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Abstract
This paper examines the effects of the 2012 revisions to the damage predictions of
an anticipated Nankai Trough megathrust earthquake on subsequent inter-
municipality migration in Japan’s coastal areas. We find that an increase in
predicted tsunami height—rather than anticipated seismic movements—after the
2012 revision is associated with a subsequent reduction in net migration. While
the reducing effect of tsunami predictions on in-migration persisted throughout the
study period, the effect on out-migration was only temporary. Moreover, working-
age people are more likely to respond to tsunami risk and avoid moving to
municipalities with a high tsunami risk after the revisions.
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Introduction

The 2011 Great East Japan Earthquake and subsequent tsunami evoke the terror
unleashed by tsunamis and underscore the need to promote hazard maps and
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evacuation drills to prepare for future calamities. More than 90% of the catastrophe’s
15,899 deaths have been attributed to drowning during the tsunami. Due to growing
concern over potential megathrust earthquakes after the 2011 catastrophe, the Japanese
government revised the damage estimates for another potential megathrust
earthquake—the Nankai Trough earthquake—in 2012, updating them from previous
ones in 2001 and 2003.

The Nankai Trough earthquake is a type of megathrust earthquake that had been
anticipated for decades by seismology researchers and policymakers in Japan (Ando
1975). The 2012 revisions to damage estimates include maximum possible seismic
movements and their consequent tsunami height in each municipality, together with
human and economic losses that may be triggered by the next Nankai Trough earth-
quake. According to this estimate, the total death toll in the worst-case scenario would
be as much as 323,000, with 71% due to a tsunami. Economic losses are estimated at
approximately 170 trillion Japanese yen (JPY) in assets and 45 trillion JPY in the
degradation of production and services.

This paper investigates the effect of hazard information regarding antici-
pated major disasters on migration behavior. Specifically, we employed a
difference-in-differences type strategy, comparing municipalities with changes
in tsunami predictions from previous ones to those without any changes, to
estimate the causal effects of the 2012 revisions on migration patterns in
potentially affected areas.

There is a growing body of literature that investigates the relationship between
migration and environmental catastrophes (Hunter 2005; Schultz and Elliott 2013;
Hunter et al. 2015). Most previous studies focus on “reactive” migration—i.e., migra-
tion responses after observed disaster events. For example, previous studies examine
the impact of earthquakes (Xu and Wang 2019), flooding (Boustan et al. 2012; Gray
and Mueller 2012; Husby et al. 2014), and hurricanes (Myers et al. 2008; Loebach
2016; Deryugina 2017) on subsequent migration and population changes. A general
finding in these studies is that disasters tend to increase net migration away from
disaster-stricken areas, partly due to changing risk perception toward similar incidents
in the future. However, reactive migration can also depend upon post-disaster invest-
ment in protective infrastructure (Boustan et al. 2012; Husby et al. 2014), disaster aid
and other government transfers to affected areas (Deryugina 2017), and changing labor
market conditions due to disaster damage and restoration (Glay and Mueller, 2012).
Hence, the relationship between observed disaster events and subsequent migration is
rather complex.

Although literature is relatively scarce, there are also several recent studies
focusing on “anticipatory” migration—i.e., migration responses to anticipated disasters
that are yet to occur. Existing works on this topic primarily center on environmental
migration in the context of climate change (Millock 2015). Such works typically
assume that the ex-ante climate-related risk can be represented by the past variability
of local temperature (Dillon et al. 2011), precipitation (Dallmann and Millock 2017), or
both (Bohra-Mishra et al. 2017).

Climate variability can influence risk perceptions of climate change and, thereby,
migration patterns. However, as Bardsley and Hugo (2010) argue, past climate vari-
ability has other processes through which it affects migration patterns. For example,
greater climate variability is often associated with past weather anomalies such as
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above-average rainfall and drought. These weather anomalies, particularly minor ones,
usually do not come with sudden-onset disasters causing significant human and
economic losses. Nonetheless, they can change long-term trends in resource conditions,
such as agricultural productivity and water availability, potentially affecting migration
patterns.

In contrast, revisions to hazard information alter risk perception toward potential
catastrophes while not substantially affecting other factors that induce disaster-related
migration. However, little is known about migration responses to the natural hazard
information, although there are several empirical studies investigating house price
responses (Brookshire et al. 1985; Nakanishi 2016; Singh 2019). To our knowledge,
this paper is the first to present empirical evidence on anticipatory migration in the
context of low-frequency but high-consequence natural hazards. Furthermore, since
hazard information is an essential way to communicate potential risks to the public,
how people react to such information has important policy implications regarding
adaptation to environmental changes.

Our empirical results indicate that people have tended to avoid moving to
municipalities with a high risk of tsunami since the 2012 revisions, implying that
updated predictions could decrease the overall population exposure to a tsunami
hazard. However, further analysis also reveals that migration responses to the updated
hazard information can be heterogeneous among population subgroups. We find that
migration responses are substantially larger among the working-age population than
among the elderly population. These results suggest that updated predictions might
worsen a community’s vulnerability conditions whereby the elderly are left behind in
high-risk areas.

Since the updated damage predictions for the Nankai Trough earthquake were
released shortly after the 2011 earthquake, our empirical results could be driven by the
2011 event, rather than by the 2012 revisions to the hazard information. However, we
think this is unlikely for several reasons. First, our empirical analysis solely focuses on
areas potentially affected by the Nankai Trough earthquake, which are geographically
separated from areas directly affected by the 2011 earthquake (see the “Anticipated
Nankai Trough earthquake and damage predictions” section for detail). Second, our
empirical analysis uses a set of measures for the 2011 earthquake damage that can
effectively control for reactive migration in our dataset. Third, we even further restrict
our sample to municipalities that did not observe any 2011 tsunami damage, which
does not change our main findings.

The rest of the paper is organized as follows. The “Anticipated Nankai Trough
earthquake and damage predictions” section summarizes background information
about Nankai Trough earthquakes and the CDMC’s damage predictions. The “Data
and variables” section describes the dataset and variables used in the analysis. The
“Empirical analysis” section explains our empirical model and provides empirical
results. The “Conclusion” section concludes the paper.

Anticipated Nankai Trough earthquake and damage predictions

The Nankai Trough earthquake is a type of megathrust earthquake anticipated to occur
along the Nankai Trough off the Pacific coast. Figure 1 illustrates the location of the
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Nankai Trough together with the epicenter of the 2011 earthquake and the resulting
tsunami areas. It shows that areas potentially affected by the Nankai Trough earthquake
are largely distant from the epicenter of the 2011 earthquake and the Fukushima
Nuclear Power Plant. As a result, these potentially affected areas do not geographically
overlap either with the 2011 tsunami areas or with areas directly affected by the nuclear
accident.

The Nankai Trough is located at the boundary where the Philippine Sea Plate is
subducting beneath the Eurasian Plate, forming an active subduction zone. As a result,
the area has witnessed a number of megathrust earthquakes, even in the past. Historical
records show that such earthquakes have occurred since as early as the seventh century,
with a returning interval of approximately 100–200 years (Ishibashi 2004).

Historical records on the harm caused by these earthquakes indicate that the
Nankai Trough is divided into three fault segments: the Nankai, Tonankai, and Tokai
segments (Furumura et al. 2011; see also Fig. 1). The most recent megathrust earth-
quake in the area was the 1946 Showa Nankai earthquake, triggered by the rupture of
the Nankai segment, which occurred shortly after the 1944 Showa Tonankai earth-
quake, triggered by the rupture of the Tonankai segment. The most recent megathrust
earthquake at the Tokai segment dates back to the 1854 Ansei earthquake, meaning that
the Tokai segment is very likely to precipitate a great earthquake in the near future.
Furthermore, historical evidence indicates that the rupture of one segment is often
followed by the rupture of other ones, resulting in a single gigantic event.

Given these facts, the Japanese government (the Headquarters for Earthquake
Research Promotion) estimates a 70–80% chance that such an incident will take place
within the next 30 years. The government has also provided detailed damage predic-
tions for such earthquakes, which typically include possible seismic movements and

Fig. 1 Nankai Trough and the 2011 Great East Japan Earthquake
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resulting tsunami height, as well as economic and human losses under a variety of
scenarios. Previous predictions are available for Tokai earthquakes, released in 2001,
and for Nankai and Tonankai earthquakes, released in 2003.

More recently, these separate predictions were combined and revised in 2012 due
to growing concern over potential megathrust earthquakes after the 2011 catastrophe.
Since the 2011 tsunami engendered human and property damage that was far greater
than previously anticipated, the 2012 report substantially upgraded the scale and spatial
scope of a potential earthquake. While prior estimates assumed an earthquake of
magnitude from 8.0 to 8.4, the 2012 estimates assumed a magnitude of 9.1, which is,
based on up-to-date scientific evidence, thought to be the largest possible magnitude in
the area. As a result, forecasted seismic movements and tsunami height were raised in
almost all municipalities. In addition, changes in tsunami prediction from previous
estimates differ substantially across municipalities, primarily due to data and method-
ological updates. While most municipalities saw substantial but modest increases in
their predicted tsunami heights, a small number saw a drastic rise from the previous
estimates. This renders a substantial inter-municipality variation in updated information
regarding predicted tsunami height.

Data and variables

Inter-municipality migration

The data on migration comes from the Report on Internal Migration, compiled by the
Statistics Bureau of Japan. The report provides information on in- and out-migration, as
well as the total number of residents for all municipalities. The dataset is derived from
the Basic Resident Registry (BRR) system. The BRR is a registry of residents
maintained by local governments; resident registration is compulsory according to
the Basic Resident Registration Act of 1967.

The in-migration rate is defined as the total number of in-migrants to municipality
i during year t, divided by the total population of municipality i at the beginning of year
t. The out-migration rate is defined in the same way. We also construct the net migration
rate, which is simply defined as the in-migration rate minus the out-migration rate.

Predicted seismic movements and tsunami height

The CDMC’s latest report estimates the maximum possible seismic movements and
their resulting tsunami height for all municipalities, which were updated from the
previous ones released in 2003. We use a change in predicted tsunami height between
the 2003 and 2012 CDMC reports as our main variable of interest.

The CDMC report also provides information on predicted seismic movements
measured by the Japan Meteorological Agency’s (JMA) seismic intensity scale. The
JMA seismic intensity scale, which is gauged with a seismic intensity meter, provides a
measure of the strength of seismic motion and is expressed in levels of seismic intensity
from 0 (weakest) to 7 (strongest). Intensities of 5 and 6 are further divided into two
levels, lower/upper 5 and lower/upper 6. We regard earthquake ground motion with a
JMA seismic intensity scale of upper 6 or greater as a megathrust earthquake. This is
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because a wide range of utility services (including gas, water, and electricity) may cease
for homes and businesses over a wide range of areas in the event of an earthquake with
this level of JMA seismic intensity. A dummy variable for differences in predicted
seismic movements is 1 if a municipality’s maximum possible seismic movement is
upper 6 or greater in 2012, but lower 6 or less in the 2003 report. Otherwise, it is 0.

Control variables

We also use a number of municipality-level control variables that can potentially
influence in- and out-migration rates. As mentioned earlier, a major concern in our
empirical analysis is that the 2011 earthquake possibly impacted observed migration
patterns during our sample period. To control for damage from the 2011 earthquake and
its influence on migration patterns, we include the following variables in our regression
models: deaths and injuries per 10,000 residents from the 2011 earthquake and tsunami,
percentage of residents living in the 2011 tsunami-affected areas, number of buildings
damaged by the earthquake, whether municipalities are covered by the Disaster Relief
Act, and the distance from the Fukushima Nuclear Power Plant. All of these variables
interacted with a post-2011 dummy to capture the potential migratory impact of the
2011 earthquake—i.e., reactive migrations. Note, however, that municipalities used in
our empirical analysis experienced relatively minor damage from the 2011 earthquake
since they are largely distant from the 2011 earthquake areas (see the next section for
details).

We also included the probability of a major earthquake in order to control for
underlying risk. The data on earthquake probability is taken from the probabilistic
seismic hazard map (PSHM) (National Research Institute for Earth Science and
Disaster Resilience 2016). The PSHM shows the probability of an earthquake with a
JMA seismic intensity of upper 6 or greater occurring within the next 30 years in a
given area. The original data give the earthquake probabilities for every 250 m × 250 m
grid cells all over Japan. In the following analysis, the original data are spatially
aggregated (i.e., taking a spatial average) at the municipality level.

In addition, a set of municipality characteristics is also included. These include
age distribution (percent of the population aged 0–14 and 65+), population density, per
capita income, the number of airports and railway stations, length (miles) of public
roads, and the number of manufacturing establishments. A brief description and the
data source of these control variables are given in Appendix Table 9.

Estimation sample

We compile the municipality-level longitudinal data for 2008–2015. Since the updated
hazard information was released in 2012, the first half of our dataset represents the pre-
treatment period (2008–2011), and the rest represents the post-treatment period (2012–
2015). Our original dataset covers all 1741 municipalities as of January 2015. How-
ever, since the predicted tsunami damages are highly concentrated along the coastal
areas of southeast Japan, we restrict our sample in the following way.

Based on the Act on Special Measures for Promotion of Nankai Trough Earth-
quake Disaster Management of 2013, municipalities in 26 prefectures are designated to
reinforce the evacuation plan in the event of a tsunami triggered by an earthquake.
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Coastal municipalities in these prefectures are most likely to be affected by seismic
tremors and tsunamis produced by the next Nankai Trough megathrust earthquake. In
comparison, neighboring inland municipalities are likely to be impacted by seismic
tremors, but not by a high tsunami. Hence, neighboring municipalities can serve as an
ideal control group for coastal municipalities.

In the following analysis, we restrict our sample to these coastal and neighboring
municipalities. There are a number of municipal mergers during our sample period. The
data for municipalities involved in the mergers are rearranged so that pre- and post-
merge data are comparable. For example, if municipalities A and B are consolidated
into municipality C, then we aggregate the data for the municipalities in the pre-merger
periods. Our sample restriction leads to 430 unique municipalities, of which 251 are
coastal and 179 are inland. Consequently, the dataset used for our empirical analysis
includes 3440 observations (i.e., 430 municipalities for 8 years, 2008–2015).

Figure 2 shows their locations. Compared to Fig. 1, the municipalities in our
empirical analysis, in most cases, do not geographically overlap with the 2011 tsunami
areas or those directly affected by the Fukushima nuclear accident. Our sample
restriction, therefore, minimizes the migration responses to the 2011 earthquake itself
and allows us to highlight the role of updated hazard information on migration
behavior.

Descriptive statistics

Tables 1 and 2 present the summary statistics and distribution of municipalities in terms
of the changes in predicted tsunami height between 2003 and 2012. Table 2 shows that

Fig. 2 Locations of municipalities in the estimation sample
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about half of all municipalities in our sample (N = 195) see no changes in their tsunami
predictions. Most of these are inland municipalities that witness no tsunami damage

Table 1 Summary statistics

Variables Mean (SD) Min. Max.

Net migration rate (annual, %) − 0.227 (0.684) − 8.092 5.096

In-migration rate (annual, %) 3.593 (1.753) 1.240 21.019

Out-migration rate (annual, %) 3.820 (1.511) 1.800 20.833

Changes in predicted tsunami height (m) 2.984 (4.395) − 1.000 25.000

Predicted seismic intensity (1 if upper 6 or greater in the 2012 report
and lower 6 or less in the 2003 report)

0.307 (0.461) 0.000 1.000

Number of deaths from the 2011 earthquake (per 10,000 residents)† 0.010 (0.112) 0.000 2.040

Number of injuries from the 2011 earthquake (per 10,000 residents)† 0.080 (0.450) 0.000 5.802

% residents living in the 2011 tsunami-affected areas† 0.320 (2.787) 0.000 42.456

Number of buildings damaged by the 2011 earthquake (per 10,000
residents)†

15.14 (88.73) 0.000 1176.7

Municipalities covered by the Disaster Relief Act (1 if yes)† 0.060 (0.238) 0.000 1.000

Distance from the Fukushima Daiichi Nuclear Power Plant (km)† 605.7 (320.4) 167.4 1619.1

Probability of an earthquake with JMA seismic intensity of upper 6 or
greater

0.088 (0.110) 0.000 0.614

% aged 0–14 12.38 (2.41) 3.50 22.23

% aged 65+ 28.38 (7.45) 10.74 56.30

Population density (per sq. km) 1459.9 (2922.4) 2.157 18,062.0

Log of per capita income (10,000 JPY) 4.732 (0.355) 3.790 6.628

Number of major airports (per sq. km) 0.001 (0.010) 0.000 0.161

Number of railway stations (per sq. km) 0.125 (0.426) 0.000 5.886

Miles of public roads (per sq. km) 6.953 (5.505) 0.491 26.175

Number of manufacturing establishments (per sq. km) 2.491 (6.085) − 0.013 96.938

Sample size 3440

† Summary statistics for damage from the 2011 earthquake are for years between 2011 and 2015 (N = 2150)

Table 2 Changes in predicted tsunami height

Δpredicted tsunami
height

Number of
municipalities

(%) Δpredicted tsunami
height

Number
of municipalities

(%)

0 m† 195 (45.3) 7 m 14 (3.3)

1 m 46 (10.7) 8 m 12 (2.8)

2 m 32 (7.4) 9 m 11 (2.6)

3 m 23 (5.3) 10 m 11 (2.6)

4 m 28 (6.5) 11–14 m 16 (3.7)

5 m 14 (3.3) 15 m+ 11 (2.6)

6 m 17 (4.0) Total 430 (100.0)

† 0 m includes one municipality, with lower prediction in 2012 than in 2003
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predictions in both the 2003 and 2012 reports. In coastal municipalities, changes in
predicted tsunami height vary substantially. While a small number of coastal munici-
palities (N = 17) experience no changes in tsunami predictions, shifts in tsunami height
are as high as 25 m in some municipalities. There is only one inland municipality that
has a non-zero predicted tsunami height. We choose to exclude this municipality from
our sample but this does not change our empirical results.

Figure 3 compares the net migration rates between coastal and neighbor-
ing inland municipalities over our sample period. Levels and trends in net
migration are similar between the two groups prior to the release of revised
hazard information in 2012 (dashed line). After 2012, however, the net migra-
tion rate becomes substantially smaller in coastal municipalities than in their
inland counterparts.

We also estimate the regression model with interaction terms between a full set of
year dummies and treatment (i.e., coastal municipality) indicators to see whether trends
in migration rates are the same between coastal and inland municipalities. Controlling
for a set of municipality-level characteristics and prefecture and year fixed effects, we
cannot find any strong evidence of differential pre-treatment migration trends between
coastal and neighboring inland municipalities.

Empirical analysis

Empirical model

Our main specification is as follows:

ypmt ¼ αþ β0Δsm þ β1Δsm � dt þ x
0
pmtγ þ δp þ ϕt þ εpmt; ð1Þ
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Fig. 3 Net migration rates in coastal and inland municipalities
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where ypmt is our dependent variable (i.e., net migration, in-migration, or out-migration
rate) in municipality m in prefecture p in year t. dt is a dummy variable for the period
after the release of the 2012 report. Δsm represents the differences in predicted seismic
movements and their resulting tsunami height between the CDMC’s reports from 2003
and 2012. The interaction term, Δsm × dt, captures the effect of revised earthquake and
tsunami hazard information released in 2012 on migration rates. xpmt contains a set of
municipality-level characteristics that could potentially affect migration. δp and ϕt are
prefecture and year fixed effects, respectively, and εpmt signifies random errors.

We expect that β0 equals 0 because information on Δsm is not available to
people before the revisions in 2012. On the other hand, if people respond to
the revised earthquake and tsunami hazard information after the release of the
CDMC’s report, β1 is expected to be negative for the net migration/in-migration
rates and positive for the out-migration rate.

The key assumption for Eq. (1) is that the treatment should be independent of the
idiosyncratic shocks, conditional on observed covariates (x) and a set of fixed effects
(δp and ϕt). This assumption may not be plausible if there are unobserved heterogeneity
at the municipality level and/or location-specific time trends. To control for potential
unobserved heterogeneity at the municipality level and location-specific time trends,
we add municipality fixed effects and prefecture×year fixed effects to Eq. (1). Our
preferred specification is as follows:

ypmt ¼ αm þ β1Δsm � dt þ x
0
pmtγ þ ϕpt þ εpmt; ð2Þ

where αm represents municipality fixed effects and ϕpt denotes prefecture×year fixed
effects. Δsm is dropped from the specification due to the municipality fixed effects.
Again, our coefficient of interest is β1, which indicates people’s response to the revised
earthquake and tsunami hazard information.

We also consider a number of alternative specifications to Eq. (2). First, we test
the nonlinear effect of tsunami hazard information by introducing a set of dummy
variables for changes in predicted tsunami height. Second, we test the time-varying,
post-treatment effects by replacing dt with a set of year dummies for the post-treatment
period. Third, we check whether responses differ between the elderly and working-age
populations by using age-specific migration rates as our dependent variable.

Main results

Table 3 presents our main empirical results. All estimations include municipality-level
controls (discussed in the “Control variables” section), but the coefficient estimates of
these control variables are not reported in the table. All standard errors are clustered at
the municipality level.

Our regression results for the net migration rate are presented in columns [1] and
[2], which correspond to Eqs. (1) and (2), respectively. These results indicate that,
regardless of the model specification, an increase in predicted tsunami height signifi-
cantly reduces net migration after the release of the 2012 CDMC’s report. Estimated
coefficients show that an additional 1-m increase in predicted tsunami height after the
revision leads to a reduction of net migration rate by 0.017 and 0.026 percentage points,
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respectively. These numbers seem quite small, but given that the sample average of net
migration is also small (−0.227%), an additional 1-m increase in tsunami height can
lower the net migration rate by 7.5–11.4%.

Results for in- and out-migration rates are presented in columns [3]–[6]. These
results show that changes in predicted tsunami height after the revision can affect both
in- and out-migrations. A higher tsunami prediction can decrease the inflow of people
into a municipality, and also increase the outflow of local residents. Based on our
preferred specifications with municipality fixed effects (columns [4] and [6]), the
results indicate that these two effects are similar in terms of magnitude. The estimated
coefficients suggest that the average coastal municipality experienced 93.1 fewer in-
migrations and 88.3 more out-migrations due to the revised tsunami prediction, leading

Table 3 Migration responses to revised hazard information

Dependent variables [1] [2] [3] [4] [5] [6]

Net migration rate (%) In-migration rate (%) Out-migration rate (%)

Coef. Coef. Coef. Coef. Coef. Coef.

(S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.)

Changes in predicted

tsunami height

− 0.0060 0.0183 0.0243

(0.0039) (0.0156) (0.0155)

Changes in predicted

tsunami height × after

the 2012 revision

− 0.0169 *** − 0.0258 *** − 0.0117 ** − 0.0133 *** 0.0052 0.0126 ***

(0.0048) (0.0052) (0.0053) (0.0040) (0.0036) (0.0033)

Predicted seismic

intensity (1 if upper 6

or greater in 2012 but

lower 6 or less in

2003)

0.0433 0.2097 * 0.1664

(0.0485) (0.1104) (0.1022)

Predicted seismic

intensity × after the

2012 revision

− 0.0048 − 0.0341 − 0.0581 − 0.0390 − 0.0534 − 0.0049

(0.0371) (0.0507) (0.0462) (0.0364) (0.0428) (0.0373)

Fixed effects

Prefecture Yes No Yes No Yes No

Municipality No Yes No Yes No Yes

Year Yes No Yes No Yes No

Prefecture × year No Yes No Yes No Yes

Adjusted R2 0.4249 0.5777 0.6827 0.9594 0.5716 0.9501

Sample size 3440 3440 3440 3440 3440 3440

***, **, and * indicate the estimated coefficients are significant at the 1, 5, and 10% levels, respectively.
Robust standard errors clustered by municipality are presented in the parentheses. The following control
variables are included in all estimations, but results are omitted from the table: the number of deaths/injuries
from the 2011 earthquake and tsunami (per 10,000 residents), % of population living in the 2011 tsunami-
affected areas, number of buildings damaged by the 2011 earthquake, municipalities covered by the Disaster
Relief Act, distance from the Fukushima Nuclear Power Plant, predicted probability of an earthquake with
JMA seismic intensity of upper 6 or greater, % of population aged 0–14, % of population aged 65+, population
density, income per capita, the number of airports and railway stations, miles of public roads, the number of
manufacturing establishments
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to 181.4 net population decrease. As for the revised seismic intensity predictions, we do
not find any significant effects on all three migration measures.

Nonlinearity of the impact of predicted tsunami height

In order to examine the possible nonlinearity of the treatment effect, we categorize the
municipalities into 13 groups based on changes in their tsunami height and create a set
of dummy variables for these categories. Figure 4 illustrates the estimation results. This
figure presents the marginal effects of the changes in predicted tsunami height at each
point Δsm, where vertical lines show 95% confidence intervals testing whether esti-
mated marginal effects are different from the baseline without any changes (i.e.,Δsm =
0).

Overall, as the changes in predicted tsunami height become higher, the net
migration and in-migration rates tend to be lower, and the out-migration rate tends to
be higher. However, in either case, statistically significant effects (as compared to
baseline) can only be found in municipalities with extremely large changes in predicted
tsunami height (more than 10 m).

Time-varying post-treatment effects

Migration responses to the revised earthquake and tsunami hazard information can vary
over time. For example, time-varying post-treatment effects can be observed if the
relocation decision needs time to be realized due to transaction costs, or if people
quickly become accustomed to the new information. In the former case, actual migra-
tion decisions are influenced by revised earthquake and tsunami hazard information
with some time lags. In the latter case, migration responses can be observed only after
the release of new information and dissipate over time.

In order to test the time-varying post-treatment effects, we replace dt in Eq. (2)
with a set of year dummies for the post-treatment period. Table 4 summarizes the
estimation results for this alternative specification, where treatment effects are estimat-
ed and presented separately for each year after 2012.

The effects of predicted tsunami height on in-migration do not seem to dissipate
over time, whereas the effects on out-migration can be found only in years between
2012 and 2014, and the coefficient sizes tend to be smaller in later years. In-migrants
have already decided to relocate for reasons sometimes other than a tsunami hazard.
They can easily substitute their new residence in risky coastal municipalities by the one
in safer inland municipalities nearby. On the other hand, out-migration can be quite
costly due to certain transaction costs. Those who out-migrate from municipalities with
a high tsunami hazard just after the release of the 2012 information are most sensitive to
anticipated tsunami risks. Later out-migrants are more likely to respond to anticipated
tsunami hazards via intra-municipality migration because they know more about their
municipality of residence.

We also find that an increase in seismic intensity predictions is signifi-
cantly associated with a reduction in in-migration, but only for the year
immediately following the dissemination of revised hazard information. How-
ever, the negative effect on in-migration fades quickly over time and is not
large enough to cause long-term leveling effects in our main specification.
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Fig. 4 Nonlinear effect of changes in predicted tsunami height
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Furthermore, we could not find any effect of revised seismic intensity predic-
tions on net migration or out-migration patterns.

Heterogeneous effects across different age groups

In this section, we provide additional empirical results on heterogeneous effects among
different age groups. We compare the migration response between the working-age and

Table 4 Time-varying treatment effects

Dependent variables Net migration rate (%) In-migration rate (%) Out-migration rate (%)

Coef. Coef. Coef.

(S.E.) (S.E.) (S.E.)

Changes in predicted tsunami height

× Year = 2012 − 0.0275 *** − 0.0122 ** 0.0153 ***

(0.0089) (0.0061) (0.0053)

× Year = 2013 − 0.0277*** − 0.0148 ** 0.0130 **

(0.0073) (0.0059) (0.0053)

× Year = 2014 − 0.0235 *** − 0.0100 0.0135 **

(0.0057) (0.0065) (0.0067)

× Year = 2015 − 0.0244 *** − 0.0165 *** 0.0078

(0.0057) (0.0061) (0.0067)

Predicted seismic intensity

× Year = 2012 − 0.0331 − 0.0953 ** − 0.0622
(0.0671) (0.0484) (0.0674)

× Year = 2013 − 0.0881 − 0.0891 * − 0.0009
(0.0730) (0.0505) (0.0557)

× Year = 2014 − 0.1290 ** − 0.0399 0.0891

(0.0655) (0.0527) (0.0629)

× Year = 2015 0.1133 0.0703 − 0.0430
(0.0941) (0.0513) (0.0771)

Fixed effects

Municipality Yes Yes Yes

Prefecture × year Yes Yes Yes

Adjusted R2 0.5783 0.9595 0.9501

Sample size 3440 3440 3440

***, **, and * indicate the estimated coefficients are significant at the 1, 5, and 10% levels, respectively.
Robust standard errors clustered by municipality are presented in the parentheses. The following control
variables are included in all estimations, but results are omitted from the table: the number of deaths/injuries
from the 2011 earthquake and tsunami (per 10,000 residents), % of population living in the 2011 tsunami-
affected areas, number of buildings damaged by the 2011 earthquake, municipalities covered by the Disaster
Relief Act, distance from the Fukushima Nuclear Power Plant, predicted probability of an earthquake with
JMA seismic intensity of upper 6 or greater, % of population aged 0–14, % of population aged 65+, population
density, income per capita, the number of airports and railway stations, miles of public roads, the number of
manufacturing establishments
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elderly populations. To do this, we calculate the migration rate for the working-age
population separately from the elderly population and run the same regression as Eq. (2).
Table 5 displays the regression results. We find that migration responses are substantially
larger among the working-age population compared to the elderly population.

Tsunami prediction in levels and differences

We test an alternative specification that additionally includes the 2012 tsunami predic-
tion levels in our benchmark model to test whether people respond to 2012 tsunami
prediction levels or their changes from previous estimates. The results presented in
Table 6 indicate that changes and levels of tsunami predictions show contrasting effects
on in- and out-migration rates. On the one hand, the changes in predicted tsunami
height have a significant effect on out-migration but not on in-migration. On the other
hand, tsunami prediction levels tend to have larger, though not statistically significant at
the conventional level, effect on in-migration than on out-migration. These findings
suggest that changes in tsunami predictions are important, particularly for existing local
residents (i.e., out-migration behavior) since they are already informed about previous
predictions. In comparison, incoming residents put relatively larger weight on the 2012

Table 5 Migration responses of working-age and elderly populations

Dependent variables Net migration rate (%) In-migration rate (%) Out-migration rate (%)

Age 15–64 Age 65+ Age 15–64 Age 65+ Age 15–64 Age 65+

Coef.
(S.E.)

Coef. Coef.
(S.E.)

Coef. Coef. Coef.

(S.E.) (S.E.) (S.E.) (S.E.)

Changes in predicted
tsunami height ×
after the 2012
revision

− 0.0201 ***
(0.0064)

− 0.0056
(0.0044)

− 0.0117 **
(0.0052)

0.0003
(0.0025)

0.0084
(0.0054)

0.0060
(0.0037)

Predicted seismic
intensity × after
the 2012 revision

− 0.0026
(0.0764)

− 0.0205
(0.0386)

0.0415
(0.0857)

0.0114
(0.0310)

0.0441
(0.0462)

0.0319
(0.0249)

Fixed effects

Municipality Yes Yes Yes Yes Yes Yes

Prefecture × year Yes Yes Yes Yes Yes Yes

Adjusted R2 0.6344 0.4290 0.9502 0.7923 0.9261 0.7259

Sample size 3008 3008 3008 3008 3008 3008

***, **, and * indicate the estimated coefficients are significant at the 1, 5, and 10% levels, respectively.
Robust standard errors clustered by municipality are presented in the parentheses. The following control
variables are included in all estimations, but results are omitted from the table: the number of deaths/injuries
from the 2011 earthquake and tsunami (per 10,000 residents), % of population living in the 2011 tsunami-
affected areas, number of buildings damaged by the 2011 earthquake, municipalities covered by the Disaster
Relief Act, distance from the Fukushima Nuclear Power Plant, predicted probability of an earthquake with
JMA seismic intensity of upper 6 or greater, % of population aged 0–14, % of population aged 65+, population
density, income per capita, the number of airports and railway stations, miles of public roads, the number of
manufacturing establishments
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tsunami prediction levels than on their changes, since they are not always familiar with
the previous predictions.

Robustness checks

As mentioned earlier, the Great East Japan Earthquake and its subsequent tsunami in
2011 can influence migration patterns. As a result, migration patterns after the release
of the 2012 CDMC’s report are influenced not only by the anticipation of the Nankai

Table 6 Migration responses to changes and levels of revised tsunami predictions

Dependent variables [1] [2] [3] [4] [5] [6]

Net migration rate (%) In-migration rate (%) Out-migration rate (%)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Changes in predicted

tsunami height

− 0.0111
(0.0073)

0.0254

(0.0224)

0.0365

(0.0226)

Changes in predicted

tsunami height × after

the 2012 revision

− 0.0158 *

(0.0082)

− 0.0221 ***
(0.0070)

− 0.0017
(0.0077)

− 0.0075
(0.0054)

0.0141 *

(0.0074)

0.0146 ***

(0.0054)

Levels in predicted

tsunami height in the

2012 report

0.0064

(0.0082)

− 0.0091
(0.0172)

− 0.0154
(0.0176)

Levels in predicted

tsunami height in the

2012 report × after the

2012 revision

− 0.0014
(0.0079)

− 0.0047
(0.0075)

− 0.0122
(0.0079)

− 0.0072
(0.0057)

− 0.0108 − 0.0025
(0.0052)

Predicted seismic

intensity

0.0483

(0.0481)

0.1995 *

(0.1112)

0.1512

(0.1027)

Predicted seismic

intensity × after the

2012 revision

− 0.0057
(0.0374)

− 0.0382
(0.0505)

− 0.0618
(0.0466)

− 0.0453
(0.0352)

− 0.0562
(0.0445)

− 0.0071
(0.0379)

Fixed effects

Prefecture Yes No Yes No Yes No

Municipality No Yes No Yes No Yes

Year Yes No Yes No Yes No

Prefecture × year No Yes No Yes No Yes

Adjusted R2 0.4248 0.5776 0.6828 0.9594 0.5721 0.9501

Sample size 3440 3440 3440 3440 3440 3440

***, **, and * indicate the estimated coefficients are significant at the 1, 5, and 10% levels, respectively.
Robust standard errors clustered by municipality are presented in the parentheses. The following control
variables are included in all estimations, but results are omitted from the table: the number of deaths/injuries
from the 2011 earthquake and tsunami (per 10,000 residents), % of population living in the 2011 tsunami-
affected areas, number of buildings damaged by the 2011 earthquake, municipalities covered by the Disaster
Relief Act, distance from the Fukushima Nuclear Power Plant, predicted probability of an earthquake with
JMA seismic intensity of upper 6 or greater, % of population aged 0–14, % of population aged 65+, population
density, income per capita, the number of airports and railway stations, miles of public roads, the number of
manufacturing establishments
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Trough Earthquake (i.e., anticipatory migration) but also by the occurrence of the 2011
earthquake (i.e., reactive migration). Although our choice of estimation sample together
with the inclusion of various controls for earthquake and tsunami damage can minimize
the direct impact of the 2011 earthquake, one may still think that our results can be
driven by the changes in people’s perception of tsunami risk as a result of the Great East
Japan Earthquake and the subsequent tsunami in 2011.

The powerful tsunami triggered by this catastrophe devastated Japan’s
northeastern coast. The detrimental impact of this tsunami might change migra-
tion patterns in such a way that people move away from coastal areas and
choose inland areas instead. This can bias our benchmark estimates. The
changes in migration patterns described above can increase out-migration from
coastal areas, where mostly nonzero tsunami predictions are observed. In
contrast, inland municipalities can attract more in-migration. Hence, regression
analysis based on Equations (1) and (2) using both coastal and inland munic-
ipalities as a regression sample may yield a spurious correlation between
tsunami predictions and migration rates. In order to determine whether this is
the case, we run the regression models using only the sample of coastal
municipalities. There is substantial variation in changes in predicted height
within coastal municipalities. The results, presented in Table 7, indicate that
the net migration rate is still negatively associated with changes in tsunami
height within coastal municipalities.

Furthermore, the results also indicate that an increase in seismic intensity predic-
tions is significantly associated with an increase in out-migration from coastal munic-
ipalities. This is consistent with the findings of Matsuura and Sato (2018), who show
that land prices do not respond to the risk of large earthquakes alone, but rather to a
high probability of large earthquakes when such a risk is combined with the risk of a
tsunami.

In our base estimation sample, municipalities exposed to the 2011 tsunami are
exclusively located in two prefectures—Ibaraki and Chiba prefectures. To see whether
tsunami exposure affects our benchmark results, we estimate the same model as in
Table 3 but exclude all municipalities in these two prefectures from our sample. The
results, presented in Table 8, indicate that the estimated coefficients on changes in
tsunami height are slightly smaller in an absolute sense than those presented in Table 3.
Nonetheless, they are statistically significant, with signs unchanged from our bench-
mark results. Our empirical results presented in Tables 7 and 8 suggest that our main
findings on the effect of tsunami predictions are not solely driven by the 2011
earthquake and tsunami.

Our final robustness check is concerned with the choice of control municipalities.
As explained in the “Estimation sample” section, our identification strategy essentially
compares migration patterns between coastal municipalities with Δs > 0 (treatment
group) and neighboring inland municipalities with Δs = 0 (control group). The under-
lying assumption of this setup is that migration rates in coastal municipalities would be
the same as those in inland municipalities in the absence of the 2012 revision to
tsunami predictions (i.e., parallel trend assumption).

As shown in Fig. 3, pre-treatment trends in net migration are similar
between coastal and neighboring inland municipalities, which gives some con-
fidence to our choice of control group. In general, however, the parallel trend
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assumption cannot be directly tested, and the violation of the assumption may
cause some bias. As an alternative to our benchmark model, we use the
synthetic control (SC) method, originally developed by Abadie et al. (2010),
to check the robustness of our main results.

Intuitively, the SC method constructs a synthetic unit by weighting municipalities
in the control group in such a way that the pre-treatment outcomes and relevant
covariates of the synthetic unit are close to those of the treated municipality. The
synthetic unit can serve as the counterfactual to the treated municipality. In the post-
treatment period, treatment effects can be measured by the difference between out-
comes of the treated municipality and the synthetic unit. A detailed estimation proce-
dure is given in Appendix 2.

Table 7 Migration responses in coastal municipalities

Dependent variables [1] [2] [3] [4] [5] [6]

Net migration rate (%) In-migration rate (%) Out-migration rate (%)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Changes in predicted

tsunami height

− 0.0098 *
(0.0054)

0.0200

(0.0275)

0.0298

(0.0276)

Changes in predicted

tsunami height × after

the 2012 revision

− 0.0139 ***
(0.0053)

− 0.0192 ***
(0.0065)

− 0.0024
(0.0065)

− 0.0093 *
(0.0048)

0.0116 **

(0.0053)

0.0099 **

(0.0038)

Predicted seismic

intensity (1 if upper 6

or greater in 2012 but

lower 6 or less in

2003)

0.0875

(0.0622)

0.1363

(0.1775)

0.0489

(0.1627)

Predicted seismic

intensity × after the

2012 revision

− 0.0196
(0.0390)

− 0.0988 *
(0.0529)

− 0.0321
(0.0499)

− 0.0150
(0.0460)

− 0.0125
(0.0481)

0.0838 **

(0.0375)

Fixed effects

Prefecture Yes No Yes No Yes No

Municipality No Yes No Yes No Yes

Year Yes No Yes No Yes No

Prefecture × year No Yes No Yes No Yes

Adjusted R2 0.3567 0.5268 0.6472 0.9625 0.5550 0.9557

Sample size 2008 2008 2008 2008 2008 2008

***, **, and * indicate the estimated coefficients are significant at the 1, 5, and 10% levels, respectively.
Robust standard errors clustered by municipality are presented in the parentheses. The following control
variables are included in all estimations, but results are omitted from the table: the number of deaths/injuries
from the 2011 earthquake and tsunami (per 10,000 residents), % of population living in the 2011 tsunami-
affected areas, number of buildings damaged by the 2011 earthquake, municipalities covered by the Disaster
Relief Act, distance from the Fukushima Nuclear Power Plant, predicted probability of an earthquake with
JMA seismic intensity of upper 6 or greater, % of population aged 0–14, % of population aged 65+, population
density, income per capita, the number of airports and railway stations, miles of public roads, the number of
manufacturing establishments
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Figure 5 compares the average net migration rates in treated municipalities
with those of synthetic units. Figure 5a shows the results using a sample of all
treated municipalities, whereas Fig. 5b–d show results using a subsample of
treated municipalities with different levels of increase in tsunami predictions. In
all cases, pre-treatment trends in net migration rate are nearly identical between
the synthetic and treated municipalities. In comparison, post-treatment migration
rates are lower in treated municipalities than in synthetic counterparts in all
cases. Following Cavallo et al. (2013), we also conduct a placebo test for the
average effects and find that the gap between actual and counterfactual migra-
tion rates are significant in most cases. These results are presented in Fig. 6.

Figure 5 also shows that the gap tends to be larger for municipalities with a
greater increase in predicted tsunami height. Estimated effects are largest in 2013 and

Table 8 Using municipalities unaffected by the 2011 earthquake

Dependent variables [1] [2] [3] [4] [5] [6]

Net migration rate (%) In-migration rate (%) Out-migration rate (%)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Coef.
(S.E.)

Changes in predicted

tsunami height

− 0.0069 *
(0.0040)

0.0130

(0.0147)

0.0199

(0.0147)

Changes in predicted

tsunami height × after

the 2012 revision

− 0.0152 ***
(0.0049)

− 0.0243 ***
(0.0052)

− 0.0117 **
(0.0059)

− 0.0127 ***
(0.0040)

0.0035

(0.0048)

0.0116 ***

(0.0036)

Predicted seismic

intensity (1 if upper 6

or greater in 2012 but

lower 6 or less in

2003)

0.0485

(0.0494)

0.1829

(0.1110)

0.1344

(0.1016)

Predicted seismic

intensity × after the

2012 revision

0.0048

(0.0379)

− 0.0295
(0.0506)

− 0.0322
(0.0519)

− 0.0386
(0.0372)

− 0.0370
(0.0498)

− 0.0091
(0.0377)

Fixed effects

Prefecture Yes No Yes No Yes No

Municipality No Yes No Yes No Yes

Year Yes No Yes No Yes No

Prefecture × year No Yes No Yes No Yes

Adjusted R2 0.4321 0.5710 0.6926 0.9596 0.5888 0.9491

Sample size 3072 3072 3072 3072 3072 3072

***, **, and * indicate the estimated coefficients are significant at the 1, 5, and 10% levels, respectively.
Robust standard errors clustered by municipality are presented in the parentheses. The following control
variables are included in all estimations, but results are omitted from the table: the number of deaths/injuries
from the 2011 earthquake and tsunami (per 10,000 residents), % of population living in the 2011 tsunami-
affected areas, number of buildings damaged by the 2011 earthquake, municipalities covered by the Disaster
Relief Act, distance from the Fukushima Nuclear Power Plant, predicted probability of an earthquake with
JMA seismic intensity of upper 6 or greater, % of population aged 0–14, % of population aged 65+, population
density, income per capita, the number of airports and railway stations, miles of public roads, the number of
manufacturing establishments
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become smaller in later years. Although these estimates are not directly comparable to
our regression results, the overall pattern is roughly consistent with our results present-
ed in Table 4.

Overall, the results based on the SC method are consistent with our main
empirical results. This suggests that our choice of control municipalities and the
differential pre-treatment trends in migration rates do not pose a serious problem in
our empirical analysis.

Conclusion

This paper examines the effect of the CDMC’s 2012 revisions to earthquake
and tsunami hazard information on subsequent inter-municipal migration pat-
terns. We found that a rise in predicted tsunami height after the 2012
revisions is significantly associated with a reduction in net migration rate;
this association has resulted from both a decline of in-migration and an
increase in out-migration. Further analysis reveals that whereas the reducing
effect of predicted tsunami height on in-migration persisted throughout the
study period, the impact on out-migration was only temporary. Finally, the
study finds that working-age people are more likely to respond to tsunami risk
and avoid moving to municipalities with a high tsunami risk since the 2012
revisions.

(b)

(c) (d)

Fig. 5 Actual and counterfactual migration rates
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Our empirical analysis has important implications for the linkage between
population dynamics and environmental hazards. Several previous studies point
to the fact that population and environmental hazards are interrelated to each
other (Hunter 2005; Donner and Rodríguez 2008). On the one hand, environ-
mental hazards might influence population dynamics through migration and
residential decision-making, whereby people move away or avoid moving into
risky locations. On the other hand, migration into or out of a specific location
would change the population size and composition, thereby influencing popu-
lation exposure and vulnerability to natural disasters. Our empirical findings
suggest that, while reduced migration into risky areas can decrease the overall
population exposure to a tsunami hazard, heterogeneous migration responses
across population subgroups might worsen the community’s vulnerability con-
ditions, resulting in the elderly population being left behind in risky areas.

Our results also have several important policy implications. First, we
found significant migration responses to tsunami hazards but not to earthquake
hazards. The rationale for this finding is that migration as an adaptation
strategy to natural hazards depends not only on the severity of the event but
also on the costs and benefits of other mitigation measures (Reuveny 2007). A
great tsunami with a wave height above a certain level is so devastating that
any mitigation measures (such as building coastal levees, seawalls, and tsunami-
proof buildings) are either ineffective or too costly. Consequently, moving to a
different place would be the only sensible option aimed at people facing an
extremely serious tsunami hazard. On the other hand, quake-resistant buildings
and a number of other less costly steps are available to cope with earthquake
dangers. Thus, our findings suggest that policy options to reduce the risk of
these two kinds of hazards should also be different. While encouraging
relocation—and not allowing new development in—anticipated tsunami areas
would be a good policy option to lower tsunami disaster risk, subsidizing
seismic inspections and retrofitting costs, as well as enhancing community
resilience to earthquakes, would be a good policy option to lessen earthquake
risk.

Second, we find that an increased tsunami hazard is significantly associ-
ated with a reduction in the net migration rate. However, predictions of
earthquake and tsunami hazards are not necessarily accurate due to the limita-
tions of scientific knowledge. If the revised estimates are inadequate, people
respond to the wrong information, and no risk reduction can be achieved.
Furthermore, the long-lasting effects of revised tsunami height on in-migration
indicate that there is a potential for continued stigmatization of municipalities
with a massive tsunami risk, even years after the revisions. Better risk com-
munication about the inherent uncertainty of hazard estimates, and periodic
updating of existing estimates based on the best available scientific evidence,
are necessary to avoid bias on people’s risk reduction behaviors.

Third, we find that elderly people have continued to stay in municipalities
with a high tsunami risk after the 2012 revision. Such information does not
change their migration behavior because they may have personal ties to the
region and often show a strong emotional connection to it. As a result, the
proportion of elderly people in municipalities with a high tsunami risk is

Population and Environment (2020) 41:452–479472



growing faster than in low-risk municipalities. Elderly people are known to be
more vulnerable to tsunami hazards than the general population (Cutter et al.
2003; Donner and Rodríguez 2008). About 65% of the deaths from the 2011
Great East Japan Earthquake and its related tsunami were concentrated among
those aged 60 or older (Cabinet Office 2011). Policymakers need to pay special
attention to prevention and evacuation plans in municipalities with a high
proportion of elderly citizens.

The findings of this paper should be interpreted with caution. First, people
might respond to a tsunami risk more than usual due to their prior exposure to
news of the Great East Japan Earthquake and the subsequent tsunami. As a
result, migration responses to the updated seismic and tsunami information can
differ from what has been observed in other circumstances. However, since
predicted tsunami height is significantly associated with changes in migration
rates even within coastal areas or in areas without any direct damage from the
2011 tsunami, we believe that updated hazard information has some impact
upon migration patterns in anticipated disaster areas (see our discussion in the
“Robustness checks” section).

Second, people who move away from coastal municipalities might end up
moving into neighboring inland areas. In this case, we may have double-counted the
effect. Unfortunately, our data do not contain information on in-migrants’ municipal-
ities of origin or out-migrants’ destinations. However, according to the census, 1.6% of
out-migrants from coastal municipalities actually moved to neighboring inland areas
between 2010 and 2015. This figure has not changed much from the figure from 2005
to 2010, which is 1.7%, suggesting that migration across neighboring areas has not
seriously biased our estimates.

Third, this paper estimates the effect of the 2012 revisions of predicted seismic
movements and the resulting tsunami height on “inter-municipality” migration. We do
not take “intra-municipality” migration into account; rather, we leave this question to
future research using census data from 2010 and 2015. Further research is necessary to
identify effective prevention and evacuation plans and to improve disaster
preparedness.

Acknowledgments We would like to thank Akiomi Kitagawa, Mamoru Maekawa, Tatsuyoshi Matsumae,
Jun Nagayasu, Masayuki Nakagawa, Hayato Nakanishi, Shigeru Sugihara, Susumu Suzuki, Noriko Tamachi,
Kingo Toyoda, Takayuki Tsuruga, Hiroshi Tubouchi, and Midori Wakabayashi, as well as seminar participants
in the Economic and Social Research Institute, Tohoku University, the 31st annual meeting of the Applied
Regional Science Conference (University of Tokyo) and the 2017 International Conference on Sustainable
Development (Columbia University). We would also like to thank the editor and three anonymous reviewers
for their helpful comments. Part of this work was conducted while the first author was a visiting scholar at the
University of Southern California.

Funding information This study was supported by the Japan Society for the Promotion of Science (JSPS)
KAKENHI, Grant No. JP17H02072 (PI: Shingo Nagamatsu) and the Ministry of Education, Culture, Sports,
Science and Technology (MEXT)-Supported Program for the Strategic Research Foundation at Private
Universities, Grant No. S1491002 (Naoi).

Population and Environment (2020) 41:452–479 473



Appendix 1. Description and source of control variables

Table 9 Description and source of control variables

Variables Description Source

Number of deaths/injuries
from the 2011 earth-
quake (per 10,000 resi-
dents)

Number of deaths and injuries from the
2011 earthquake divided by the total
population of each municipality

Number of deaths/injuries: White
Paper on Fire and Disaster
Management (Fire and Disaster
Management Agency)

Municipal population: Report on
Internal Migration (Statistics
Bureau)

% of residents living in the
2011 tsunami-affected
areas

Number of residents living in the 2011
tsunami areas divided by the total
population of each municipality

Tsunami-affected areas: Report on
2011 Tsunami Exposure (Geospatial
Information Authority of Japan)

Number of buildings
damaged by the 2011
earthquake (per 10,000
residents)

Number of buildings collapsed during
or partially damaged by the 2011
earthquake divided by the total
population of each municipality

Number of buildings
collapsed/damaged: White Paper
on Fire and Disaster Management
(Fire and Disaster Management
Agency)

Municipalities covered by
the Disaster Relief Act

Dummy variable taking the value of
one if the municipality is covered by
the Disaster Relief Act

Disaster Relief Act: Report on the
Application of the Disaster Relief
Act (Ministry of Health, Labour,
and Welfare)

Distance from the
Fukushima Nuclear
Power Plant (km)

Distance from the Fukushima Daiichi
Nuclear Power Plant

Fukushima Daiichi Nuclear Power
Plant: National Land Numerical
Information (Ministry of Land,
Infrastructure, Transport and
Tourism)

Probability of an earthquake
with JMA seismic
intensity of upper 6 or
greater

Probability that an earthquake with
JMA seismic intensity of upper 6 or
greater will occur within the next
30 years

Probability of an earthquake:
Probabilistic Seismic Hazard Map
(National Research Institute for
Earth Science and Disaster
Prevention)

% of population aged 0–14
and 65+

Population aged 0–14 and 65+ divided
by the total population of each mu-
nicipality

Age-specific population: Report on
Internal Migration (Statistics
Bureau)

Population density (per sq.
km)

Total population divided by land area
of the municipality

Land area: Report on Land Area of
Prefectures and Municipalities
(Geospatial Information Authority
of Japan)

Per capita income (10,000
yen)

Total taxable income for resident tax
divided by the total population of
each municipality

Taxable income: Report on Municipal
Taxes (Ministry of Internal Affairs
and Communications)

Number of airports (per sq.
km)

Number of major airports divided by
the land area of the municipality

Airports: National Land Numerical
Information (Ministry of Land,
Infrastructure, Transport and
Tourism)

Number of railway stations Number of railway stations divided by
land area of the municipality

Railway stations: National Land
Numerical Information (Ministry of
Land, Infrastructure, Transport and
Tourism)
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Appendix 2 The synthetic control method

While the original setup in Abadie et al. (2010) considers a situation with a single
treated unit, there are several recent papers that extend the original setup to cases with
multiple treated units (Acemoglu et al. 2016; Cavallo et al. 2013). We follow Cavallo
et al. (2013)’s procedure to estimate the average effects

We first outline a standard SC framework for a given treated municipality. This
allows us to estimate the effect of 2012 revisions on migration patterns for each treated
municipality. These municipality-specific effects are then aggregated over treated
municipalities to obtain an average effect

Suppose we observe J + 1 municipalities over t = 1, ⋯, T. Treatment, revised
tsunami predictions, is given in t = T0. Municipalities are indexed by i = 1, ⋯, J + 1,
with municipality one (i = 1) being treated (i.e., receive an increased tsunami prediction
in t = T0) and the remaining municipalities (i = 2, ⋯, J + 1) being control
municipalities1

Let yi, t be an observed outcome, the migration rate for municipality i at time t,
and yNi;t be a “counterfactual” outcome that would be observed in the absence of any

updated information. We assume that updated information only affects the treated
municipality for t ≥ T0. We also assume that updated information does not affect
outcomes before its release, so that yi;t ¼ yNi;t for all i and t < T0

We aim to identify the impact of updated hazard information on the treated
municipality, τ1, t. For t ≥ T0, these are given by

τ1;t ¼ y1;t−y
N
1;t ðA1Þ

Note that y1, t is observed. Therefore, to estimate τ1, t, we only need to construct the
unobserved counterfactual yN1;t

1 In the following analysis, we restrict a set of control municipalities to that used in our
main empirical analysis. That is, inland municipalities adjacent to treated
municipalities.

Table 9 (continued)

Variables Description Source

Length of public roads (per
sq. km)

Public road length (national,
prefectural, and municipal) divided
by land area of the municipality

Pubic road length: Report on Current
Status of Road Infrastructure
(Ministry of Land, Infrastructure,
Transport and Tourism)

Number of manufacturing
establishments (per sq.
km)

Number of manufacturing
establishments divided by land area
of the municipality

Manufacturing establishments: Census
of Manufacture (Ministry of
Economy, Trade and Industry)

Data on the number of airports and railway stations, length of public roads, and number of manufacturing
establishments are not available for some years during our sample period. The missing values are linearly
interpolated using values in adjacent years in order to have a balanced panel
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The basic idea of the SC method is to construct a “synthetic” unit as an
appropriate combination of control municipalities to estimate the counterfactual out-
come yN1;t. A synthetic unit is constructed in a way that its pre-treatment outcomes yi, t
and relevant characteristics zi are approximately matched with those of the treated
municipality. This means that there exist some weights w*

2;⋯;w*
Jþ1

� �
with w*

j ≥1 and

∑ Jþ1
j¼2 w

*
j ¼ 1 such that

∑ Jþ1
j¼2 w

*
jy j;t ¼ y1;t ∀t∈ 1;⋯; T0−1f g ðA2Þ

∑ Jþ1
j¼2 w

*
j z j ¼ z1 ðA3Þ

where zj is a vector of covariates not affected by the treatment.2 Abadie et al. (2010)
suggest using

bτ1;t ¼ y1;t−∑
Jþ1
j¼2 w

*
jy j;t ∀t∈ T0;⋯; Tf g ðA4Þ

as an estimator of τ1, t
3

Cavallo et al. (2013) extend the method to incorporate multiple treated units. The
idea is to estimate a separate τi vector for each treated unit based on the original SC
setup and then aggregate these municipality-specific effects to obtain an average effect:

τ ¼ τT0 ;⋯; τT
n o

¼ 1

NT
∑NT

i¼1 bτ i;T0 ;⋯;bτ i;Tn o
ðA5Þ

where NT is a number of treated units and bτ i;t is the municipality-specific effect for
treated municipality i obtained by Eqs. (A2)–(A4)

Since conventional large sample inference is not readily available for the SC
method, we employ a permutation method proposed by Cavallo et al. (2013). The
method is outlined as follows. In the first step, we estimate a “placebo” treatment effect
for each municipality in the control group. That is, we pick a single municipality from
the control group as a placebo treatment unit and estimate a placebo treatment effect
based on the SC method outlined above (using the remaining municipalities as control
units). This leads to the placebo dynamics for each j in control group:

bτpj ¼ bτpj;T0
;⋯;bτpj;Tn o

ðA6Þ

In the second step, we compute average placebo effects for a possible combination
of placebo units. Specifically, we randomly draw a set of placebo units of size NT from
control municipalities and compute average effects as in Eq. (A5). We repeat this

2 In the following analysis, zj includes pre-treatment averages of the municipality
characteristics that are also used in our main empirical analysis.
3 The actual estimation is done by using Stata’s synth package.
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procedure for NR times to construct the empirical distribution of average placebo
effects4

Let τp lð Þ ¼ τp lð Þ
T0

;⋯; τp lð Þ
T

n o
be the computed average placebo effect for the lth

draw. The p value for the average treatment effect at time t is then computed as

pt ¼
∑NR

l¼1I τ
p lð Þ
t

����
����≥ τ t

��� ���� �
NR

ðA7Þ

for t = T0, ⋯, T
Figure 6 presents the estimated average effects and their associated p values. The

results indicate that a reduction in net migration rate is larger in municipalities that
experienced a greater increase in predicted tsunami height. Throughout the post-
treatment period, the estimated effects on the net migration rate are statistically
significant at least at the 10% level for municipalities with a more than 3 m increase
in predicted tsunami height.

4 Ideally, this can be done for every possible combination of placebo units of size NT.
However, given our size of treatment units (NT = 235) and control (placebo) units (NC =
195), this is infeasible. We therefore set NR = 500 in our empirical analysis.

Fig. 6 Average effects of changes in predicted tsunami height
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