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Abstract
In this study, we consider simultaneous connection routing in the three-stage switching fabric of the wavelength-space-
wavelength architecture for elastic optical switches, which serve connections that can occupy different spectrum widths. 
Recently, the upper bound of the rearrangeability conditions was derived and proved for a switching fabric serving a limited 
number of connection rates. A control algorithm based on matrix decomposition was also proposed. In addition, the neces-
sary and sufficient conditions were derived and proved for a switching fabric with a size of 2 × 2 serving only two connection 
rates, but only when the ratios between the connection rates and link capacity are integers. In this study, we extend these 
results to an arbitrary ratio between the connection rates and link capacity. The number of frequency slot units required in 
the interstage links is much lower than that in the strict-sense nonblocking switching fabrics. We also propose modifications 
to the control algorithm, which further reduces the number of frequency slot units required in many cases. Finally, we extend 
the results for 2 × 2 switching fabrics to those with a size of r × r.

Keywords Elastic optical network · Elastic optical switching node · Interconnection network · Rearrangeable nonblocking 
condition

1 Introduction

In an elastic optical network, also known as flexible optical 
network, the spectrum is allocated to a lightpath accord-
ing to the required spectrum and with certain granularity 
[1–3]. The smallest spectrum granularity is often called a 
Frequency Slot Unit (FSU). A spectrum assigned to one con-
nection is called a frequency slot, and it may use m adjacent 
FSUs. A connection that uses m FSUs is called an m-slot 
connection. In the current standards, FSU has a width of 
12.5 GHz [4] but other values may be standardized in the 
future. The spectrum assigned to a lightpath depends on 
several factors, such as the required transmission speed, 

distance that needs to be covered, path quality, wavelength 
spacing between channels, and/or the modulation scheme 
used [2, 3, 5, 6]. In the current optical networks that mostly 
serve static traffic, the connections are known in the network 
design stage and the network can use only space switches 
without wavelength conversion. However, connections 
may change in time when the traffic changes from static to 
dynamic. Dynamic traffic results in spectrum fragmentation 
and a greater blocking probability [5].

The connections served in elastic optical network must 
be also served by switching nodes. Several architectures 
have been proposed for these switching nodes in previ-
ous studies [7–10], which were surveyed briefly [11]. 
One of these switching fabric architectures is the wave-
length–space–wavelength (W–S–W) switching fabric [12], 
which is referred to as WSW1 [10]. This architecture is also 
considered in the present study.

The strict-sense nonblocking (SSNB) conditions (neces-
sary and sufficient) for WSW1 were provided and proved in 
a previous study [12]. In SSNB switching fabrics, we can 
establish a connection from an idle set of FSUs at any input 
fiber to an idle set of FSUs at a requested output fiber regard-
less of how the other connections are established. However, 
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the problem is that these SSNB switching fabrics require 
a huge number of FSUs in the interstage links, especially 
when the maximum number of FSUs that may be used by 
one connection is high.

SSNB switching fabrics usually require a large number 
of switching elements (crosspoints, centers stage switches, 
etc.), but this number can be reduced by applying rear-
rangements [13, 14]. In rearrangeably nonblocking (RNB) 
switching fabrics, we can also connect any idle input and 
idle output pair, but it may be necessary to move the exist-
ing connections to alternate connecting paths. RNB switch-
ing fabrics are mostly used in packet switching, where the 
packets in synchronously operated (slotted) networks arrive 
at all inputs at the same time. A model describing these 
requests is called a simultaneous connection model and a set 
of requests is referred to as a set of compatible connections 
or simply a permutation [13, 14, 16]. The RNB conditions 
for space-division three-stage Clos switching fabrics [15] 
were derived in previous studies [13, 16]. The RNB condi-
tions for time-division switching networks with single-rate 
connections were considered by [17]. In addition, the RNB 
conditions for switching networks with multirate connec-
tions were obtained by [18].

In the case of elastic optical switches for the W–S–W 
architecture, two differences in the switching fabrics were 
considered by [18]: (1) a W–S–W switching fabric with 
no conversion capability but all of the switches are able 
to switch in time and space; and (2) connections with no 
adjacency constraints. According to [10], in the case of the 
SSNB conditions, the lack of conversion capability in the 
center stage switches and an adjacency constraint increases 
the required number of center stage switches or the number 
of FSUs in the interstage links. To the best of our knowl-
edge, the RNB conditions for W–S–W switching fabrics for 
elastic optical nodes have only been considered in our recent 
previous study.

In [19], we first considered the upper bound for the RNB 
conditions of WSW1 switching fabrics, as well as providing 
the necessary and sufficient conditions for switching fabrics 
with two input and output fibers, and serving two connection 
rates. Another limitation is that the ratio between the con-
nection rates as well as between the connection rates and the 
fiber capacity should be an integer.

In the present study, we extend our previously reported 
results [19] in three ways. First, for the connections consid-
ered in this study, we assume that the ratio between the con-
nection rates and fiber capacity is not a whole number. This 
extension may appear simply theoretical, but this assump-
tion is quite practical when we consider that although the 
guard-band is not needed between FSUs belonging to the 
same connection, the FSUs that are used by two different 
connections must be separated by the guard-band of 1 FSU, 
i.e., 1-slot and 2-slot connections become 2-slot and 3-slot 

connections, when this guard-band is included in the con-
nection size. Elastic optical networks with two connection 
rates may be an attractive option for data center networks 
(DCNs), where traditional optical networks and switches 
currently allow reductions in power consumption [23] and 
latency [24]. For instance, the application of elastic opti-
cal networks in DCNs was considered by [24]. Second, we 
propose two different merging algorithms for reducing the 
number of FSUs required in the interstage links. Third, we 
show how the solution proposed for 2 × 2 switching fabrics 
can be used to control switching fabrics with a size of r × r.

The reminder of this paper is organized as follows. In 
Sect. 2, we present the switching fabric and describe the 
problem. We also show why traditional simultaneous con-
nection routing algorithms designed for three-stage Clos 
type switching fabrics cannot be used directly and modifi-
cations are required. In Sect. 3, we describe the model used 
in this study. We propose the matrix model for state repre-
sentation and illustrate the basic characteristics and proper-
ties of this model. In Sect. 4, we present two control algo-
rithms, which are based on merging permutation matrices. 
The first algorithm proposed in our previous study [19] and 
the second algorithm uses a different approach for merging 
permutation matrices. In Sect. 5, we derive and prove the 
sufficient conditions for the rearrangeability of 2 × 2 WSW1 
switching fabrics for both control algorithms. We assume 
that this switching fabric serves two connection rates, but 
there are no restrictions on the ratios between the connec-
tion rates and fiber capacity. We also show how the results 
derived for the 2 × 2 switching fabric can be extended to 
switching fabrics with a size of r × r . In Sect. 6, we compare 
the results obtained by using both algorithms in terms of the 
number of FSUs required in the interstage links. Finally, we 
give our conclusions.

2  Problem statement

In general, the WSW1 switching architecture has r input and 
output fibers as described in detail by [12]. In the present 
study, we mainly consider switching fabrics where r = 2 , 
and we then show how the proposed algorithms can be used 
in case when r > 2 . An example of this type of switching 
fabric is shown in Fig. 1, where it comprises two bandwidth-
variable wavelength converting switches (BV-WSs) in the 
first and third stages, and one bandwidth-variable wave-
length selective space switch (BV-SS) with a capacity of 
2 × 2 in the second stage. Each BV-WS in the first stage has 
one input fiber with n FSUs ( n = 5 in the example) and one 
output fiber with k FSUs, whereas each BV-WS in the third 
stage has one input fiber with k FSUs and one output fiber 
with n FSUs. The internal architectures of the BV-WSs and 
BV-SS were described by [12]. The switching fabric serves 
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m-slot connections, where m is limited to two values of m1 
and m2 , and m2 > m1 . We also assume that the BV-WSs have 
full range conversion capability, i.e., an m-slot connection 
that uses a set of m adjacent FSUs at the input fiber can be 
switched to a set of any other m adjacent FSUs at the output 
fiber. This conversion from any input to any output FSU is 
possible only if the converters are working in the full range; 
otherwise, an algorithm is needed to assign connections to 
converters depending on the required conversion range such 
that all of the connections can be switched correctly through 
the switching fabric. The number of these converters and 
their range should also be derived. Therefore, these FSUs 
must be routed by using m adjacent FSUs at the interstage 
links. Let us consider an m-slot connection from input Ii , 
which occupies FSUs from x to x + m − 1 , to output switch 
Oj with FSUs assigned from y to y + m − 1 . This connection 
is denoted by (I1[x], O2[y], m). 

The problem of routing connections in the switching fab-
ric considered can be viewed as similar to routing connec-
tions in the three-stage Clos network. The switching fabric 
presented in Fig. 1 has a set of 2-slot and 3-slot connections 
for simultaneous setup. The three-stage Clos switching fab-
ric model is presented in Fig. 2. In this model, each input 
switch in WSW1 is represented by one space switch in the 
first stage. Each FSU in the input fiber corresponds to one 
input link in the respective space switch in Fig. 2, and each 
FSU in the output fiber corresponds to one output link in the 

respective space switch in Fig. 2. Each FSU in the interstage 
links corresponds to one space switch in the center stage in 
Fig. 2. These connections can be represented by the connec-

tion matrix H =

[
3 2

2 3

]
 , which can be decomposed using the 

Neiman algorithm [20–22] into the following five permuta-

tion matr ices: P
1
=

[
1 0

0 1

]
 ,  P

2
=

[
1 0

0 1

]
 ,  P

3
=

[
0 1

1 0

]
 , 

P
4
=

[
1 0

0 1

]
 , and P

5
=

[
0 1

1 0

]
 . Each permutation matrix rep-

resents the connections routed through one switch in the 
middle stage. The FSUs belonging to connections repre-
sented by P

1
 are set up through the first switch (or first FSUs 

in interstage links), for P
2
 through the second switch, P

3
 

through the third switch, and similarly for P
4
 and P

5
 . As a 

result, the first connection (I1[1], O1[3], 3) (marked in blue 
in Fig. 1) is set up through FSUs 1, 2, and 4 in the interstage 
link in Fig. 2, which is not correct because these FSUs are 
not adjacent, but this is required according to [4]. The same 
problem occurs with the connection (I1[4], O2[1], 2) 
(marked in orange in Figs. 1 and 2), which is set up through 
FSUs 3 and 5, and connection (I2[3], O2[3], 3) (marked in 
green in Figs. 1 and 2) with the assigned FSUs 1, 2, and 4. 
This example shows that the problem of routing simultane-
ous connections in WSW1 appears to be similar to routing 
in the three-stage Clos network, but there are important dif-
ferences, as follows:

 (i) Instead of finding connections that can be set up 
through one center stage switch, we must find con-
nections that can be set up using FSUs with the same 
sequence numbers in the interstage links.

 (ii) Connections can occupy FSUs with different 
sequence numbers, but the FSUs occupied by each 
connection must be adjacent.

The first problem is caused by the lack of conversion capa-
bilities in the center-stage switch. Therefore, connection 
(I1[x1], O2[y1], m) can be set up through m FSUs by starting 
from x2 in the link from I1 and by starting from y2 in the link 
to O2 only if x2 = y2 . The second problem is related to the 
standard [4] and the manner in which modulation formats 
occupy the bandwidth. For these reasons, the algorithms and 
solutions used for Clos networks cannot be used directly in 
the switching fabric considered. In the present study, we 
consider the simultaneous connection model. It is assumed 
that we have a set of compatible connection requests, i.e., 
connection requests occupy as many FSUs as possible in 
each input and output fibers. Thus, in such set, no more m2

-slot and m1-slot connection requests can be added.

The set of compatible connections is denoted by ℂ and 
an example of this type of set in a 2 × 2 switching fabric 
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Fig. 1  WSW1 switching fabric with a set of connection requests, 
ℂ = {(I

1
[1], O

1
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Fig. 2  Three-stage Clos network modeled as the WSW1 switching 
fabric with the connections routed as shown in Fig.  1 (Color figure 
online)
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with n = 10 is shown in Fig. 3. Five connections of two 
types need to be set up comprising two 4-slot connections, 
and three 3-slot connections. Therefore, the problem is 
determining which FSUs in the interstage links should be 
used by these connections and how many FSUs are needed 
to set up all possible sets of compatible connections, i.e., 
when the switching fabric is RNB. For instance, connec-
tions (I1[1], O2[1], 3) and (I2[1], O1[1], 4) are directed 
from different input switches to different output switches, 
so they are not in conflict in the BV-SS and they can be 
set up using the same FSUs numbered from 1 to 4 in the 
interstage links (FSU number 4 will remain free in the first 
interstage link). When all of the connections are set up, the 
number of FSUs required in the interstage links is 11. How-
ever, this set of connections can be set up in a different way, 
as shown in Fig. 4. In this case, connections (I1[1], O2[1], 3) 
and (I1[4], O2[8], 3) are set up using FSUs with the same 
sequence numbers as connection (I2[1], O1[1], 4) , and the 
number of FSUs required in the interstage links is 10. Both 
approaches are considered in Sects. 4 and  5, where the RNB 
conditions are derived for these algorithms.

3  Model description

In this study, we use the model proposed by [19], but we 
focus only on the 2 × 2 switching fabric, where we do not 
impose any limits on the ratio between n, m1 , and m2 . Let 
ℂ be set up in the WSW1 switching fabric, and it con-
tains only connections with two rates: m1 and m2 , where 
m1 < m2 . For instance, in the set of connection requests 
presented in Fig.  3, m1 = 3 and m2 = 4 . We use two 

connection matrices denoted by Hm1 and Hm2 to represent 
the connection requests and each matrix represents the 
connection requests for one connection rate. The matrix 
H

mx represents mx-slot connections, where x = 1, 2 , and it 
is defined as follows:

where hmx

ij
 is equal to the number of mx-slot connection 

requests from switch Ii to switch Oj . For instance, the con-
nection matrices for the set of connection requests in Fig. 3 
are as follows:

The set of matrices Hmx has the following properties:

– for each row i, 

– and for each column j, 

Formula (3) states that the sum of FSUs used by all con-
nection requests from one input fiber is not greater than n. 
When 

⌊
n

m2

⌋
 and 

⌊
n

m1

⌋
 are not integers, the number of occu-

pied FSUs may be less than n. Formula (4) provides the 
same condition for the output fibers, where it states that 
the number of FSUs used by the connection requests to 
one output fiber must also be no greater than n.

We also use the following terms and notation:

– a
mx

i
 denotes the number of mx-slot connection requests 

at input i: amx

i
=

∑2

j=1
h
mx

ij
;

– b
mx

j
 denotes the number of mx-slot connection requests 

at output j: bmx

j
=

∑2

i=1
h
mx

ij
;

– a
mx

max denotes the maximum number of mx-slot connec-
tion requests at one input: amx

max = max1⩽i⩽2

{
a
mx

i

}
;

– a
mx

min
 denotes the minimum number of mx-slot connec-

tion requests at one input: amx

min
= min

1⩽i⩽2

{
a
mx

i

}
;

– b
mx

max denotes the maximum number of mx-slot connec-
tion requests at one output: bmx

max = max
1⩽j⩽2

{
b
mx

j

}
;

– b
mx

min
 denotes the minimum number of mx-slot connec-

tion requests at one output: bmx

min
= min

1⩽j⩽2

{
b
mx

j

}
;

– c
mx

max = max
{
a
mx

max; b
mx

max

}
;

– c
mx

min
= min

{
a
mx

min
; b

mx

min

}
.

(1)H
mx =

[
h
mx

11
h
mx

12

h
mx

21
h
mx

22

]
,

(2)H
m1 =

[
1 2

0 0

]
, H

m2 =

[
0 0

1 1

]
.

(3)
2∑
j=1

{
2∑

x=1

(
h
mx

ij
⋅ mx

)}
⩽ n,

(4)
2∑
i=1

{
2∑

x=1

(
h
mx

ij
⋅ mx

)}
⩽ n.
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Fig. 3  WSW1 switching fabric with a set of connection requests, 
ℂ = {(I

1
[1], O

2
[1], 3); (I

1
[4], O

2
[8], 3);(I

1
[7], O

1
[5], 3); (I

2
[1],

O
1
[1], 4); (I

2
[5], O

2
[4], 4)} , set up through 11 FSUs
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Fig. 4  WSW1 switching fabric with a set of connection requests ℂ 
taken from Fig. 3 set up through 10 FSUs
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4  Control algorithm

The problem of assigning FSUs to a particular connection 
request can be solved using the matrix decomposition algo-
rithm. It is known that the square matrix H can be decomposed 
into n permutation matrices when the sum of the elements in 
each row and each column is equal to n [13, 16]. However, 
this is not true in our case, so the decomposition algorithm 
must be modified.

We have a set of compatible connection requests ℂ . For 
each connection rate, Hmx is calculated in the first step. In the 
next step, amx

i
 and bmx

j
 are calculated for each row and column, 

respectively. If these values are equal, Hmx can be decomposed 
into permutation matrices. If these numbers are not equal, 
“dummy” connection requests are added such that these sums 
will be equal to cmx

max = max{amx ; bmx} . In fact, “dummy” con-
nection requests are not present in the set of connections, but 
instead, they employ resources that are not used by the other 
connection requests represented in Hmx , and they are only 
added to ensure the appropriate operation of the decomposi-
tion algorithm, and they are not set up in the switching fabric 
at the end.

Matrix Hmx is then decomposed into cmx

max permutation 
matrices Pmx

i
 , 1 ⩽ i ⩽ c

mx

max , using any known algorithm 
[20–22]. One matrix Pmx

i
 represents a set of connections that 

can be set up through the interstage links using mx FSUs with 
the same sequence numbers. Each entry pij = 1 denotes one 
connection request (Ii[x], Oj[y], mx) . Finally, some permu-
tation matrices elements representing “dummy” connection 
requests must be removed. As the result, some rows and col-
umns in the permutation matrices will only contain “0” ele-
ments, and these matrices are called partial permutation matri-
ces. For instance, in the following partial permutation matrix:

⎡⎢⎢⎢⎣

0 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

⎤⎥⎥⎥⎦

rows 1 and 3, and columns 1 and 4 do not contain any “1” 
elements. Therefore, inputs 1 and 3, and outputs 1 and 4 
remain unassigned in this matrix. The decomposition algo-
rithm is presented in Algorithm 1.

In our case, from cmx

max matrices Pmx

i
 , cmx

min
 matrices are 

full permutation matrices (where every row and every col-
umn contains exactly one nonzero entry of “1”), whereas (
c
mx

max − c
mx

min

)
 matrices are partial permutation matrices.

The example in Fig.  5 illustrates how the algorithm 
works. We have n = 12 FSUs in each input/output link. 
The switching fabric serves eight connections with sizes of 
m1 = 2 and m2 = 5 . In the second input, we have two free 
FSUs, but they cannot be used by an additional 2-slot con-
nection because we only have one free FSU in each output 
link. In this example, matrices Hmx are:

We have am1

1
= 6 , am1

2
= 0 , and bm1

1
= b

m1

2
= 3 . In order to 

decompose this matrix, we have added six “dummy” con-
nection requests in positions hm1

21
 and hm1

22
 (three of these con-

nection requests for each position, where the connections are 
marked by gray circles), so we obtain:

(5)H
m1 =

[
3 3

0 0

]
, H

m2 =

[
0 0

1 1

]
.

(6)

BV-SS

2

BV-WS

1

2

BV-WS

9 101 2 3 4 85 6 7 11

1
12

9 101 2 3 4 85 6 7 1112

9 101 2 3 4 85 6 7 11 12
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Fig. 5  The 2 × 2 WSW1 switching fabric with a set of connection requests, ℂ = {(I
1
[1],O

1
[6], 2); (I

1
[3],O

1
[8], 2);(I

1
[5],O

1
[10], 2);

(I
1
[7],O

2
[6], 2); (I

1
[9],O

2
[8], 2); (I

1
[11],O

2
[10], 2); (I

2
[1],O

1
[1], 5); (I

2
[6],O

2
[1], 5)}



83Photonic Network Communications (2020) 39:78–90 

1 3

This matrix can be decomposed into six permutation matri-
ces, which are partial permutation matrices after removing 
the “dummy” connection requests:

These connection requests in the interstage links are imple-
mented through FSUs with the sequence numbers shown 
in Table 1. Partial permutation matrix Pm1

1
 represents 2-slot 

connection (I1[1],O1[6], 2), and it is set up using FSUs 1 and 
2 in the interstage links, and Pm1

2
 represents 2-slot connection 

(I1[3],O1[8], 2) and it uses FSUs 3 and 4, and so on.
For Hm2 we have: am2

1
= 0 , am2

2
= 2 , and bm2

1
= b

m2

2
= 1 . 

In order to decompose this matrix, we have added two 
“dummy” connection requests in positions hm2

11
 and hm2

12
 (posi-

tions with added connection requests are marked by gray 
circles), so we obtain:

This matrix can be decomposed into two permutation matri-
ces, which are partial permutation matrices after removing 
the “dummy” connection requests:

(7)

(8)

(9)

(10)

The connections corresponding to Pm2

1
 and Pm2

2
 , and the num-

bers of assigned FSUs are also given in Table 1.
In the example considered, the number of FSUs required 

in the interstage links is 22 ( k = 22 ) because Algorithm 1 
assumes that each set of mx-slot connections is set up 
through FSUs with different sequence numbers in the 
interstage links. However, the number of FSUs required 
can be reduced when some of the FSUs assigned for con-
nection requests with size m2 can also be used by con-
nection requests with size m1 , or vice versa. For instance, 
in the example of Fig. 5, connection (I2[1],O1[1], 5) rep-
resented by Pm2

1
 can use the same FSUs in the interstage 

links as connections (I1[7],O2[6], 2) and (I1[9],O2[8], 2) 
represented by Pm1

4
 and Pm1

5
 , respectively, because the “1” 

elements in Pm2

1
 and Pm1

4
 (and in Pm2

1
 and Pm1

5
 as well) are in 

different rows and columns:

Thus, we can say that matrices Pm2

1
 and Pm1

4
 (and Pm2

1
 and Pm1

5
 ) 

can be merged together. In general, matrices Pm2

i
 and Pm1

j
 can 

be merged together when the result matrix is also a permuta-
tion (or a partial permutation) matrix. Matrices can be 
merged in two different ways:

 (i) Case 1 One matrix Pm2 can be merged with 
⌊m2

m1

⌋
 

matrices Pm1,
 (ii) Case 2 

⌈m2

m1

⌉
 matrices Pm1 can be merged with one 

matrix Pm2.

The algorithm is presented as Algorithm  2 with two 
options for t1 =

⌊m2

m1

⌋
 and t2 =

⌈m2

m1

⌉
 . The first option is 

denoted as MA1. It starts by checking the partial permuta-
tion matrix Pm2

i
 to determine which position element “1” 

is present. When this element is in row v and column w 
( hm2

vw = 1 ), the algorithm looks for Pm1

i
 with am1

v = 0 and 
b
m1

w = 0 . Up to 
⌊m2

m1

⌋
P
m1

i
, matrices can be merged with one 

P
m2

i
 matrix. This operation is repeated for each partial per-

mutation matrix Pm2

i
.

(11)

(12)P
m2

1
=

[
0 0

1 0

]
, P

m1

4
= P

m1

5
=

[
0 1

0 0

]
.

Table 1  Assignment of FSUs for connection requests ℂ in Fig. 5

Permutation matrix Connection Assigned FSUs

P
m1

1
(I
1
[1], O

1
[6], 2) 1–2

P
m1

2
(I
1
[3], O

1
[8], 2) 3–4

P
m1

3
(I
1
[5], O

1
[10], 2) 5–6

P
m1

4
(I
1
[7], O

2
[6], 2) 7–8

P
m1

5
(I
1
[9], O

2
[8], 2) 9–10

P
m1

6
(I
1
[11], O

2
[10], 2) 11–12

P
m2

1
(I
2
[1], O

1
[1], 5) 13–17

P
m2

2
(I
2
[6], O

2
[1], 5) 18–22
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The second option (Case 2) is denoted as MA2 and we 
merge 

⌈m2

m1

⌉
 matrices Pm1

j
 with one matrix Pm2

i
 . The algo-

rithm starts by finding element “1” in partial permutation 
matrix Pm2

i
 . When hm2

vw = 1 , MA2 searches for Pm1

j
 where 

a
m1

v = 0 and bm1

w = 0 . If this matrix is present, Pm2

i
 and Pm1

j
 

can be merged together. Then, we check whether the next 
P
m1

j
 can be merged with Pm2

i
 . The merging process is fin-

ished when we have found 
⌈m2

m1

⌉
 matrices Pm1

j
 or there are 

no more Pm2

i
 or Pm1

j
 matrices.

Let us again consider the example shown in Fig. 5. 
When MA1 is used, partial permutation matrix Pm2

1
 can 

be merged with matrices Pm1

4
 and Pm1

5
 , and the connec-

tion requests corresponding to these matrices use FSUs 
from 1 to 5. The next partial permutation matrix Pm2

2
 can 

be merged with matrices Pm1

1
 and Pm1

2
 , and the connection 

requests corresponding to these matrices use FSUs from 6 
to 10. Matrices Pm1

3
 and Pm1

6
 are not merged and their con-

nection requests use FSUs from 11 to 14. Figure 6 shows 
the state of the switching fabric, and Table 2 shows the 
merged permutation matrices and FSUs assigned to con-
nection requests ℂ.

When MA2 is used, the results obtained by the merging 
operations are shown in Table 3 and Fig. 7. In this case, ⌈m2

m1

⌉
= 3 and matrices Pm1

4
 , Pm1

5
 , and Pm1

6
 can be merged 

with matrix Pm2

1
 , where the respective connection requests 

use FSUs from 1 to 6. In the same manner, matrices Pm1

1
 , 

P
m1

2
 , and Pm1

3
 can be merged with matrix Pm2

2
 , and their 

connection requests use FSUs from 7 to 12.
Therefore, the number of FSUs required is reduced 

from 22 to 14 when using MA1, whereas MA2 reduces 
this number to 12. The numbers of FSUs required with 

BV-SS

2

BV-WS

1

2

BV-WS

9 101 2 3 4 85 6 7 11

1
12

9 101 2 3 4 85 6 7 1112

9 101 2 3 4 85 6 7 11 12

9 101 2 3 4 85 6 7 11 12

9 101 2 3 4 85 6 7 1112

9 101 2 3 4 85 6 7 11 12 13 14

13 14

9 101 2 3 4 85 6 7 11 12 13 14

9 101 2 3 4 85 6 7 11 12 13 14

Fig. 6  The 2 × 2 WSW1 switching fabric shown in Fig. 5 with ℂ set through 14 FSUs according to MA1

Table 2  Assignment of FSUs 
for connection requests ℂ 
according to MA1

Permutation 
matrix

Merged permuta-
tion matrix

Connection Merged connection Assigned FSUs

P
m2

1
– (I

2
[1], O

1
[1], 5) – 1–5

– P
m1

4
– (I

1
[7], O

2
[6], 2) 1–2

– P
m1

5
– (I

1
[9], O

2
[8], 2) 3–4

P
m2

2
– (I

2
[6], O

2
[1], 5) – 6–10

– P
m1

1
– (I

1
[1], O

1
[6], 2) 6–7

– P
m1

2
– (I

1
[3], O

1
[8], 2) 8–9

P
m1

3
– (I

1
[5], O

1
[10], 2) – 11–12

P
m1

6
– (I

1
[11], O

2
[10], 2) – 13–14
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both merging algorithms are considered in the two theo-
rems presented in the next section.

5  Rearrangeable conditions

Next, we need to determine how many FSUs are needed in 
the interstage links to implement all possible sets of compat-
ible connections using the decomposition algorithm together 
with one of the proposed merging algorithms.

Theorem 1 The 2 × 2 WSW1 switching fabric is RNB for 
m-slot connections, where m ∈ {m1; m2} under MA1 if:

Proof Let ℂ denote a set of compatible connection requests. 
We have two connection rates, m1 and m2 , and all of the con-
nection requests in ℂ are represented by matrices Hm1 and 
H

m2 . These matrices can be decomposed into cm1

max and cm2

max 
permutation matrices Pm1 and Pm2 , respectively. Each Pmx 
matrix represents a set of mx-slot connection requests that 
can be set up using FSUs with the same sequence numbers 
in the interstage links. From these Pmx , only cm1

min
 and cm2

min
 

matrices are full permutation matrices. 
(
c
m1

max − c
m1

min

)
 for Pm1 

(13)k2
MA1

⩾

⌊
n

m2

⌋
⋅ m2 +

(⌊
n

m1

⌋
−

⌊
n

m2

⌋
⋅

⌊
m2

m1

⌋)
⋅ m1.

and 
(
c
m2

max − c
m2

min

)
 for Pm2 are partial permutation matrices, 

i.e., at most 
(
c
m2

max − c
m2

min

)
 matrices Pm2 can be merged with 

at most 
(
c
m1

max − c
m1

min

)
 matrices Pm1.

The number of FSUs required in interstage links k for ℂ 
is given by the following formula:

c
m1

min
⋅ m1 is the number of FSUs used by the connection 

requests represented in full permutation matrices Pm1 . We 
have cm1

min
 such matrices and each uses m1 FSUs. Similarly, 

there are cm2

min
 Pm2 full permutation matrices and each occu-

pies m2 FSUs. Each partial permutation matrix Pm2 needs m2 
FSUs, and there are 

(
c
m2

max − c
m2

min

)
 of these matrices. Finally, 

from 
(
c
m1

max− cm1

min

)
 partial permutation matrices Pm1 , 

⌊m2

m1

⌋
 of 

these matrices can be merged with each partial permutation 
matrix Pm2 and each from the remaining Pm1 uses m1 FSUs.

Formula (14) can be simplified to:

(14)

k2
MA1

⩾ c
m1

min
⋅ m1 + c

m2

min
⋅ m2 +

(
c
m2

max − c
m2

min

)
⋅ m2

+

((
c
m1

max − c
m1

min

)
−

(
c
m2

max − c
m2

min

)
⋅

⌊
m2

m1

⌋)
⋅ m1.

(15)
k2
MA1

⩾c
m2

max ⋅ m2

+

(
c
m1

max −

(
c
m2

max − c
m2

min

)
⋅

⌊
m2

m1

⌋)
⋅ m1.

BV-SS

2

BV-WS

1

2

BV-WS

9 101 2 3 4 85 6 7 11

1
12

9 101 2 3 4 85 6 7 1112

9 101 2 3 4 85 6 7 11 12

9 101 2 3 4 85 6 7 11 12

9 101 2 3 4 85 6 7 1112

9 101 2 3 4 85 6 7 11 12 9 101 2 3 4 85 6 7 11 12

9 101 2 3 4 85 6 7 11 12

Fig. 7  The 2 × 2 WSW1 switching fabric shown in Fig. 5 with ℂ set through 12 FSUs according to MA2

Table 3  Assignment of FSUs 
for connection requests ℂ 
according to MA2

Permutation 
matrix

Merged permuta-
tion matrix

Connection Merged connection Assigned FSUs

P
m1

4
– (I

1
[7], O

2
[6], 2) – 1–2

P
m1

5
– (I

1
[9], O

2
[8], 2) – 3–4

P
m1

6
– (I

1
[11], O

2
[10], 2) – 5–6

– P
m2

1
– (I

2
[1], O

1
[1], 5) 1–5

P
m1

1
– (I

1
[1], O

1
[6], 2) – 7–8

P
m1

2
– (I

1
[3], O

1
[8], 2) – 9–10

P
m1

3
– (I

1
[5], O

1
[10], 2) – 11–12

– P
m2

2
– (I

2
[6], O

2
[1], 5) 7–11
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Formula (15) must be maximized over all possible sets ℂ . 
c
mx

max represents the maximum number of mx-slot connection 
requests in one of the inputs or outputs, so the number of 
these requests will never be greater than 

⌊
n

mx

⌋
 . It should be 

noted that when cmx

max is maximized, cmx

min
 is minimized, i.e., 

when cm2

max =

⌊
n

m2

⌋
 , which is the maximum number of m2-slot 

connections in one link, the number of m1-slot connections 
in this link is minimized. When we enter cm1

max =

⌊
n

m1

⌋
 , 

c
m2

max =

⌊
n

m2

⌋
 , and cm2

min
= 0 into formula (15), we obtain the 

following.

  ◻

Theorem 2 The 2 × 2 WSW1 switching fabric is RNB for 
m-slot connections, where m ∈ {m1; m2} under MA2 if:

Proof Similarly as in Theorem 1, matrices Hm1 and Hm2 rep-
resenting ℂ can be decomposed into cm1

max and cm2

max permuta-
tion matrices Pm1 and Pm2 , respectively. We have cm1

min
 and cm2

min
 

full permutation matrices where each uses m1 and m2 FSUs, 
respectively. The remaining of matrices Pm1 and Pm2 are par-
tial permutation matrices. In MA2, we merge 

⌈m2

m1

⌉
 partial 

permutation matrices Pm1 with one partial permutation 
matrix Pm2 . We have 

(
c
m2

max − c
m2

min

)
 partial permutation matri-

ces Pm2 , and when 
⌈m2

m1

⌉
 Pm1 matrices are merged with one 

P
m2 , we have 

(⌈m2

m1

⌉
⋅ m1 − m2

)
 free FSUs between two suc-

cessive m2-slot connections. We have 
(
c
m1

max − c
m1

min

)
 partial 

permutation matrices Pm1 so we can merge them with up to ⌊
c
m1
max−c

m1
min⌈

m2

m1

⌉
⌋
 Pm2 permutation matrices. In this case, the number 

of FSUs required in interstage links k is given by the follow-
ing formula:

(16)k2
MA1

⩾

⌊
n

m2

⌋
⋅ m2 +

(⌊
n

m1

⌋
−

⌊
n

m2

⌋
⋅

⌊
m2

m1

⌋)
⋅ m1

(17)

k2
MA2

⩾

⎢⎢⎢⎢⎣

n −
�

n

m2

�
⋅ m2

m1

⎥⎥⎥⎥⎦
⋅ m1 +

�
n

m2

�
⋅ m2

+

��
m2

m1

�
⋅ m1 − m2

�
⎢⎢⎢⎢⎢⎢⎣

�
n

m1

�
−

�
n−

�
n

m2

�
⋅m2

m1

�

�
m2

m1

�

⎥⎥⎥⎥⎥⎥⎦

.

Inequality (18) can be simplified to:

Inequality (19) must be maximized through all possible sets 
ℂ and it reaches the maximum when cm2

max is maximized, cm1

max 
is maximized, and cm1

min
 is also maximized (since 

m1 ⩾
⌈m2

m1

⌉
⋅ m1 − m2 ). The respective maximum values are:

– c
m2

max =

⌊
n

m2

⌋
 , i.e., all connections in one link are m2-slot 

connections;
– c

m1

max =

⌊
n

m1

⌋
 , i.e., all connections in one link are m1-slot 

connections;

– c
m1

min
=

�
n−⌊ n

m2
⌋⋅m2

m1

�
 , i.e., the number of m1-slot connec-

tions that can be implemented in the link already serving ⌊
n

m2

⌋
 m2-slot connections.

By entering these values in formula (19), we obtain the 
following.

  ◻

(18)

k2
MA2

⩾ c
m1

min
⋅ m1 + c

m2

min
⋅ m2 +

�
c
m2

max − c
m2

min

�
⋅ m2

+

��
m2

m1

�
⋅ m1 − m2

�
⋅

⎢⎢⎢⎢⎣

c
m1

max − c
m1

min�
m2

m1

�
⎥⎥⎥⎥⎦
.

(19)

k2
MA2

⩾ c
m1

min
⋅ m1 + c

m2

max ⋅ m2

+

��
m2

m1

�
⋅ m1 − m2

�
⋅

⎢⎢⎢⎢⎣

c
m1

max − c
m1

min�
m2

m1

�
⎥⎥⎥⎥⎦
.

(20)

k2
MA2

⩾

⎢⎢⎢⎢⎣

n −
�

n

m2

�
⋅ m2

m1

⎥⎥⎥⎥⎦
⋅ m1 +

�
n

m2

�
⋅ m2

+

��
m2

m1

�
⋅ m1 − m2

�
⎢⎢⎢⎢⎢⎢⎣

�
n

m1

�
−

�
n−

�
n

m2

�
⋅m2

m1

�

�
m2

m1

�

⎥⎥⎥⎥⎥⎥⎦
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It should be noted that when m2

m1

 , n

m1

 , and n

m2

 are integers, 
the conditions given in Theorems 1 and 2 reduce to the result 
proved in our previous study [19], i.e., kMA1 = kMA2 = k ⩾ n.

The proposed algorithms and derived conditions can be 
extended to the r × r switching fabrics. In the following, we 
show how this can be conducted in the case when r = 4 . The 
connection matrix:

can be divided into four submatrices in the following 
manner:

The connections represented by matrices Hmx

11
 and Hmx

22
 

(marked in gray in (21)) are not in conflict in the interstage 
links, so they can use FSUs with the same sequence num-
bers, and this also applies to the connections in Hmx

12
 and 

H
mx

22
 . The number of FSUs required is then two times the 

value given by Eqs. (13) or (17), depending on the algo-
rithm employed. This approach can also be used in the case 
when r = 3 , by simply assuming that input 4 and output 4 
are added, and in addition to the original requests, we have 
also requests between them. Therefore, we can simply con-
clude that the number of FSUs required when using MA1 
is: kr

MA1
= ⌈r∕2⌉ ⋅ k2

MA1
 and when using MA2, we obtain: 

kr
MA2

= ⌈r∕2⌉ ⋅ k2
MA2

 , where k2
MA1

 is given by (13) and k2
MA2

 
is given by (17).

6  Comparisons

In Theorems 1 and 2, we proved two upper bounds for the 
RNB conditions under two merging algorithms in 2 × 2 
WSW1 switching fabrics that serve connections with two 
rates. Next, we need to determine which algorithm per-
forms better, i.e., the algorithm that needs fewer FSUs in 
the interstage links. Let us consider the switching fabric with 
n = 160 and 320 (these are practical values for the number of 
FSUs in the C-band of the optical fiber spectrum). For each 
case, we considered three values of m1 (2, 3, and 4) and set 
the range for m2 from m1 + 1 to 20.

The number of FSUs required for MA1 and MA2 are 
plotted in Fig. 8 (for n = 160 ) and Fig. 9 (for n = 320 ). 

(21)

(22)

H
mx

11
=

[
h
mx

11
h
mx

12

h
mx

21
h
mx

22

]
, H

mx

12
=

[
h
mx

13
h
mx

14

h
mx

23
h
mx

24

]
,

H
mx

21
=

[
h
mx

31
h
mx

32

h
mx

41
h
mx

42

]
, H

mx

22
=

[
h
mx

33
h
mx

34

h
mx

43
h
mx

44

]
.

These plots indicate that no general relationship shows when 
MA1 is better than MA2, or vice versa. For instance, for 
n = 160 and m1 = 2 , MA2 requires no more FSUs than MA1 
( kMA2 ⩽ kMA1 ) in the considered range of m2 . For m1 ⩾ 3 , 
the relationship changes as follows. For m1 = 3 and m2 = 4 
we have kMA1 = 199 < kMA2 = 212 , but when m2 = 5 the 
relationship changes to kMA1 = 223 > kMA2 = 186 . When 
m2 = 6 , we have kMA1 = kMA2 = 159 . When m2 is increased 
further, the number of required FSUs required is sometimes 
better with MA1 and sometimes with MA2, and these num-
bers are also equal in some cases.

A similar relationship can be observed for n = 320 (Fig. 9). 
For m1 = 2 , MA2 is always no worse than MA1 for the con-
sidered range of m2 . When m1 > 2 , for each combination of 
connection sizes m1 and m2 , we must check the algorithm that 
requires fewer FSUs in the interstage links. It should be noted 
that parameters, such as n, m1 , and m2 are usually known at the 
design stage for the switching fabric and the optical network 
because they define the connection requests that can be served 
in the network.

Fig. 8  Number of FSUs k versus m
2
 for n = 160

Fig. 9  Number of FSUs k versus m
2
 for n = 320
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The results obtained in this study cannot be compared in a 
fair manner with the SSNB conditions proposed previously 
[12] because they were derived for all connection rates from 1 
to mmax , and thus they are not valid for two arbitrary connec-
tion rates. Similarly, the RNB conditions proposed by [19] are 
only valid when m2

m1

 , n
m1

 , and n
m2

 are integers. At present, we are 
not aware of any other RNB conditions published in other 
studies.

7  Conclusions

In this study, we proposed two versions of merging algorithms 
that can be used for simultaneous connections routing in 2 × 2 
WSW1 switching fabrics that serve connections with two 
rates: m1 and m2 . We did not impose any restrictions on the 
relationship between m1 , m2 , and n unlike our previous study 
[19]. When m2

m1

 , n
m1

 , and n
m2

 are integers, the proposed RNB con-
ditions reduce to the known results proved in the previous 
study by [19]. Depending on m1 and m2 , different merging 
algorithms (MA1 or MA2) may yield better results and less 
FSUs might be required in the interstage links.

For example, the switching fabric considered in this study 
can be used in DCNs that employ 2-slot and 3-slot connections 
are employed, where the former can provide connections with 
speed of 100 Gb/s whereas the latter can provide a transmis-
sion speed of 400 Gb/s [25]. When 10 FSUs can be used by 
one Top-of-Rack (ToR) router (i.e., two times 2-slot and two 
times 3-slot connections can be set up), the DCN can serve a 
data center comprising up to 64 racks when 320 FSUs are used 
in the C-band of the optical spectrum. In the case when five 
FSUs are assigned to one ToR router, the number of connected 
racks can be increased to 128.

The proposed results give the upper bound for the RNB 
conditions which are close to the lower bound results for n 
provided by [19]. The proposed algorithms can be extended 
for use in switching fabrics with higher connection rates. How-
ever, the number of ways in which the partial permutations can 
be merged increases rapidly and it is difficult to derive math-
ematical formules for the required number of FSUs. We will 
address this problem in future research, as well as testing other 
approaches for representing the set of connection requests and 
algorithms for routing them. In this study, we demonstrated 
how this model can be used for r × r switching fabrics with 
two connection rates. It should be noted that this is still the 
upper bound and the sufficient and necessary conditions still 
remain open problems.
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