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Abstract
American Community Survey (ACS) data have become the workhorse for the empir-
ical analysis of segregation in the U.S.A. during the past decade. The increased fre-
quency the ACS offers over the 10-year Census, which is the main reason for its 
popularity, comes with an increased level of uncertainty in the published estimates 
due to the reduced sampling ratio of ACS (1:40 households) relative to the Cen-
sus (1:6 households). This paper introduces a new approach to integrate ACS data 
uncertainty into the analysis of segregation. Our method relies on variance replicate 
estimates for the 5-year ACS and advances over existing approaches by explicitly 
taking into account the covariance between ACS estimates when developing sam-
pling distributions for segregation indices. We illustrate our approach with a study of 
comparative segregation dynamics for 29 metropolitan statistical areas in California, 
using the 2010–2014 and 2015–2019. Our methods yield different results than the 
simulation technique described by Napierala and Denton (Demography 54(1):285–
309, 2017). Taking the ACS estimate covariance into account yields larger error 
margins than those generated with the simulated approach when the number of cen-
sus tracts is large and minority percentage is low, and the converse is true when the 
number of census tracts is small and minority percentage is high.
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Introduction

While the long-form decennial Census was officially replaced by the American 
Community Survey in the USA in 2010, the nationwide ACS data were first made 
available in 2006. Given the relative currency (1-year, 3-year, and 5-year estimates) 
of ACS data, they are now serving as an imperative dataset for planning and deci-
sion-making in funding allocation, transportation forecasting, poverty evaluation, 
and segregation pattern analysis (Bazuin & Fraser, 2013; Landis, 2019; Logan et al., 
2018; Macdonald, 2006). Spielman et  al. (2014) and Jurjevich et  al. (2018) sug-
gested that the ACS is now the primary source of high-resolution geographic data 
about the U.S. population for planners and decision-makers.

The tradeoff of data currency provided by the ACS is the much smaller sample 
size compared with the previous decennial long-form census due to limited time and 
budget. The ACS annual estimates are derived from a sample of approximately 1:40 
households, whereas the decennial long-form census sampled about 1:6 households 
(USCB, 2020). While a sampling rate of approximately 12% could be theoretically 
achieved by aggregating five-year samples, the average sampling rate for ACS 5-year 
aggregate data ranges from 8 to 10% at the tract level. As a result although the U.S. 
Census Bureau (USCB) initially expected a 33% more statistical uncertainty than 
the decennial census survey due to the smaller sample size, studies suggested that 
sampling errors of ACS estimates are generally 75% larger than those of the decen-
nial long form at the tract level (Navarro, 2012; Spielman et al., 2014). In order to 
make these errors more transparent to ACS data users, the USCB publishes a margin 
of error (MOE) at the 90% confidence level for each ACS estimate. Many studies 
have shown that the data uncertainty of ACS can lead to inaccurate analysis and/or 
biased decision-making, and it is essential to assess the impacts of such uncertainty 
(Bazuin & Fraser, 2013; Jung et al., 2019; Logan et al., 2018; Napierala & Denton, 
2017; Reardon et al., 2018; Spielman et al., 2014; Wei et al., 2021).

In this paper, we focus on the implications of ACS data uncertainty for measur-
ing residential segregation. Among the oldest pursuits in quantitative social science, 
residential segregation continues to be a foundational driver of spatial inequality 
in the USA, exerting influence on outcomes ranging from education to health, to 
earnings. It is increasingly common to use ACS data to measure residential seg-
regation in the past decade due to its data currency (Anacker et al., 2017; Landis, 
2019; Lichter et al., 2012; Logan et al., 2018; Reardon et al., 2018). However, only 
a few efforts explicitly account for uncertainty associated with ACS data. Napierala 
and Denton (2017) presented a simulation-based method to derive the confidence 
interval for the dissimilarity index of two racial/ethnic groups given the published 
ACS estimates and associated MOE. Logan et al. (2018) and Reardon et al. (2018) 
proposed approaches to correct the bias toward segregation measures when using 
ACS income data. Despite the utility of these approaches, ultimately, they rely upon 
several assumptions regarding the population distribution, each of which remains 
potentially problematic. For example, the simulation method in Napierala and Den-
ton (2017) assumes that each group’s population in each census tract is indepen-
dently normally distributed; the bias-corrected estimators from Reardon et al. (2018) 
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may not perform well when the population is unevenly distributed across geographi-
cal units. In addition, some approaches are only applicable to certain segregation 
indices or require access to microdata.

To address these issues, our goal is to develop a generally applicable framework 
to integrate ACS data uncertainty into segregation measures as well as a method of 
statistical inference for comparative analysis. The framework we present relies upon 
variance replicate estimate tables for 5-year ACS estimates to understand how sam-
pling errors propagate through the computations of segregation measures. Given the 
replicate estimates created using the same estimation method as the original ACS 
estimate, we can derive the sampling distributions of segregation measures while 
accounting for the covariance between the ACS estimates used in the calculation. 
This framework can greatly facilitate ACS data users to incorporate data uncertainty 
into segregation analysis, leading to more reliable segregation pattern identification 
and better policy development.

Specifically, our work here makes three distinct contributions. First, we develop 
a novel method for quantifying the uncertainty associated with segregation indices 
when measured with Census ACS data and we describe how it differs from other 
approaches. Second, we make a simple extension to our framework, allowing for 
statistical inference in the context of comparative analysis (e.g., whether a place has 
become more or less segregated over time). Finally, we provide an empirical exami-
nation of changing racial segregation in California metropolitan regions over the last 
decade, demonstrating the utility of our framework for practical analysis. In the next 
section, we provide a review of ACS data uncertainty and existing approaches to 
tackle data uncertainty in segregation analysis. This is followed by details of our 
methodological framework. Finally, the proposed framework is applied to the analy-
sis of racial segregation patterns of 29 metropolitan statistical areas in California, 
USA using the 2010–2014 and 2015–2019 ACS data.

ACS data uncertainty

Data from the ACS, like all survey estimates, are subject to both sampling and nonsam-
pling errors. Sampling error refers to the difference between the estimate derived from 
a sample and the actual value obtained from an entire population. As mentioned earlier, 
the sampling error in ACS data is larger than estimates from the census long form due 
to the smaller sample size. To measure the magnitude of sampling error, the USCB 
provides the MOE with all published ACS estimates. The MOE is calculated based 
on a variance estimate that is derived using a successive differences replication (SDR) 
methodology, rather than an unbiased design-based variance estimate (which cannot 
exist due to complexity associated with ACS sampling design and weighting adjust-
ments) (USCB 2014). Specifically, the same estimation procedure is repeated inde-
pendently 80 times and each time a different set of weights is applied to the sampled 
records. The details on how replicate weights are determined can be found at USCB 
(2014). This results in 80 separate “replicate” estimates. Using these 80 sets of values, 
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the variance is estimated based on the variability between replicate estimates and the 
full sample estimate as follows (USCB 2020):

where V is the variance, Ri is the replicate estimate, and F is the full sample esti-
mate. The factor of 4/80 is an artifact of using the SDR methodology (USCB 2020). 
The published MOE at the 90% confidence level is determined as follows:

Given the published MOE, the ACS data users can determine statistical significance 
when comparing two ACS estimates. In addition, the USCB provides approximation 
formulas to calculate the MOE for user-derived estimates, such as aggregated counts, 
proportions, percentages, ratios, and percent change (USCB 2020). However, these 
approximation formulas assume that ACS estimates are independent of each other and 
do not account for covariance between the used estimates. As a result, the USCB first 
releases the Variance Replicate Tables (VRT) for the 2010–2014 ACS 5-year estimates 
in July 2016. The VRT includes the eighty replicate estimates ( Ri ) that are used to cal-
culate the published MOE. This information allows ACS data users to compute vari-
ances for their own measures using a methodology similar to the one employed by the 
ACS during its production. This leads to an exact variance and MOE for user-derived 
measures because it accounts for the covariance between variables in the ACS sample. 
The VRT are available for selected 5-year Detailed Tables at various geographic lev-
els, including the nation, states, counties, census tracts, and block groups. These tables 
are released on an annual basis, shortly after the release of the standard 5-year data 
products.

Nonsampling error in ACS data is commonly attributable to sample overcoverage 
or undercoverage, unit nonresponse, item nonresponse, response error, and processing 
error (USCB 2020). While the sampling error of ACS data is much larger than decen-
nial census long form, the nonsampling error of ACS data is likely to be less due to 
lower nonresponse rates and similar completeness rates (Napierala & Denton, 2017; 
USCB 2020). In addition, there does not exist any direct measure of nonsampling error 
in ACS data, and indirect measures, such as sample size, coverage rates, and nonre-
sponse rates, are only available at the state and national level. As a result, even though 
nonsampling error could also bias ACS estimates and user-derived measures of resi-
dential segregation, we focus on the impacts of sampling error in the measurement of 
residential segregation.

Addressing ACS Data Uncertainty in Residential Segregation 
Estimates

The adoption of the American Community Survey launched a wave of segregation 
research throughout the 2010s, since, compared with prior decennial datasets, 
there appeared to be a large spike in income segregation. Understanding whether 

(1)V =
4

80

80∑

i=1

(Ri − F)2,

(2)MOE = 1.645 ∗
√
V .
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this spike was due to a change in residential preferences, housing markets, or sim-
ply sampling error from the new data has quickly become a focal topic of study in 
sociology (Logan et al., 2018; Napierala & Denton, 2017; Reardon et al., 2018). 
Since prior work demonstrated that segregation indices based on random sam-
ples are generally biased upward compared with the values that would be com-
puted from full population data, (Reardon & Bischoff, 2011) a series of important 
papers began to examine how ACS sampling error could impact the measurement 
of segregation indices and how to develop methods that overcome such bias.

One approach presented by Napierala and Denton (2017) uses a simulation-based 
method to derive the confidence interval for dissimilarity index given the published 
ACS estimates and associated MOE. Specifically, it assumes that each group’s popu-
lation in each census tract is independently normally distributed with the mean set 
to the published estimate and standard error set to published MOE/1.645. Then a 
population value is randomly drawn for 50,000 times and each time a dissimilar-
ity index is computed. The mean and variance of the 50,000 simulated dissimilarity 
indices are computed, and statistical inference is facilitated simply from the derived 
confidence interval. Following, Logan et al. (2018) and Reardon et al. (2018) pro-
posed approaches to correct the bias toward income segregation measures. Specifi-
cally, Logan et al. (2018) used census microdata and sample correction to derive an 
unbaised rank-order variance ratio index, which is referred to as “sparse-sampling 
variance decomposition (SSVD)” approach. In addition they derived a formula to 
approximate bias in the rank-order information theory index. While unbiased rank-
order variance ratio index or approximately unbiased rank-order information theory 
index estimates can be generated using these approaches, they both require access 
to census microdata. When microdata are not available, individual samples need 
to be simulated based on aggregated income distribution and then the microdata-
based approached can be applied. However, such approach has not been extensively 
validated and may not work when samples are small or there are wide variations in 
sample sizes across units (Reardon et al., 2018) To avoid the reliance on access to 
restricted or simulated microdata, Reardon et al. (2018) developed new formulas to 
approximate the bias in sample-based estimates of rank-order variance ratio index 
and rank-order information theory. While these bias-corrected estimators only rely 
on publicly available data, the bias may not be reduced when the population is une-
venly distributed across geographical units and the average sample sizes are small. 
Moreover, the estimators developed in Logan et al. (2018) and Reardon et al. (2018) 
are only applicable to variance ratio index and information theory index. No formu-
las are developed for other widely used segregation indices, like dissimilarity index.

In summary, while ACS data uncertainty has been examined in some literature, 
there is a lack of generally applicable framework to integrate data uncertainty 
into segregation measures and its statistical inference. In the following sections, 
we examine how sampling error in the ACS may propagate through inferential 
analyses of residential segregation. We use the Variance Replicate Tables for 
each ACS release to develop analytical margins of error for segregation indices in 
each metropolitan region. Following, we use these estimates to perform compara-
tive inference on the measurements from each time period, asking whether the 
observed change in segregation is distinct from a random process. Using these 



	 R. Wei et al.

1 3

5  Page 6 of 23

results we describe both how segregation has changed in California over the last 
decade as well as how the ACS sampling procedures may impact researchers’ 
inferences regarding the statistical significance of these changes.

Method

To understand how bias from the ACS complicates measures of changing segregation, 
we propose a generally applicable framework for statistical inferences that integrates 
ACS data uncertainty at its core. While this framework is applicable to any segrega-
tion measure, we use two of the most widely used indices (the Dissimilarity index and 
Entropy index) to demonstrate how our framework is used to derive the sampling dis-
tributions of segregation measures facilitating both single-value and comparative statis-
tical inferences.

Segregation Measures

As the most widely used measure of residential segregation, the dissimilarity index rep-
resents the percentage of the minority group that would have to change their residential 
areas for the two social groups to be evenly distributed across the entire study region 
(Duncan & Duncan, 1955; Massey & Denton, 1988). Consider the following notation:

The dissimilarity index, D , can be defined as follows:

D varies from 0.0 to 1.0, with larger values indicating higher levels of segre-
gation. The dissimilarity index is easy to interpret and compute. However, many 
studies have found that the dissimilarity index is biased upward especially when 
unit sizes or minority proportions are small. Several extensions to correct such 
bias have been suggested (Allen et  al., 2015; Davidson, 2009; Ransom, 2000). 
Napierala and Denton (2017) are the first to address ACS data uncertainty in dis-
similarity index, but their approach assumes each ACS estimate is independently 

tj = The total population at areal unit j,

pj = Theminority percentage at areal unit j,

T = The total population in the study region,

P = The totalminority population percentage in the study region,

n = The number of areal units in the study region.

(3)D =

n∑

j=1

tj|pj − P|
2TP(1 − P)

.
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normally distributed and fails to account for covariance between ACS sample 
estimates.

Another segregation measure demonstrated here is the entropy index, which 
is also referred to as the information index. The entropy index measures segrega-
tion by estimating each areal unit’s departure from the racial entropy of the entire 
study region. The racial entropy of the entire study region represents the study 
region’s extent of racial diversity and can be defined as follows:

Each areal unit’s entropy is analogously defined as follows:

The entropy index is defined as the weighted average deviation of each unit’s 
entropy from the region wide entropy:

H also varies from 0.0 to 1.0, with larger values suggesting higher levels of 
unevenness. While it is not as easy to interpret and compute as the dissimilarity 
index, it satisfies some important properties like organizational equivalence and 
size invariance and is especially useful for multigroup segregation measures. The 
binary entropy index can be easily extended into the multigroup version by inte-
grating multiple groups into the definition of E and Ej as follows:

where i = the index of race groups,m = The total number of race groups,

P
i
= The percentage of race group i in the study region and 

pij = The percentage of race group i at areal unitj.

Both Logan et  al. (2018) and Reardon et  al. (2018) proposed approaches to 
correct the bias of entropy index when ACS data are highly uncertain. However, 
the approaches proposed by Logan et  al. (2018) rely on a cadre of assumptions 
regarding the population distribution to approximate the bias and both of their 
approaches cannot be extended to other segregation measures.

(4)E = −[PlnP + (1 − P)ln(1 − P)].

(5)Ej = −
[
pjlnpj +

(
1 − pj

)
ln
(
1 − pj

)]
.

(6)H =

n∑

j=1

tj(E − Ej)

ET
.

(7)E = −

m∑

i=1

PilnPi,

(8)Ej = −

m∑

i=1

pijlnpij,
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Measuring Uncertainty

To account for the weaknesses of published MOEs in the ACS described above, 
the USCB began publishing Variance Replicate Tables (VRT), beginning with the 
2010–2014 ACS 5-year estimates in July 2016. The VRT includes the eighty repli-
cate estimates (Ri) that are used to calculate the published MOE. This information 
allows ACS data users to compute variances for their own measures using a meth-
odology similar to the one employed by the ACS during its production. This leads 
to an exact variance and MOE for user-derived measures by taking into account 
the covariance between ACS estimates. The VRT are available for selected 5-year 
Detailed Tables at various geographic levels, including the nation, states, counties, 
census tracts, and block groups. These tables are released on an annual basis, shortly 
after the release of the standard 5-year data products.

Thus, to address the limitations of previously described methods, we rely upon 
the VRT to incorporate ACS data uncertainty into segregation measures. Specifi-
cally, we compute the segregation measure for each replicate estimate in addition 
to the published full sample estimate. Then we compute the variance of segregation 
measures using the same method as the one employed by the ACS during its produc-
tion. Taking the dissimilarity index as an example, its variance can be derived as 
follows:

where DRi
 and DF are the dissimilarity index computed using replicate estimate Ri 

and using published full sample estimate F . The USCB (2020) suggests that each 
derived measure tends to be normally distributed given the production of replicate 
estimates. That is, the dissimilarity index is no longer a fixed value but a normally 
distributed variable with the mean as DF and variance as Var(D) . The variance can 
also be converted to MOE(D) following Eq. (2). This method can be applied to any 
segregation measure.

Given the derived distribution of the segregation measure, we can use a two-sam-
ple t test to test whether segregation levels differ across two entities–generally either 
two separate locations or a single location at two points in time. The test statistic is

where D1
F
 and Var

(
D1

)
 are the mean and variance of the dissimilarity index for 

period 1, respectively, whereas D2
F
 and Var

(
D2

)
 are the mean and variance of 

the dissimilarity index for period 2, respectively. With this test statistic, we can 
derive a p-value to determine whether the segregation levels differ with statistical 
significance.

We used the first three California census tracts in 2010–2014 VRT table as an 
example to demonstrate how this method works and how it is different from the 

(9)Var(D) =
4

80

80∑

i=1

(DRi
− DF)

2,

t =
D1

F
− D2

F√
Var

(
D1

)
− Var(D2)

,
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simulation method used in Napierala and Denton (2017). Table 1 reports the number 
of white population and Table 2 reports the number of black population. Column 
“ACS Estimate” is the published estimate for the white or black population; col-
umn “MOE” is the published margin of error associated with the estimate; column 
“Var_Rep1”, “Var_Rep2”, …, and “Var_Rep80” are the replicate estimates used 
by the Census Bureau. Because each set of replicate estimates are estimated using 
a consistent set of sample weights as mentioned earlier, the correlation or covari-
ance among the same set of replicate estimates is preserved. For example, if the first 
tract’s white population is positively correlated with the second tract’s white popu-
lation, this relationship will remain in the replicate estimates even though the indi-
vidual estimates vary across the 80 sets of replicate estimates. Using our proposed 
method, we will calculate the D index for whites and blacks for the published ACS 
estimate, which is DF , and then we will calculate the index for each set of replicate 
estimates, which are DRi

 . Given these calculations, we can derive the variance of the 
D index using Eq. (7) (Table 3).

The simulation approach used in Napierala and Denton (2017) did not use the 
replicate estimates, rather it assumes that each group’s population in each census 
tract is independently normally distributed with the mean set to the published esti-
mate and standard error set to published MOE/1.645. Then a population value is 
randomly drawn for a certain times and each time a D index is computed. For exam-
ple, it assumes the first tract’s white population is normally distributed with a mean 
of 2235 and standard error of 200/1.645. Then it randomly draw a value from this 
normal distribution and consider this as a potential population value. This process is 
repeated for each tract for a certain times. Given these simulated dissimilarity indi-
ces, the variance of the D index is estimated using classic variance formula. Clearly 
this approach cannot take into account any correlation or covariance among compo-
nent estimates.

Table 1   VRT for white population

Tract ID ACS estimate MOE Var_Rep1 Var_Rep2 Var_Rep3 … Var_Rep80

06001400100 2235 200 2261 2205 2318 … 2303
06001400200 1487 171 1435 1485 1486 … 1561
06001400300 3599 311 3581 3613 3612 … 3538

Table 2   VRT for black population

Tract ID ACS estimate MOE Var_Rep1 Var_Rep2 Var_Rep3 … Var_Rep80

06001400100 137 78 141 101 123 … 148
06001400200 34 32 21 29 29 … 18
06001400300 715 210 625 652 612 … 711
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Results

We highlight the utility of this methodology framework for handling elements of 
uncertainty in the ACS data by examining racial segregation in 29 metropolitan sta-
tistical areas (MSAs) in the state of California. The distribution of the dissimilarity 
index and entropy index for whites and blacks and whites and Asians are computed 
using 2010–2014 and 2015–2019 ACS data at the census tract level. As mentioned 
earlier, the 2010–2014 ACS data are the first ACS dataset that publishes the VRTs 
and the 2015–2019 data are the latest. The 2010–2014 ACS dataset also does not 
have an overlapping sampling frame with the 2015–2019 dataset, making compara-
tive inference valid.

Descriptive statistics for each of the 29 MSAs are shown in Table 4. The number 
of census tracts varies from 23 to 2346 in these 29 MSAs, along with a diverse set 
of racial characteristics. In addition to the published estimates for the average popu-
lation and minority percentage, we also report the average coefficient of variation 
(CV) for minority population estimates. The CV is defined as the ratio of the stand-
ard error to the reported estimate, representing the relative amount of sampling error 
associated with a sample estimate. Compared with the MOE, the CV provides a 
scale-independent measure for comparing reliability among multiple ACS estimates 
(Sun and Wong 2010; Wei and Grubesic 2017; USCB 2020). The percentage of the 
minority population is negatively correlated with the average CV. For example, the 
correlation coefficient between the black population percentage and the average CV 
for 2014–2019 is −  0.86 and the correlation coefficient between the Asian popu-
lation percentage and the average CV for 2014–2019 is − 0.83. A small minority 
population share is usually associated with a large average CV.

The D index for whites and blacks and whites and Asians in 2010–2014 
and 2015–2019 are reported in Table  5. The “ DWB2014 ” represents the dissimi-
larity index calculated using the published estimates of white and black popu-
lation in 2010–2014, and the “ DWA2019 ” represents that calculated using the 
white and Asian population in 2014–2019. The “ MOE(DWB2014 ,R) ” is the mar-
gin of error of DWB2014 estimated using the replicate estimates approach, and the 
“ MOE(DWB2014 , S) ” is the margin of error of DWB2014 estimated using the simulation 

Table 3   D index Variable D
R
i

D
F

Difference Differ-
ence 
squared

D
R
1

0.54 0.63 − 0.09 0.01
D

R
2

0.60 0.63 − 0.03 0.00
D

R
3

0.55 0.63 − 0.08 0.01
… … … … …
D

R
80

0.66 0.63 0.03 0.00
Sum of squared differences 0.51
Variance 0.03
Margin of error 0.26
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approach in Napierala and Denton (2017). We also computed the ratio of MOEs 
using two different approaches to examine their differences. One clear result we 
find is that the MOEs derived using the ratio replicate estimates are much larger 
than that using the simulated approach when the number of census tracts is large 
and the share of minority residents is low, whereas they are similar to or smaller 
than that using the simulated approach when the number of census tracts is small 
and the minority share is high.

For instance, given the same share of black population (3%) in the Ana-
heim-Santa Ana-Irvine MD and the Napa MSA, the ratio of MOE(DWB2014 ,R) to 
MOE(DWB2014 , S) is 3.61 and 1.23, respectively, due to the large number of cen-
sus tracts (583) at Anaheim-Santa Ana-Irvine MD but the small number (40) at 
NAPA MSA. Another interesting example can be found at San Jose-Sunnyvale-
Santa Clara MSA where the ratio of MOE(DWB2019 ,R) to MOE(DWB2019 , S) is 2.55, 
whereas the ratio of MOE(DWA2019 ,R) to MOE(DWA2019 , S) is 0.66 given the low 
percentage of the black population but the high percentage of the Asian popu-
lation. If incorporating VRT is the best method for computing variance estima-
tors using ACS data, as proposed by the Census, this suggests that the simulation 
approach might underestimate the variance of D for large metropolitan areas with 
small minority populations but overestimate it for small metropolitan areas with 
large minority populations. Because the replicate estimates approach accounts for 
covariance among ACS estimates, it is likely to provide a more accurate estimate 
of the variance of D. To validate this finding, we also construct a linear regres-
sion model, using the ratio of MOEs as the dependent variable, and the number of 
census tracts and the percentage of minority population as independent variables. 
The results show that the number of census tracts and the percentage of minor-
ity population are strongly significant across all four ratio measures. The number 
of census tracts is positively correlated with the ratio, whereas the percentage of 
minority population is negatively correlated with the ratio.

Then we compare the 2010–2014 and 2015–2019 dissimilarity index distri-
bution using the comparative inference framework presented above. The p-val-
ues are reported in Table  6. While the dissimilarity index based on published 
population estimates of each MSA increases or decreases from 2010–2014 to 
2015–2019, only a few are statistically significant after accounting for its vari-
ance. The segregation between white and black residents decreases significantly 
in Los Angeles-Long Beach-Glendale MD, Salinas MSA, and Stockton-Lodi 
MSA but increases significantly in Visalia-Porterville MSA (p-value < 0.05). The 
segregation between white and Asian residents decreases significantly in San 
Francisco-Redwood City-South San Francisco MD.

We also perform the same analysis for the H index with similar results. We 
find, for example, that the ratio of MOE(HWB,R) to MOE(HWB, S)  increases as 
the number of census tracts increases and the minority percentage decreases. The 
comparative inference has slightly different results although as shown in Table 7. 
Comparisons based on the entropy index show that segregation between white 
and black residents decreases in Fresno MSA and Los Angeles-Long Beach-
Glendale MD but increases in Visalia-Porterville MSA. The segregation between 
white and Asian residents decreases significantly in San Francisco-Redwood 
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City-South San Francisco MD and Fresno MSA but increases significantly in 
Santa Cruz-Watsonville MSA and Santa Maria-Santa Barbara MSA.

Finally, we compare the 2010–2014 and 2015–2019 multigroup entropy index 
( HWBA ) by integrating white, black, and Asian population at census tracts. The results 
are presented in Table 8. After integrating both black and Asian population, only San 
Francisco-Redwood City-South San Francisco MD and Fresno MSA are showing sta-
tistically significant decrease in the segregation level. None of the MSAs are showing 
statistically significant increase in the segregation level.

Table 6   Comparative inference of dissimilarity index

***p < 0.01, **p < 0.05

MSA D
WB

2019 − D
WB

2014 p-value D
WA

2019 − D
WA

2014 p-value

Anaheim-Santa Ana-Irvine MD − 0.028 0.59 0.002 0.73
Bakersfield MSA 0.011 0.64 0.002 0.94
Chico MSA 0.011 0.86 − 0.044 0.31
El Centro MSA − 0.015 0.78 0.045 0.61
Fresno MSA − 0.040 0.18 − 0.035 0.08
Hanford-Corcoran MSA − 0.095 0.06 − 0.059 0.24
Los Angeles-Long Beach-Glendale MD − 0.034 0.00 *** 0.001 0.86
Madera MSA 0.055 0.48 0.085 0.24
Merced MSA 0.022 0.69 − 0.004 0.90
Modesto MSA 0.031 0.49 − 0.022 0.51
Napa MSA 0.054 0.32 0.002 0.96
Oakland-Hayward-Berkeley MD − 0.004 0.72 − 0.003 0.67
Oxnard-Thousand Oaks-Ventura MSA 0.010 0.84 0.009 0.63
Redding MSA − 0.005 0.95 − 0.003 0.96
Riverside-San Bernardino-Ontario MSA − 0.001 0.97 − 0.014 0.34
Sacramento-Roseville-Arden-Arcade MSA − 0.004 0.76 − 0.003 0.76
Salinas MSA − 0.067 0.05 − 0.029 0.30
San Diego-Carlsbad MSA − 0.011 0.64 − 0.010 0.30
San Francisco-Redwood City-South San 

Francisco MD
− 0.012 0.57 − 0.030 0.00 ***

San Jose-Sunnyvale-Santa Clara MSA 0.029 0.50 − 0.004 0.53
San Luis Obispo-Paso Robles-Arroyo 

Grande MSA
− 0.020 0.78 − 0.015 0.72

San Rafael MD − 0.020 0.73 0.013 0.70
Santa Cruz-Watsonville MSA − 0.004 0.96 0.037 0.27
Santa Maria-Santa Barbara MSA 0.053 0.34 0.040 0.17
Santa Rosa MSA 0.002 0.97 − 0.004 0.91
Stockton-Lodi MSA − 0.048 0.05 ** 0.000 1.00
Vallejo-Fairfield MSA − 0.004 0.84 − 0.005 0.78
Visalia-Porterville MSA 0.116 0.04 ** 0.009 0.84
Yuba City MSA − 0.032 0.68 0.028 0.32
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Discussion

Focusing first on the substantive results of our comparative analysis, we find 
clear heterogeneity in residential segregation dynamics for different racial 
groups in California over the last decade. Specifically, while we find that in 
many places, segregation has not changed dramatically, those places in which it 

Table 7   Comparative inference of entropy index

***p < 0.01, **p < 0.05

MSA H
WB

2019 − H
WB

2014 p-value H
WA

2019 − H
WA

2014 p-value

Anaheim-Santa Ana-Irvine MD − 0.007 0.81 0.00 0.66
Bakersfield MSA 0.023 0.12 0.00 0.78
Chico MSA 0.008 0.83 − 0.03 0.32
El Centro MSA 0.001 0.97 0.02 0.63
Fresno MSA − 0.039 0.04 ** − 0.03 0.00 ***
Hanford-Corcoran MSA − 0.041 0.10 − 0.01 0.62
Los Angeles-Long Beach-Glendale MD − 0.036 0.00 *** 0.01 0.22
Madera MSA 0.013 0.70 0.03 0.30
Merced MSA 0.013 0.56 0.00 0.86
Modesto MSA 0.013 0.59 − 0.01 0.33
Napa MSA 0.059 0.12 − 0.01 0.83
Oakland-Hayward-Berkeley MD 0.006 0.59 0.00 0.96
Oxnard-Thousand Oaks-Ventura MSA 0.013 0.59 0.00 0.69
Redding MSA − 0.011 0.78 0.00 0.96
Riverside-San Bernardino-Ontario MSA − 0.002 0.88 − 0.01 0.62
Sacramento-Roseville-Arden-Arcade MSA − 0.006 0.64 0.00 0.61
Salinas MSA − 0.027 0.21 − 0.01 0.51
San Diego-Carlsbad MSA − 0.014 0.36 − 0.01 0.09
San Francisco-Redwood City-South San 

Francisco MD
− 0.005 0.78 − 0.02 0.00 ***

San Jose-Sunnyvale-Santa Clara MSA 0.018 0.48 0.00 0.67
San Luis Obispo-Paso Robles-Arroyo 

Grande MSA
0.007 0.85 0.01 0.60

San Rafael MD − 0.033 0.34 0.00 0.75
Santa Cruz-Watsonville MSA 0.006 0.86 0.03 0.02 **
Santa Maria-Santa Barbara MSA 0.015 0.57 0.03 0.01 ***
Santa Rosa MSA 0.009 0.75 0.00 0.88
Stockton-Lodi MSA − 0.026 0.11 0.01 0.49
Vallejo-Fairfield MSA 0.008 0.57 − 0.02 0.17
Visalia-Porterville MSA 0.071 0.01 *** 0.02 0.47
Yuba City MSA 0.000 1.00 0.03 0.12
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has increased or decreased greater than we would expect at random differ with 
respect to location, racial group, and segregation index. In two of California’s 
largest metro regions, Los Angeles and San Francisco, residential segregation 
appears to be decreasing, albeit nonuniformly. San Francisco has borne witness 
to falling Asian segregation, as measured by both the Dissimilarity index and 
the Entropy index. For Asian Americans, this appears to be a clear trend in a 
socially positive direction, as two different measures of unevenness are decreas-
ing in agreement (Massey & Denton, 1988). In Los Angeles, a similar story 
is apparent for Black Americans, with both Dissimilarity and Entropy indices 
showing statistical evidence of a decrease over the 2010–2019 period. Given the 

Table 8   Comparative inference of multigroup entropy index

***p < 0.01, **p < 0.05

MSA H
WBA

2019 − H
WBA

2014 p-value

Anaheim-Santa Ana-Irvine MD 0.001 0.86
Bakersfield MSA 0.014 0.28
Chico MSA − 0.017 0.49
El Centro MSA 0.003 0.91
Fresno MSA − 0.032 0.01**
Hanford-Corcoran MSA − 0.029 0.10
Los Angeles-Long Beach-Glendale MD − 0.012 0.12
Madera MSA 0.022 0.37
Merced MSA 0.004 0.82
Modesto MSA − 0.005 0.77
Napa MSA 0.009 0.71
Oakland-Hayward-Berkeley MD 0.004 0.61
Oxnard-Thousand Oaks-Ventura MSA 0.006 0.61
Redding MSA − 0.005 0.86
Riverside-San Bernardino-Ontario MSA − 0.004 0.74
Sacramento-Roseville-Arden-Arcade MSA − 0.006 0.48
Salinas MSA − 0.014 0.34
San Diego-Carlsbad MSA − 0.011 0.22
San Francisco-Redwood City-South San Francisco MD − 0.019 0.00**
San Jose-Sunnyvale-Santa Clara MSA 0.000 0.99
San Luis Obispo-Paso Robles-Arroyo Grande MSA 0.005 0.81
San Rafael MD − 0.016 0.32
Santa Cruz-Watsonville MSA 0.026 0.10
Santa Maria-Santa Barbara MSA 0.027 0.08
Santa Rosa MSA 0.001 0.94
Stockton-Lodi MSA − 0.002 0.83
Vallejo-Fairfield MSA − 0.002 0.86
Visalia-Porterville MSA 0.035 0.10
Yuba City MSA 0.022 0.19
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magnitude of the Dissimilarity index for Black Americans in Los Angeles, this 
decrease seems particularly notable, given the discussion of statistical versus 
substantive significance provided earlier. Here we have a statistically significant 
decrease in what Massey (1978) might describe as a substantively interesting 
segregation measure.

What remains unclear is why these dynamics diverge for different racial 
groups in their respective metro regions. That is, if racial residential segregation 
is decreasing in San Francisco, why is it only apparent for Asian Americans, and 
conversely, why is Black segregation falling in Los Angeles but not any other 
group? And what might these results suggest about larger urban and neighbor-
hood dynamics, like gentrification and decline, and their unique manifestations 
in different metro regions? The repeated analyses of VRT rule out issues of sam-
pling bias from the ACS, leaving structural differences in the housing, employ-
ment, and social systems between each city ripe for further investigation.

Another important question for further analysis is why indices that measure 
the same dimension of segregation may differ in their inferential results. In the 
Fresno metropolitan region, our analyses of the Entropy index show evidence of 
a statistically significant decrease for both Black Americans and Asian Ameri-
cans, but the same does not hold true for the Dissimilarity index. Apart from 
these substantive findings, our results here demonstrate a new technique for 
incorporating information about sampling error present in the ACS and cor-
recting for the bias it can induce in segregation indices and secondary analy-
ses thereof. Unlike methods proposed elsewhere, our technique avoids the need 
for microdata, relying only on published Variance Replicate Tables, and can be 
applied easily using existing open-source software. Further, our methods yield 
different results than the simulation technique described by Napierala and Den-
ton (2017), in that our error margins are larger than those using the simulated 
approach when the number of census tracts is large and minority percentage 
is low and the converse is true when the number of census tracts is small and 
minority percentage is high. And, as we show, ensuring accurate estimates of 
error margins is especially important in the context of comparative segregation 
inference.

It is also worth noting that the proposed method will likely underestimate the 
variance of the segregation measures when a count estimate is zero because all 
variance replicates estimates are also published as zero when the published esti-
mate is zero even though the sampling error still exists (USCB 2020). Cautions 
should be given until the Census Bureau improve its approach for measuring 
sampling errors on zero estimates.

Conclusion

In this paper, we develop a novel technique for incorporating estimates of uncer-
tainty from the U.S. Census American Community Survey (ACS) into analyses 
of residential segregation. Whereas, recent scholarship has shown that ACS sam-
pling errors can artificially inflate segregation indices and proposes a simulation 



1 3

American Community Survey (ACS) Data Uncertainty and the… Page 21 of 23  5

technique to address the issue, we advocate the use of ACS Variance Replicate 
Tables as an alternative method for estimating margins of error associated with 
segregation indices. Using the lenses of statistical inference and comparative 
segregation dynamics, we demonstrate first that our method generates different 
results than simulation-based techniques and second that these differences can 
result in large, substantive differences when constructing and interpreting a meas-
ure of statistical significance.

Following, we use the state of California as a laboratory for examining the util-
ity of our technique by examining ACS data from the 2011–2014 and 2015–2019 
samples. We find that the vast majority of metropolitan regions in the state have 
not witnessed dramatic changes in their levels of residential segregation, but 
that some places have indeed changed in ways that are analytically clear, statisti-
cally distinct from a random process, and substantively interesting to social sci-
entists. Nevertheless, this change is heterogeneous with respect to both location 
and demographic groups. Aside from illuminating differences in the evolution of 
California cities over the last decade, our analysis also raises important questions 
about why certain cities are changing more than others, and why they may do so 
for certain groups but not others. Although it is beyond the scope of this paper, 
we argue this finding underscores the importance of calculating and testing sev-
eral segregation indices in each study location to get a comprehensive picture that 
explores diverging findings among groups and across different dimensions (Mas-
sey et al., 1996). Although we examine only the Dissimilarity and Entropy indi-
ces in this paper, the methods we develop and present are applicable to any index 
and we hope others will apply these methods to other indices and other locations 
throughout the U.S.A.

Understanding how segregation changes over time remains a critical endeavor 
for both social science research and public policy. In the U.S.A., the changing 
data landscape complicates this pursuit substantially because ACS sampling 
errors can inflate the observed differences between successive observations, 
making it appear as though segregation has increased or decreased in ways that 
appear meaningful but result from statistical artifacts. While other scholars have 
proposed methods to account for ACS sampling error, we find that those methods 
are ineffective because they fail to account for covariance in the characteristics 
of ACS respondents. Using the variance replicate tables published by the Cen-
sus Bureau, we show that when this covariance is taken into account properly, 
the estimated margins of error for a given segregation statistic differ systemati-
cally from those generated by simulation-based methods. As a result, we argue 
that incorporating additional information from the VRT is the best method for 
understanding how segregation has changed in the U.S.A. over time, and as an 
additional benefit we show how these improved variance estimates can facilitate 
statistical inference with respect to these changes. By adopting the methods we 
develop in this paper, we argue that policy-makers and researchers will be better 
equipped to understand the shifting demographic and housing characteristics in 
American metropolitan areas, because they can be assured that observed differ-
ences are not magnified by sampling error.
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