodity flows) along with the “leg type”, which is defined by the
functions of the upper and lower ends of the leg. Given the receiver function type, the
“leg type” is equivalent to “distribution channel” (Boerkamps et al. 2000; Wisetjindawat
et al. 2005). Leg type is important to replicate freight traffic in an urban freight simula-
tion model. For example, shipment size, vehicle type used, and delivery tour pattern, are
all tied to the leg type; a shipment from a factory to a logistics facility and that from a
logistics facility to a store can be different in these aspects and, if any, such differences
must be considered.

The model is designed so that a receiver, to whom a DA is associated, selects a sup-
plier. It does not necessarily reflect the reality in which the origin of the shipment is
determined in the course of the complex interactions between both receivers and suppli-
ers. However, this is a reasonable premise applied in previous freight modeling efforts
(Wisetjindawat et al. 2005, 2006; Liedtke 2009; Roorda et al. 2010). This is further
justified as, in general, the need for goods movement is associated with the receiver (i.e.
demand) side and the receiver directly/indirectly has an influence on the location of the
shipment origin through the effort of minimizing the total cost.

The connections between the receivers and suppliers established by the model are to
be used for generating shipments. A carrier operation model, which is included in Sim-
Mobility (Alho et al. 2017) (and, also, in other disaggregate urban freight simulators),
takes these shipments as inputs and generates goods vehicle tours and trips, which are,
in turn, the inputs for a traffic simulation. The type of the distribution channel can be
considered at each of the steps that follows the commodity flow estimation. Regard-
ing the framework of the SimMobility, the feedback structure is considered so that
the outputs of the traffic simulation, for example travel time, are returned to the other
“upstream” simulation components that include the commodity flow estimation.
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Data

We use the data of the 2013 TMFS. The TMFS is an urban freight establishment survey
conducted by the Transport Planning Commission of the Tokyo Metropolitan Region
(TPCTMR) for the Tokyo Metropolitan Area (TMA), currently the most populous met-
ropolitan area in the world. An area of 23 km? was covered and the responses were
collected from 43,131 establishments (a response rate of 31.6%) in various industry sec-
tors such as manufacturing, wholesale, transportation, service, retail and restaurant. The
TMES collected both establishment information and shipment records through a paper-
based survey. The establishment information includes location (address), industry and
function types, commodity types handled, employment size, floor area, and the year of
establishment. The shipment records were collected for a typical day. Commodity type,
weight, and the information of origins and destinations including their locations at the
municipality level (315 municipalities in the survey area) and function types are cov-
ered. Each data point (i.e. establishment) has an expansion factor, which is calculated
by the TPCTMR based on industry type, employment size, and geographic location, for
taking extraction rates into account. The average expansion factor is 4.61. We use these
expansion factors to reproduce the population of supplier establishments, which are
considered as alternatives in the choice model, and also to expand the shipment records
for parameter estimations. It should be noted that, in the shipment records in the TMFS
data, “offices and stores” with distribution functions, such as those of wholesalers, are
labeled as “offices and stores”, as with those without distribution functions.

We estimate the models for nine commodity types shown in Table 1. This paper will
focus the discussion on one commodity type (“household/light manufacturing goods™)
for demonstrating the modeling approach and interpretation. It covers sundry items,
clothing and textiles, products of paper, rubber, wood, and furniture. The numbers of the
associated shipments and supplier establishments are summarized in Table 2. It should
be noted that these shipments do not include external shipments, i.e. the shipments sent
to or received from outside of the study area. As indicated by Sakai et al. (2017), the
supplier choice mechanisms for intra-metropolitan and inter-regional shipments are
quite different. For considering the external shipments in a simulation, one must define
the external productions and consumptions and connect these external locations with
the establishments in the study area using another set of models, which can be estimated
with the similar framework proposed in this paper. Most of the urban freight movements

Table 1 Commodity type
categories

Z
e

Commodity type

Agricultural products

Food products

Household/light manufacturing

Wood and paper products

Minerals, ore, stone, cement, ceramics or glass
Metals or articles of metal

Machinery, appliances, and mechanical parts
Chemicals, rubber or plastics

O 0 N N L AW N~

Mixed goods and parcel
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in the TMA are by goods vehicles; therefore, the models in the present research are for
the shipments transported by goods vehicles.

Model specification and estimation
Specification

The proposed structure of the supplier choice consists of two levels and we apply the logit
mixture model with error components (Fig. 2) that allows us to capture the complex cor-
relation structure among alternatives. The upper and lower levels are defined by supplier
function types and individual suppliers, respectively. This structure is selected as the sup-
pliers within the same function category (i.e. 0SS, LFS or FCS) are expected to correlate
with each other. Also, the cross-nested structure is considered as the suppliers from two
different function categories may correlate. For example, in some case, a commodity is
highly likely supplied to a receiver by either of a OS® or a LFS but not by a FCS. In Fig. 2,
“downstream” (DWS) is the nest that includes both OSS and LF® and “upstream” (UPS) is
that including LFS and FCS. This arrangement mimics the three-level nested logit model in
which, the choice from UPS and DWS is at the first level, the one from OSS, LF® and FCS
is at the second level, and the individual supplier choice is at the third level. The proposed
explanatory variables for the utility of a supplier for a receiver (Table 3) are the travel time
between a supplier and a receiver, the freight production (i.e. the total weight of outbound
shipments) of a supplier, and the weight of the shipment (i.e. DA). We decided to use travel
time, not travel distance, because the travel time can capture traffic conditions, although
these two variables are highly correlated to each other. Overall, we assume a supplier that
is located closer and has a larger capacity than others should have a higher potential to be
selected by a receiver. In addition, depending on the size of demand, a supplier with a spe-
cific function type would be more likely to be chosen. In general, a larger demand is more
likely to be catered by a logistics facility or a factory than an office/store.

Office/Store I I Logistics facility | | Downstream | | Factory | I Upstream

Suppliers Suppliers Suppliers
(office/store (OSS)) (logistics facility (LFS)) (factory (FCS))

Fig.2 Nesting structure for supplier choice
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Table 3 Explanatory variables

Variable Description

Travel time Estimated travel time for the shortest path. Daily average speeds, which are estimated
based on traffic counts conducted in 2010 and the Bureau of Public Roads (BPR)
formula, are used for computing travel time for each link

Freight production ~ Total weight of the outbound shipments of a supplier per day obtained from the 2013
TMFS

Weight Weight of the shipment of a typical day, i.e. daily attraction (DA), obtained from the
2013 TMFS

Each model is specific to a combination of receiver function rf (OSR, LF, FC, CEF,
or RF) and commodity type c¢. For the simplicity of notification, rf and ¢ are omitted in
the following model specification.

The utility of a supplier with supplier function sf (sf = 1: office/store; sf =2: logistics
facility; sf = 3: factory), Y, for a daily attraction DA is:

Upasy = Vpass +Mpass + €pasy (1)
where Vp, gs: Deterministic component of the utility. Mp, ¢;: Random component that
captures the correlation structure among alternatives. £y, gs: Identically and independently
Gumbel distributed random component (normalized: scale =1, location=0).

The deterministic component is given by the following equation:

— oS LF FC
Vipuss = (Bong - Dumpggy + B - Dumypgr + B - Dumpegy ) - INTIME g

oS LF FC
+ ( pp - Dumpgey + Brp - Dumypgyr + Brp 'DumFCS.,.f) < InFPgy

+ < éfnst + ﬂvaiigm - InWEIGH TDA) - Dump g

+ <ﬁgfnsz + ﬂvFvSigm - InWEIGH TDA) - Dumpc gy

2

where InTIME,, gs: The natural log of travel time between supplier S¥ and daily attrac-

tion DA. [nFPg,: The natural log of freight production (i.e. total weight of outbound ship-

ments) by supplier S¥. InWEIGHT,,: The natural log of the weight of daily attraction DA.

Dum g Dummy variable. 1 if sf = 1(0S); O otherwise. Dum, .¢,: Dummy variable. 1 if

sf = 2 (LF); 0 otherwise. Dumyg;: Dummy variable. 1 if sf = 3 (FC); 0 otherwise. 95,
b B BO5. BLE LS B BT B, Parameters o be estimated.

The continuous variables are log-transformed as it significantly improves the signifi-
cance of the variables and the fit of the models. We do not directly include the costs that
are incurred upon the formulation of the receiver-supplier relationship as the explana-
tory variables. However, the deterministic component of the utility shown above could
be regarded as consisting of the terms that represent transportation cost, which depends
on the “impedance” between a supplier and a receiver, the scale of a supplier, and the
relative purchasing price of commodity. We assume the followings: (i) the average trans-
portation cost increases monotonically with travel time and the weight of goods; (ii)
the scale is represented by freight production (i.e. total weight of outbound shipments);
(iii) for a certain commodity type, the average price of the commodity monotonically
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increases with the weight of goods and differs by the function type of suppliers. For
example, (2) can be rewritten for LFS as:

Vpasre =In (TIMEDA,S\,ZZ Piive - WEIGHT,, e ) + B InFPg +In ( - WEIGHT,, "o ) 3)

Const
where

LF _ pLF + LF
Weight — P Weight, Weight,

and;

ﬂC{)nst In (ﬁC()mt)

The terms in (3) represent the effects of transportation cost, the scale of a supplier, and

the relative purchasing price (against OS®), respectively. Note that ﬂWetgh . ﬁWezgh e

the coefficients relevant to the interaction and main effects of the weight of DA, cannot be
estimated separately. The heterogeneity within the suppliers that are the same in terms of
the three explanatory variables (Table 3) is captured as a part of the random component.
The identification of the parameters to be estimated within Mp, v is required to obtain
definite estimations. We followed the procedure proposed by Walker et al. (2007), ensuring
that the Order Condition, the Rank Condition, and the Equality Condition are satisfied, and

determined the two nests, FC and UPS, for which the covariance, 67€ and oU*S, are fixed
as 0. Thus, M, g is given by the following equation:
nPWS if of =
o9 r] DA S+o s B sf =1
MDA,S‘f — O' nLF +o DWS | DWS lfo 2 (4)
0 if sf =3

where '71) e ’71) A0 nD WS: Random terms following the normal distribution with zero mean and
one standard dev1at10n 695, 6L, PWS: Parameters to be estimated.

Given some values for nD " nk A " and n,[)’XVS , the conditional probability for $¥’ to be cho-
sen by a receiver for DA is:

LF  DWS
Pou (ST sty ) =
05 yLE ,DWS) 0S _LF  _DWS
exp (Vipassr + Mpagor (55, 15150 %) Z exp (Vpass +Mpasy (M3 oy px ) )
S
(5)

Unconditional probability is given by the following equation, using the multivariate
density function of #s, f():

A7) = [ oS ) s 0
r’DA D

0S
rIDA

(6)
Estimation
The computational burden becomes an issue in estimating an error components logit mix-

ture model with a large choice set. For example, we consider 13,152 potential suppliers that
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handle household/light manufacturing goods as the alternatives. Different approaches to
select the choice set have been tested and discussed in the past research (Lemp and Kockel-
man 2012; Guevara and Ben-Akiva 2013). Guevara and Ben-Akiva compare three methods
for sampling alternatives, i.e. population shares method, 1_0 method and Naive method,
and show that Naive method, i.e. the random selection from all of the potential alternatives,
is suitable and practical for logit mixture models. Furthermore, the draws of the random
terms, #s, must be specified. After testing various combinations of choice set size and the
size of Halton draws, we decided to use 50 Naive choices of alternatives with 1000 Halton
draws as the estimated parameters are stable under such setting. We use PythonBiogeme
(Bierlaire 2016) for the model estimation based on the maximum simulated likelihood
method.

Estimation results and discussion
Models for household/light manufacturing goods

Table 4 shows the estimation results of five models for different receiver types. The
adjusted Rho-square is the highest for CEFR, 0.651, and the lowest for LFR, 0.225. Most
explanatory variables are significant for a 95% confidence interval, with the exception of
Dumg in FCR model, In FP; . in CEF® model, and Dum,  and In Weight X Dumg in RF®
model. We first focus on the covariance parameters, as we will later discuss the effects of
variables based on elasticities.

Compared with the covariance parameters in the other models, Sigmapy in the models
for CEFR and RFR are very high, 6.03 and 14.3, respectively. This indicates there are two
uncorrelated categories identified for supplier function, i.e. non-factory and factory, while
the suppliers in OSS and LFS (i.e. within non-factory category) are highly correlated. What
is common between the two receiver types is that they are end-consumers of goods, not
intermediate facilities or producers. On the other hand, the models for LFR and FCR shows
the significant Sigmagg and Sigmay; g (2.46 and 1.13, and 0.83 and 0.91, respectively) but
not Sigmapys. This indicates that the correlations exist mainly within each supplier func-
tion category for these facility groups. Lastly, all three covariance parameters are signifi-
cant in the model for OSRR, corroborating the complex correlation structure within and
across supplier function types. The estimated models for other commodity types are shown
in the “Appendix”.

Elasticities

To compare the magnitude of the effects of the variables, we compute elasticity effects for
the pairs of receiver and supplier function types. The average elasticities are defined by the
following equations:

For travel time/freight production:

[7) N
11 DA,S" /p

Ngsr Npa T aXDA’sz/

DA.S*
(7

Xpa,s'

For weight:
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0( X PDA,S“)/ P
L Z Zs DA,S’ ®)

Npa 6% axDA/XDA

where P, gr: Probability for a supplier S* to be selected for a daily attraction DA. xp, A5
Xpa: An explanatory variable (Travel Time, Freight Production, or Weight) without log
transformation. Ng«: Number of alternatives (potential suppliers). Ny ,: Number of obser-
vations (i.e. DA).

We compute the elasticities with respect to travel time/freight production for all receiver
and supplier pairs and then calculate their average. As for weight, a DA specific variable,
we first compute the elasticities of the probability of selecting a supplier function group
for each DA and then calculate the average. For taking the error structures into account,
we use Monte Carlo method. The random values are generated for 795, n5f, 7510 and the
average elasticities (defined above) are computed 1,000 times. The means of the simulated
average elasticities are calculated.

Household/light manufacturing goods

The results are shown in Table 5. Travel time has a very strong effect on supplier choice,
regardless supplier—receiver function pair. Especially, the effect is strong for CEFR and
RFR, which indicates that suppliers that are closely located are highly likely to be selected
for the needs of end-consumers. On the other hand, the effects are relatively weak for LFR,
with the elasticities ranging between —1.47 and —1.10. The effect is the smallest when
the supplier is also a logistics facility (LFS), which is due to the fact that logistics facilities
often function as intermediate points for long logistics chains. Another interesting finding
is that, for FCR, the travel time from LFS is more important than from the other supplier
types (i.e. 0SS and FCS), indicating logistics facilities should be located close to factories
(FCR) for being selected as suppliers.

The scale of production is also a contributing factor to be selected as a supplier. Produc-
tion has no effect only for one receiver-supplier functions pair, CEF*-LF>. In general, the
elasticities associated with LFS are small. For the shipments from intermediate facilities,
the volume of goods handled has only limited effects.

Lastly, the weight of DA relates to the decisions on supplier function. As naturally
expected, a larger demand is less likely to be supplied by OSS. The choice of LFS or FCS
for a heavier demand depends on the receiver function; as for FCR and CEFR, a heavier

Table 5 Average elasticity effects of variables (household/light manufacturing goods)

Receiver Travel time Freight production Weight

Supplier

oss LFS FCS ALLS 0S% LF* FCS ALLS OSS LFS FCS

OSRR -190 -164 -204 -191 040 022 039 0.36 -1.78 0.79 0.49
LFR -147 -110 -1.17 -128 041 027 030 0.34 —-1.54 0.54 -0.07
FCR -150 -210 -158 —-1.66 045 039 041 042 —1.04 0.03 0.34
CEF? -338 -257 -241 -283 041 0.00 058 040 -325 -0.06 7.88
RFR -3.13 =270 -245 =277 056 0.17 062 0.51 -0.57 0.61 —-0.90
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demand is more likely to be supplied by a FCS, while as for OSRR, LFR and RFR, a LFS is
more likely to handle such demand.

Commodities other than household/light manufacturing goods

The average elasticities of other commodities are computed as shown in Table 6. Some
features are common across commodity types. For example, excluding mixed goods and
parcel, the effects of travel time tend to be low for LER (between —1.61 and —0.93 for
LFR-ALLS), while high for RF® (between —3.37 and — 1.60). The travel time is least influ-
ential when the LF® receive from FCS (between — 1.06 and — 0.66). There are also some
differences on the elasticity effect of travel time by commodity type; by receiver type, the
commodity type that shows the smallest absolute elasticity effect (with ALLS) is differ-
ent. On the other hand, the travel time is critical for mixed goods and parcel, having much
larger absolute elasticity effects than other commodities in many cases.

As for freight production, like household/light manufacturing goods, the elasticity
effects tend to be smaller when the suppliers are LFS, although in some cases, such as
FCR-LFS and LFR-LFS pairs for food products and mixed goods and parcel, the effects
are large. For agricultural product received by OSRR, LFR, FC®, and CEF®, the freight
production is most sensitive when the suppliers are OSS, showing the elasticity effects of
0.50, 0.51, 0.48 and 0.58, respectively. For wood and paper products, the freight produc-
tion has large effects for the pairs of OSRR-FCS (0.53), LFR-0S® (0.67), LFR—FC® (0.52),
and FCR-FC® (0.44).

Lastly, a smaller DA is more likely to be catered by OS® and a larger DA by LF5.
There are some cases where this characteristic does not apply; for instance, when a OSRR®
receives minerals, ore, stone, cement, ceramics or glass, a larger demand is less likely to be
handled by LFS.

Observed versus estimated OD flows

We compare the estimated OD flows using the estimated models, against the observed OD
flows. The purpose of this exercise is to test the reproducibility of the model at the OD
level. Note that the process of comparing the simulation results against the data we used
for the model estimation is different from the process of model validation, which requires a
validation data set that is not used for the model estimation. For computing the OD flows,
the TMA is divided into 18 zones. The OD flow is compared for each of 324 (18x18
zones) OD pairs. The Monte Carlo method is used for the OD flow estimation; the simula-
tion for supplier choices is repeated 20 times and the averages are computed. We calculate
R? as the measure of the reproducibility; R? is defined as:

R = I—Z@u_y/z;)z Z(yi,j_)_’)z ©
ij

i

where y;;: Observed number of shipments for an OD pair i, j. )71\, Estimated number of
shipments for an OD pair i, j. y: Average observed number of shipments for all OD pairs.

Figures 3 and 4 show the comparison of each OD flow for all shipments and for the
shipments from each receiver function type. Figure 3 considers the shipments of house-
hold/light manufacturing goods only and Fig. 4 covers all commodity types.
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Fig.3 Comparison of OD flows: observed versus. estimated (household/light manufacturing goods)

Figure 3 shows the high overall reproducibility of the model for household/light manu-
facturing goods with R? of 0.70 (top-left). On the other hand, the reproducibility for the
shipments that LERs receive is low, showing R? of 0.35 (middle-left). Also, the shipments
to OSRRs show relatively low R? (0.54, top-right). Both LFRs and OSRRs, especially
LERs, are the potential intermediate locations of logistics chains. The result highlights the
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Fig.4 Comparison of OD flows: observed versus estimated (all commodity types)

difficulty of estimating the flows of the shipments sent to those facilities for household/
light manufacturing goods. In contrast, the shipments to FCRs and RFRs, which are likely
to be the consumers of goods received (in case of FCRs, goods are “consumed” to produce
other goods), show relatively high R%s (0.73, middle-right, and 0.86, bottom-right, respec-
tively), indicating this type of the shipment flows can be well-captured with the proposed
model framework. The reason for the relatively low R? for the shipments to CEFRs, which
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is also 0.54 (bottom-left), is unclear. As the underestimation for the two OD pairs which
are the largest in terms of the observed shipment counts greatly lowers the R?, there may
be some large-scale suppliers for CEFRs (e.g. schools) and the model may not properly
capture the decisions of choosing them. Figure 4 shows the even higher reproducibility of
the model when all commodity types are considered (R? is 0.80; top-left). The models for
LER also achieve much higher R? (0.77, middle-left) than the case only for household/light
manufacturing goods; the errors for different commodity types are canceled out when all
commodities are aggregated.

Additionally, we calculate R? in terms of weight, instead of shipment counts, for the
shipments of all commodity and receiver types. The computed weight-based R? is 0.46,
which is lower than the R? based on the number of shipments. The weight distribution
of the intra-metropolitan shipments is highly skewed. The analysis using the 2013 TMFS
indicates that about 5% of the heaviest shipments account for 80% of the total shipment
weight. Such high skewness makes it challenging to reproduce the observed OD flows in
terms of weight using a disaggregate model. It is worth noting that, if the data is segmented
into small groups (e.g. the groups by OD pair), the highly skewed distribution of shipment
weight population may impair the representativeness of the sample sets for the groups,
even with a large-scale survey data. For example, Sakai et al. (2015b) show that the highly
skewed distribution of establishment-level freight generations causes a large error in the
estimation of the average freight generation rate based on sample data.

Conclusions

Despite the fact that the type of distribution channel is relevant to the decisions on vari-
ous aspects in logistics operations, the selection of distribution channel was not consid-
ered in most of the existing urban commodity flow models. Leveraging establishment and
shipment records, which become increasingly more available for cities around the world,
we propose a framework of the error component logit mixture model that considers the
choices at two levels, the supplier function choice and the supplier choice. Given the func-
tion of the receiver, the supplier function choice is equivalent to the selection of distri-
bution channel. We tested the model framework using the data obtained from the 2013
TMES, a large-scale establishment survey.

The estimated model allows us to analyze the relationships among the distribution
channels. The covariance parameters indicate that the correlations among the distribution
channels are different by the function type of a receiver. For example, non-factory suppli-
ers are highly correlated when a receiver is an end-consumer. Furthermore, the estimated
model provides valuable insights about the relationship between the choice of the supplier/
supplier function and the variables, i.e. distance (travel time), freight production, and the
weight of demand by the receiver function and the commodity type. For instance, regard-
ing household/light manufacturing goods, when a logistics facility supplies goods to a fac-
tory, the distance to the demand is crucial for an establishment to be a competitive supplier.
The model also captures the fact that a large-size demand is more likely met by a supply
from logistics facilities and factories. It also indicates that travel time is valued more highly
for mixed goods and parcel than the other commodity types. Lastly, R? obtained from the
comparison of the simulated versus observed shipment counts motivates us to further use
the proposed modeling framework in urban freight modeling systems, although it requires
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caution to interpret the estimated weight-based flows if the demand weight distribution is
highly skewed.

The 2013 TMFS data we use has some limitation in differentiating the establishments
that have only office functions from those serving both as office and distribution facilities.
The business function information is valuable for urban freight modeling and we encourage
to collect accurate records for it in future surveys. The receiver/supplier functions are also
relevant to modeling other aspects of urban freight including carrier selection and goods
vehicle tours. The development of new modeling/simulation approaches to deal with such
elements is a future work. The integration of the simulations for the different decision-
making processes in urban freight is especially important because it allows the feedbacks
on the key decision parameters, especially those related to costs. For example, the accurate
estimation of travel time through traffic simulations is important for a realistic simulation
of mixed goods and parcel flows and a policy test focusing on this commodity type.
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Appendix: Error component logit mixture models

Tables 7, 8, 9, 10 show the estimated models for commodity types other than household/
light manufacturing goods.
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Table 8 Error component logit mixture models (wood and paper products/minerals, ore, stone, cement,

ceramics or glass)

‘Wood and paper products

Minerals, ore, stone, cement, ceramics

or glass®
OSR® LE® FCR CEF® RF® OSR®  LF® FC® RF®
Explanatory variable®
In Timeqg -2.28 -2.14 —-2.10 -1.18 -2.82 -1.19 —1.57 —-1.91 -226
(—100.8) (—483) (—455) (=63.0) (=344) (-222) (-202) (-409) (-144)
In Time,; —2.41 -2.23 -2.20 —1.58 —2.41 —1.40 —-2.36 -2.22 -1.97
(—121.2)  (—81.0) (—488) (=26.6) (—42.1) (-214) (-340) (-37.1) (-183)
In Timeg —145 -1.05 -1.25 —1.80 -221 —1.58 —1.08 —-1.31 -2.59
(—70.6) (=342) (=738) (-389) (-25.6) (—28.8) (-27.6) (-=523) (-27.8)
In FPq 0.265 0.675 0.296 0.106 0.517 0.375 0.263 - 0.210
(46.8) (37.9) (28.6) (24.4) (20.1) (22.0) (13.8) - (6.6)
InFP 0.215 0.308 0.089 - 0.086 0.159 0.211 0.448 0.037
(41.3) (36.4) 8.1 - (6.0) (8.8) (11.0) (16.6) (1.8)
In FPg 0.541 0.525 0.454 0.019 0.214 0.077 0.212 0.206 0.045
(79.4) (44.2) (73.4) (1.8) (6.5) (6.3) (18.2) (28.5) (3.0)
Dum, -0.478 2.33 -0.726  —-4.76 0.693 7.33 6.11 —-4.31 —0.081
(=2.7) (7.0) (=17 (=17.6) (1.3) 0.7 9.6) (—8.6) (=0.1)
Dumgc —-6.05 -9.64 —10.0 -2.06 -3.96 -3.32 -6.59 -7.39 2.11
(-252) (—14.6) (-20.8) (-4.8) (=500 (=13 (=97 (-188) (1.7
In WeightxDum, .  0.597 0.459 0.526 2.03 0.064 —0.487 0.194 0.310 0.349
(43.6) (15.5) (12.6) (15.9) (1.6) (=78) (43) (15.8) (4.2)
In Weight X Dumge  —2.02 0.208 1.31 1.66 0.074 0.868 0.586 0.339 0.308
(-8.7) (3.6) (17.2) (14.2) (1.3) 3.5) 9.5) (15.0) (2.9)
Covariance parameter
Sigmagg 0.000 1.82 2.85 2.55 0.961 0.008 1.27 0.081 1.620
(0.0) (11.1) (17.0) (10.4) 34 (0.0) (1.8) (0.1) (2.5)
Sigma, p 0.000 0.215 2.40 0.000 0.000 1.46 0.000 0.004 0.096
(0.0) (0.3) (11.8) (0.0) (0.0) (4.0 (0.0) (0.0) 0.1)
Sigmapysg 13.1 6.86 5.31 0.000 0.000 4.68 2.73 1.58 5.430
(10.3) 9.8) (17.5) (0.0) (0.0) 3.9 (7.4) (6.5) (5.3)
L (0) —105,370 —-38928 -—45,172 -32,676 —-9561 —8320 —10,910 —19,256 —4401
L(ﬁ) -70,078  —-25451 -32,203 -—-23,323 —-4087 —-6455 —-7924 — 14,462 2758
p? 0.335 0.346 0.287 0.286 0.573 0.224 0.274 0.249 0.373
72 0.335 0.346 0.287 0.286 0.571 0.223 0.273 0.248 0.370
N. 5297 2087 2832 1056 601 590 781 1508 308

t values are shown in the parentheses

*Variables were not considered if they show the opposite signs from the expected (i.e. InTime must be nega-
tive and InFP must be positive). "The model for CEFR were not estimated as such shipments are limited
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Table 10 Error component logit mixture models (chemicals, rubber or plastics/mixed goods and parcel)

Chemicals, rubber or plastics

Mixed goods and parcel®

OSRR LFR FCR CEFR RER OSRR  LFR FCR RFR®
Explanatory variable®
In Timeqg -1.71 -150 -236 -221 -3.87 -176 -3.10 -580 —0.355
(=58.1) (=542) (=96.1) (=527) (=962) (-234) (—158) (=214) (=11)
In Time, —1.47 -197 -224 —-3.36 -3.52 —3.05 —240 —552 —447
(—45.3) (=70.6) (—88.6) (=20.4) (=169.4) (=55.2) (—91.8) (—48.1) (-453)
In Timegc -0.801 —0.857 —1.08 -3.02 -3.15 -345 -211 -466 -
(=23.1) (=383) (=763) (—43.1) (—1448) (=53) (-=72) (-142) -
In FPyg - 0.034 0.233 0.276 - 0.028  0.363 0.453 -
- (3.8) (32.8) (21.3) - (1.8) 125)  (9.3) -
In FP, . 0.137 0.097 0.285 0.104 0.444 0.409  0.550 0.801 0.191
(14.3) (149)  (37.6) (3.1) (69.0) (188) (492)  (25.1)  (6.9)
In FPgc 0.533 0.273 0.274 0.519 0.530 - - 0.333 -
(48.4) 41.5)  (69.4) (28.9) (80.0) - - (3.9) -
Dum, —-4.65 3.08 —-4.20 1.24 —-7.89 0391 -730 —3.05 473
(=11.0) (123) (-154) (1.3) (=269 (0.7 (-6.8) (=2.0) (0.0
Dumgc —-15.1 -853 —11.7 -0932  —103 4.24 -524 -369 -
(=29.1) (=26.6) (=47.0) (=18) (=362) (1.3) (=22) (=14 -
In WeightxDum; . 0.312 0.244 1.29 0.993 2.09 1.54 0.735 -044 144
(8.8) (122)  (25.4) (8.0 (43.8) 214 (79 (=4.7) (0.0
In Weight X Dumg.  0.493 0.510 1.22 0.571 0.962 1.09 0.461 -0.567 -
10.7) (17.0)  (24.3) (7.9) (21.4) 4.3) 3.1) (-39 -
Covariance parameter
Sigmagg 0.000 0.720 6.28 3.26 3.97 0.000  2.64 1.99 0.000
0.0 @.7) (26.6) (11.5) (35.5) (0.0 (5.1) (7.1) (0.0)
Sigma, 2.56 0.018 0.293 2.60 0.000 0.000 0.000 0.000 0.001
(1.5) 0.1) 0.5) (5.4) (0.0 (0.0 0.0 (0.0 (0.0
Sigmapys 2.69 1.31 237 0.000 3.14 2210  0.000 0.000 0.000
8.1) (7.2) (16.4) 0.0 (48.0) (2.0 0.0 (0.0 (0.0)
L (0) —32,445 —43,800 —102,465 —13,686 —179258 —7657 —18,932 —11,997 —8378
LA —25,399 —32,683 —78,467 —8370 —71,354 3736 —8940 —1792 —985
p? 0.217 0254 0234 0.388 0.602 0512 0528 0851  0.882
V2 0.217 0.254 0.234 0.387 0.602 0.510  0.527 0.850 0.882
N. 2340 3163 7753 1028 10,600 602 1471 726 966

t values are shown in the parentheses

*Variables were not considered if they show the opposite signs from the expected (i.e. InTime must be nega-
tive and InFP must be positive). ® The model for CEF® were not estimated as such shipments are limited. ©
All alternatives are either OSS or LFS
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