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Abstract 
Background and aims Ecological restoration strate-
gies are emerging globally to counteract biodiversity 
loss and ecosystem degradation. However, restored 
ecosystems may not reach undisturbed biodiversity 
and functionality. One reason of this limited success 
may be a focus on short-term recovery of diversity, 
composition, or isolated functions. These simplified 
metrics may underestimate the real time ecosystems 
need to recover. Thus, studies of more complex met-
rics, like biotic interactions, at larger timescales, are 
essential to understand ecosystem recovery.

Methods Using molecular identification, we 
assessed the recovery of the interactions between 
ectomycorrhizal (EcM) fungi and European beech 
(Fagus sylvatica L.) in two opencast iron mines in use 
since the fourteenth century and abandoned over 107 
and 148 years.
Results Species richness, species diversity, 
Basidiomycota/Ascomycota abundance ratio and tax-
onomic distinctness of EcM fungi recovered to undis-
turbed values, whereas species composition was still 
different. Certain fungal functional traits (i.e. explo-
ration and sporocarp types) also reached undisturbed 
values. Differences in soil pH and  NH4

+ affected the 
composition of the EcM communities associated with 
beech, suggesting that mining caused a long-term 
impact in soil biogeochemistry, that directly impacted 
beech-EcM interactions.
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Conclusion Mycorrhizal interactions require more 
than 150 years to recover following mining. Contrary 
to the rapid recovery response provided by simple 
metrics like species richness, recovery metrics with 
more ecological information, like the identity of 
plant-EcM interactions, may be still capturing signals 
of incomplete recovery.

Keywords Ecological restoration · Ecosystem 
complexity · Fagus sylvatica · Interactions · 
Molecular identification · Recovery metrics

Abbreviations 
AICc  Corrected Akaike Information 

Criterion
ANOVA  Analysis of variance
EcM  Ectomycorrizal
NH4

+  Soil ammonium
NO3

−  Soil nitrate
PO4

2−  Olsen phosphorus
PERMANOVA  Permutational multivariate analysis 

of variance
SOC  Soil organic carbon

Introduction

The accelerating pace of ecosystems’ degrada-
tion compromises their ability to maintain the cur-
rent levels of biodiversity, functions and ecosystem 
services (Newbold et  al. 2015). In the last decades, 
ecological restoration has become a key tool to coun-
teract this trend (Strassburg et al. 2020), as has been 
acknowledged with the declaration of 2021–2030 as 
the United Nations Decade of Ecosystem Restora-
tion (UN Environment Assembly 2019). However, 
restored ecosystems may be less functional and 
diverse than those preserved (Moreno-Mateos et  al. 
2017). One of the reasons that might help explain 
this reduced success is that traditional restoration 
approaches are based on the recovery of simple attrib-
utes (e. g. endangered species population density or 
species diversity), or single functions (e. g. reduction 
of soil erosion) (Montoya et al. 2012; Moreno-Mateos 
et al. 2017). These simplified metrics are only meas-
ured for a few years after disturbance ends, ignoring 
that ecosystem recovery may take centuries (Curran 
et al. 2014; Rydgren et al. 2020).

In recent years, an increasing number of studies 
are emphasizing the need to focus on restoring biotic 
interactions, as they play a key role in the structural 
and functional recovery of ecosystems (Montoya 
et al. 2012; Moreno-Mateos et al. 2020). One of the 
most relevant interactions in forest ecosystems, espe-
cially in temperate and boreal ones, is the mutualistic 
interaction between woody plants and ectomycorrhi-
zal (EcM) fungi (van der Heijden and Horton 2009). 
It is currently estimated that ca. 6000 plant species are 
involved in the association with ca. 20,000–25,000 
EcM fungal species of Basidiomycota and Ascomy-
cota (van der Heijden et al. 2015). These fungi form 
a mantle external to the root tissue enhancing plant 
water and nutrient access and stress tolerance (Teder-
soo et al. 2010). Temperate and boreal forests are usu-
ally dominated by a few woody species that harbor 
rich and diverse EcM fungal communities (Buée et al. 
2005). This high EcM species diversity commonly 
involves increased functional diversity, including 
traits related to the exploration of the surrounding soil 
based on the extent and pattern of hyphal develop-
ment, so-called “exploration type” (e.g. short vs. long 
distance; Agerer 2001), or the type of sporocarp (e.g. 
hypogeous vs. epigeous). It has been widely recog-
nized that the diversity of EcM fungal communities, 
as well as their structure and dynamics, are strongly 
influenced by climatic and edaphic factors, like soil 
pH and nutrient levels (Hawkins et al. 2015; de Witte 
et al. 2017).

Studies have shown that anthropic activities, such 
as mining or clearcutting, also affect forest EcM 
fungal communities, by reducing their species rich-
ness and diversity (Gebhardt et al. 2007; Sterkenburg 
et  al. 2019), and changing their species composi-
tion (Glen et al. 2008; Walker et al. 2012) for many 
years after the end of the impact. However, like most 
studies on recovery from anthropogenic disturbance, 
they only cover a few decades. We need to improve 
our understanding of the recovery process in the 
long-term. This would help us estimate the recovery 
time required to reach similar structural and func-
tional conditions to those existing before degradation 
started.

We studied the recovery of tree-EcM fungal inter-
actions over the long term (> 100  years) after min-
ing impacts. We compared the EcM fungi associ-
ated with European beech (Fagus sylvatica L.) in 
two opencast iron mines in use since the fourteenth 
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century and abandoned for more than 100 years with 
the preserved surrounding forests. Both the mines 
and the surrounding forest have been protected since 
1919 and no major impacts have happened in them 
since then. We sampled EcM fungal tips present in 
tree roots and characterized beech EcM fungal com-
munities by using metrics with distinct levels of 
ecological information (i.e. species richness, species 
diversity, taxonomic distinctness, Basidiomycota vs. 
Ascomycota relative abundances, and species com-
position). Alpha diversity metrics were calculated 
for each studied site while community dissimilarity 
between sites (beta diversity) was calculated using 
Bray-Curtis index. Specifically, we aimed to answer 
three questions. 1) Are there differences in the level 
of recovery reached by the metrics selected to char-
acterize beech EcM fungal communities? We hypoth-
esize that the more ecological information included 
in the metric, the lower the level of recovery and the 
longer the time to reach pre-disturbance values. These 
predictions are based on findings of longer recovery 
times for species composition than for species rich-
ness, as the former incorporates information about 
species identity (Curran et  al. 2014; Rodríguez-Uña 
et al. 2019; Rydgren et al. 2020). Expanding our pre-
liminary low-data intensive results showing a recov-
ery of EcM fungal species richness but not of species 
composition (with presence/absence; Rodríguez-Uña 
et al. 2019), this study includes a significantly larger 
amount of data of species diversity, species compo-
sition (with abundances), taxonomic distinctness, 
and phylum. 2) Are there fungal functional traits 
(i.e. exploration type and sporocarp type) associated 
with disturbed or preserved forests? Previous studies 
reported a higher prevalence of short-distance explo-
ration types in older forests. They argued that car-
bon fixation by trees might decrease with stand age, 
hindering the EcM fungal production of abundant 
and long hyphae, which are carbon costly tissues. 
(Rudawska et  al. 2018; Wasyliw and Karst 2020). 
Therefore, we hypothesize that long-distance explora-
tion type will be scarcer outside the mines. We also 
hypothesize that sporocarp structures associated with 
long-distance dispersion will be more abundant inside 
than outside the mines. The reason for that is that 
they would have better chances to reach the recover-
ing forest than sporocarps, which are associated with 
a short-distance dispersal strategy (e.g. hypogeous 
gasteroid) and whose chance to reach the new forest 

are low (Kranabetter and Friesen 2002; Halbwachs 
et  al. 2016). 3) Is the legacy of mining on soil bio-
geochemistry affecting the recovery of beech EcM 
fungal communities? Considering the effects of open-
cast iron mining on soil biogeochemistry (e.g. soil 
extirpation, severe pH changes, and in most cases the 
elimination of soil nutrients) and, subsequently, on 
soil microbiota (Deng et  al. 2020), we hypothesize 
that the legacy of centuries of mining, is still affect-
ing the composition and function of soil microbial 
communities.

Methods

Study area

The study area is located in the European beech forest 
of Artikutza (3638 ha), northern Spain (43°10′56.6″N 
1°47′41.2″W; Fig. 1). This area has a temperate oce-
anic climate, with a mean annual temperature of 
12 °C (19 and 6 °C in the hottest and coldest months 
respectively) and an annual rainfall of 2500 mm (Per-
alta et al. 2018). The soils are mainly Cambisols cre-
ated from metamorphic materials, with base-metal 
veins, mainly iron (Galán et  al. 2014). These iron 
deposits were exploited at least from the fourteenth 
century until 1919, when Artikutza was acquired by 
the San Sebastián City Council. Since then, no human 
uses (except recreational activities) were permitted, 
allowing the forest to recover. The dominant vegeta-
tion association is the Atlantic acidophilic beech for-
est (Saxifrago hirsutae-Fagetum sylvaticae; Peralta 
et al. 2018).

To study the recovery of the EcM fungal interac-
tions with European beech trees, we selected two 
abandoned opencast iron mines. The mines are 
located in opposite sides of the same hill, whose alti-
tude range from 250 to 750 m a. s. l. Mine 1, oriented 
to the SE, covers 7.7 ha (Fig. S1a). Mine 2, oriented to 
the NW, is divided into three cuts (i.e. inverted cone 
shape exploitations that evolve in depth, typical from 
opencast metal mines) and covers 4.3  ha. We used 
several dating approaches to estimate the moment 
when mining activities ceased in each cut (see Sup-
plementary text). The preserved surrounding forests 
historically suffered minor impacts, mainly pollarding 
for charcoal production, until 1919 (Fig. S1b).
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Sampling and processing

We found three main limitations to select trees inside 
the mines. First, the varying and steep slopes (up to 
64%) could affect EcM associations with trees (Zhang 
et al. 2013). To prevent this, we selected trees grow-
ing in slopes below 25%. Second, to cover the whole 
time period since the end of mining, we selected all 
the trees without decaying evidence in each mine with 
a diameter at breast height of at least 40  cm. These 
criteria allowed us to include nine trees inside mine 
1 and eight inside mine 2 (Fig. 1). We also sampled 
all trees at a distance between 10 m and 100 m from 
the edge of the mine with a diameter of at least 40 cm 
in the preserved forest, avoiding trees near to old ore 
extraction roads. These criteria allowed us to include 
six trees outside the mines.

We collected fine roots from each tree in spring 
and autumn of 2017. In each season, we collected 
500 ml of roots from four plots 25 × 25  cm2 and 10 cm 
deep, given that their abundance deeply decreases 
below this depth (Neville et al. 2002). The plots were 
1.5 m away from the tree and at 90° from each other. 
Both the interior and the preserved surroundings of 
the mines are characterized by a strong beech domi-
nance, with virtually no risk of collecting roots of 
other EcM tree species (see Fig.  1). We rotated the 

collection points 45° to the right in autumn to avoid 
collecting roots from the same plot. We pooled the 
roots from the four plots of each tree (total: 18, 16 
and 12 root samples from mine 1, mine 2 and outside, 
respectively), for each season. To preserve the roots, 
we kept them with their own soil in plastic bags at 
4 °C, until they were processed within the following 
48  hours. From each sample, we randomly selected 
five 5-cm root segments. Using stereo-microscopes, 
we identified the EcM morphotypes following Agerer 
(1987-2012) and Agerer (2001) and quantified the 
number of root tips of each morphotype per segment. 
To maximize the resolution of EcM identification, 
at least one tip of each morphotype distinguished in 
each segment from each sample was preserved in 
hexa-decyl-trimethyl-ammonium bromide (CTAB) 
for later DNA extraction and sequencing (total: 691 
root tips).

We also collected 100  g of soil at each sampled 
tree to estimate the soil carbon and nutrient concen-
tration. Soil samples were dried at 40 °C for 48 hours 
and homogenized. Soil samples were then analyzed 
using spectrophotometry to estimate the concentra-
tion of ammonium  (NH4

+), nitrate  (NO3
−) and Olsen 

phosphorus  (PO4
2−) (Olsen et al. 1954). The percent-

age of soil organic carbon (SOC), using the Walk-
ley and Black (1934) method, and soil pH were also 
determined.

EcM identification and sequence bioinformatics

We sequenced the DNA of 691 EcM root tips fol-
lowing a modification of Murray and Thompson 
(1980) protocol. ITS1F-ITS4 primers were used for 
PCR amplification of the ITS rDNA region (White 
et al. 1990; Gardes and Bruns 1993). A semi-nested 
PCR (with ITS1F-ITS2 or ITS3-ITS4 primers) was 
needed for amplifying partial fragments in 14% of 
the sequences where the initial reaction failed. We 
repeated PCR reactions for 8% of the sequences with 
basidiomycete-specific primers ITS1F-ITS4B (Bel-
lemain et  al. 2010), when the first protocol did not 
render good quality reads to prevent the amplifica-
tion of possible non-ECM ascomycete contaminants 
present in the root tips. When this reaction failed, a 
semi-nested PCR was carried out with ITS3-ITS4B 
primers. The amplification program consisted in a hot 
start at 95 °C for 5 min, followed by 35 cycles of 45, 

Fig. 1  Location of the study area and the sampled trees. Red 
dots indicate trees inside mine 1; white dots, trees inside cuts 
A, B and C of mine 2; and green dots, trees outside the mines
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30 and 45 s at 94 °C, 54 °C and 72 °C, respectively; 
and a final elongation phase at 72  °C for 10  min. 
Results were checked in an agarose gel at 1%, and 
positive reactions were purified and sequenced with 
ITS4 (for whole ITS or ITS2 regions) or ITS1F (for 
ITS1 region). All sequences and chromatograms were 
checked to detect and correct reading mistakes.

We used Geneious Prime 2019.0.4 (https:// www. 
genei ous. com) to analyze 598 positive DNA sequenc-
ing results. Low quality ends were trimmed, prior 
to filtering by sequence quality and 165 sequences 
were discarded because of low quality. We clus-
tered the 443 resultant sequences with a similar-
ity threshold of ≥97% into operational taxonomic 
units (OTUs), using BLAST (https:// www. ncbi. nlm. 
nih. gov/ BLAST) to assign taxonomy (Anslan et  al. 
2016). We then discarded 17 sequences that matched 
non-EcM fungi and 18 sequences that could not be 
identified up to the genus or species level. When one 
sequence matched with two or more species affinis 
(i.e. closely related, but not identical species), we 
selected the species already identified in nearby beech 
forests. The insufficient resolution of the ITS region 
to identify the species inside certain genera may be 
one of the reasons why 57 sequences (12%) were not 
identified at the species level with ≥97% similarity. 
To reduce this proportion, they were aligned with the 
other sequences of their genus in Geneious. As genus 
Tomentella had the highest proportion (20 from a 
total of 27) of OTUs not affiliated to a taxonomically 
identified species, we ran a maximum likelihood phy-
logeny with one representative sequence of each OTU 
and their closest matching sequences at GenBank 
(see phylogenetic placement of sequences in Fig. S2), 
using MEGA X (Kumar et al. 2018). The final dataset 
included 408 DNA sequences, which were deposited 
in NCBI GenBank (accession numbers MW282331 
- MW282739).

Statistical analysis

For subsequent statistical analysis, each sample was 
defined as the sum of the five root segments from 
each sampled tree in each season. Therefore, 18, 16 
and 12 samples were analyzed from mine 1, mine 2 
and outside, respectively, for each season. To answer 
question one (i.e. different recovery level of EcM fun-
gal communities depending on the metric), we first 
examined the differences in alpha diversity metrics 

- species richness, species diversity (Shannon-Wie-
ner index), and taxonomic distinctness - between the 
three locations. Species richness was computed as the 
number of different OTUs present in each sample. To 
calculate species diversity, species abundances were 
calculated as the total number of EcM root tips of 
each OTU counted in each sample. Taxonomic dis-
tinctness (Δ+), is defined as the average path length 
through a taxonomic tree connecting all species pairs. 
This metric was calculated based on the taxonomic 
distance between every pair of species of each sam-
ple through a classification tree at six taxonomic lev-
els (species, genus, family, order, class and phylum) 
(Clarke and Warwick 1998) (see dendrogram of tax-
onomic distances in Fig.  S3). Species richness, spe-
cies diversity and taxonomic distinctness were calcu-
lated using the package vegan (Oksanen et al. 2019) 
in R 3.6.3 (R Core Team 2021). Sampling effort was 
assessed by constructing species accumulation curves 
for the EcM fungal communities using specaccum 
function from R package vegan, with the “random” 
method (Fig. S4).

We fitted a linear mixed model for species diversity 
and taxonomic distinctness, with location (mine 1, mine 
2 and outside) and sampling season (spring vs. autumn) 
as fixed effects and sampled tree as random effect, using 
the function lmer of R package lme4 (Bates et al. 2015). 
For species richness, we used the function glmer of R 
package lme4 to fit a generalized linear mixed model 
with the same fixed and random effects but choosing 
a Poisson error distribution. We compared the models 
based on the corrected Akaike Information Criterion 
 (AICc; (Burnham and Anderson 2002)), selecting the 
most parsimonious one with a difference in  AICc lower 
than two in comparison to the minimum  AICc among 
all models. Model residuals were tested to meet model 
assumptions (Fig.  S5a-c) and the species richness 
model was checked for overdispersion. We subsequently 
compared the mean relative abundances of each phylum 
(Basidiomycota vs. Ascomycota) between locations 
using an analysis of variance (ANOVA) with post-
hoc Tukey pairwise tests. Data were logarithmically 
transformed to satisfy the criteria of normal distribution 
and homogeneity of variances.

Thirdly, we used beta diversity metrics to assess 
the effect of location and sampling season on beech 
EcM fungal communities. Community dissimilarity 
between the three sites was calculated using Bray-
Curtis dissimilarity index (accounting for species 

https://www.geneious.com
https://www.geneious.com
https://www.ncbi.nlm.nih.gov/BLAST
https://www.ncbi.nlm.nih.gov/BLAST
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abundances) and tested with a permutational mul-
tivariate analysis of variance (PERMANOVA). We 
used the adonis function of the R package vegan, 
with 9999 permutations. To visualize the similarity of 
EcM fungal communities between the trees in mine 1, 
mine 2 and outside, we generated a non-metric mul-
tidimensional scaling plot (NMDS) using the Bray-
Curtis similarity index in the metaMDS function of 
the R package vegan. Finally, we identified those spe-
cies (or combinations of them) associated with mine 
1, mine 2 or outside using the indicator species analy-
sis (Dufrêne and Legendre 1997) from the multipatt 
function in the R package indicspecies (De Cáceres 
and Legendre 2009), with 9999 permutations. This 
analysis assesses the relationship between species 
abundance and groups of sites, and the statistical sig-
nificance of such associations.

Following question two (i.e. certain EcM func-
tional traits associated with disturbed/preserved for-
est), we compared the mean relative abundances of 
each exploration type (contact-short, medium, or long) 
and sporocarp type (corticioid, gasteroid, pezizoid, 
stipitate, or without sporocarp) between locations 
using an ANOVA with post-hoc Tukey pairwise tests. 
The gasteroid reproductive structure data were log-
transformed to meet a normal distribution and homo-
geneity of variances. Assignments of exploration type 
were based on Agerer (2001, 2006), Ostonen et  al. 
(2017) and Defrenne et al. (2019), and assignments of 
sporocarp type were based on Agerer (2001) and the 
FungalTraits database (Põlme et al. 2021).

To assess question three (i.e., mining legacy on soil 
biogeochemistry still affecting the recovery of EcM 
fungal communities), we tested the influence of loca-
tion in each soil variable (SOC,  NH4

+,  NO3
−,  PO4

2−, 
and pH) using an ANOVA with post-hoc Tukey pair-
wise tests.  NH4

+,  PO4
2− and pH data were log-trans-

formed to satisfy normal distribution and homogene-
ity of variances. We determined whether these soil 
variables were correlated to each other by estimating 
the pairwise Pearson’s regression coefficient. Sec-
ondly, we fitted linear regression models including all 
soil variables to test their effect on species richness, 
species diversity and taxonomic distinctness. Thirdly, 
we ran a PERMANOVA analysis for the effect of all 
soil variables (SOC,  NH4

+,  NO3
−,  PO4

2−, and pH) on 
beech EcM fungal communities. Finally, a canonical 

correspondence analysis (CCA) was conducted to 
visualize the ordination of beech EcM fungal commu-
nities of mine 1, mine 2 and outside in relation to the 
soil variables.

Results

Does different metrics reach distinct recovery levels 
for EcM fungal communities?

The obtained 408 sequences corresponded to 120 
EcM fungal OTUs (hereafter referred to as “spe-
cies”), 99 (83%) Basidiomycota and 21 (18%) Asco-
mycota, within 38 genera across the 23 sampled trees 
inside and outside the mines. The most abundant gen-
era were Tomentella, Cenococcum, Entoloma (only 
present in the mines), Lactarius, Inocybe, Russula, 
and Sebacina (Fig. S6), which have also been identi-
fied in nearby beech forests (Goicoechea et al. 2009; 
Sarrionandia et al. 2009). The number of unique spe-
cies detected out of the total number of species in 
each location was 21 out of 56 in mine 1, 25 out of 53 
in mine 2, and 29 out of 54 outside. Mine 1 and mine 
2 share eight species, mine 1 and outside share 10 
species, mine 2 and outside share three species and 
the three locations share four species (Table S1).

Cenococcum geophilum was the most common 
species in all locations, with a relative abundance of 
7.88% ± 5.04%, 7.85% ± 3.86% and 24.18% ± 7.47% 
(mean ± s.e.) in mine 1, mine 2 and outside, respec-
tively. Other abundant species but only present out-
side the mines were Sistotrema sp.1, Lactarius blen-
nius, and Russula fellea. The most abundant species 
appearing inside both mines but not outside were 
Entoloma bryorum, Laccaria laccata, Inocybe mac-
ulata and Cyanoboletus pulvurulentus. E. bryorum 
was identified as the indicator species of mine 2 
(P = 0.002; Fig. 2; Table S2).

Mine abandonment dating results suggest that 
mine 1 and cut C of mine 2 were abandoned between 
125 and 148 years before sampling, and cuts A and 
B in mine 2 were abandoned 107 years before sam-
pling (see Supplementary text). The species richness 
per tree was 5.50 ± 1.76, 6.13 ± 2.53 and 6.18 ± 2.61 
(mean ± s.e.) in mine 1, mine 2 and outside, respec-
tively. The species diversity per tree was 1.33 ± 0.34, 
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1.43 ± 0.27 and 1.41 ± 0.41 (mean ± s.e.) in mine 
1, mine 2 and outside, respectively. The taxonomic 
distinctness per tree was 60.26 ± 10.18, 64.48 ± 8.67 
and 63.95 ± 8.76 (mean ± s.e.) in mine 1, mine 2 and 
outside, respectively. We found no differences in spe-
cies richness, species diversity and taxonomic dis-
tinctness between the three sampled locations or the 
sampling season, i.e. the model that excluded the 
effect of location and season had the minimum  AICc 
(Table  S3). The PERMANOVA model revealed a 
significant effect of the location on beech EcM fun-
gal community composition, but not of the sampling 
season (Table 1). NMDS visualization of beech EcM 
fungal communities was consistent with the effect 
of location (Fig.  3). The relative abundance ratio of 
Basidiomycota/Ascomycota per tree was 0.75 ± 0.07, 
0.73 ± 0.07 and 0.81 ± 0.05 (mean ± s.e.) in mine 1, 

mine 2 and outside, respectively, with no significant 
differences between them (Fig. S7a).

Are there fungal functional traits associated with 
disturbed or preserved forests?

When EcM fungal species were grouped by sporo-
carp type, we found a higher mean relative abundance 
of the “stipitate” group in mine 2 with respect to mine 
1 and outside (ANOVA: F2,20 = 11.40, P < 0.05; fol-
lowed by post-hoc Tukey pair-wise tests; Fig.  S7c). 
However, we found no differences between locations 
when grouped according to their exploration type 
(Fig. S7b).

Does the legacy of mining on soil biogeochem-
istry affect the recovery of EcM fungal communi-
ties? Soils from the three sampled locations had 

Fig. 2  Relative abundance of ectomycorrhizal fungal species 
found in European beech roots inside and outside the mines. 
It only shows species with >2% total relative abundance. Bars 

indicate means and standard error. Asterisk indicate the best 
indicator species of mine 2 as determined by the indicator spe-
cies analysis
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different  NH4
+ (ANOVA: F2,20 = 11.40, P <  0.001) 

and  PO4
2− (ANOVA: F2,20 = 3.78, P =  0.04) con-

centrations and pH (F2,20 = 11.39, P <  0.001) values 
(Fig.  4). However, SOC and  NO3

− concentrations 
were not different among the three locations (Fig. 4; 
Table  S4). Post-hoc Tukey pairwise tests detected a 
higher pH and lower  NH4

+ in mine 2 with respect to 
mine 1 (pH: P =  0.005,  NH4

+: P <  0.001) and out-
side (pH: P <  0.001,  NH4

+: P <  0.001). In contrast, 
 PO4

2− was higher in mine 1 compared to mine 2 
(P =  0.02) and to outside (P =  0.03).  NH4

+ and pH 
were negatively correlated (ρ = −0.46, P =  0.03; 
Fig. S8). We found no effects of soil variables on spe-
cies richness, species diversity, or taxonomic distinct-
ness (Table S5).

The PERMANOVA model indicated that pH but 
not SOC,  NH4

+,  NO3
− and  PO4

2−influenced beech 
EcM fungal communities (Table  1). CCA visualiza-
tion shows a separation of beech EcM fungal com-
munities of mine 2 from mine 1 and outside, mainly 
explained by the effect of pH, followed by an effect of 
 NH4

+ (Fig. 5; Table S6).

Discussion

Our results confirm hypothesis one, which states that 
metrics including more ecological information require 
longer recovery times. The linear mixed models and 
the ANOVA analysis revealed that, after more than 
148 and 107  years of opencast mining abandonment 
in mine 1 and mine 2, respectively, species richness, 
species diversity taxonomic distinctness, and Basidi-
omycota/Ascomycota abundance ratio of EcM fungi 
associated with beech trees have recovered to values 
present in the preserved surrounding forest. How-
ever, the PERMANOVA analysis on the Bray-Curtis 
dissimilarity matrix showed that EcM fungal species 
composition was still different in former mines com-
pared to sampled non-mined areas. These results are 
in line with a preliminary study showing no differ-
ences inside and outside the mines for the EcM fun-
gal species richness, but reporting differences in their 
species composition when presence/absence data was 
considered (Rodríguez-Uña et  al. 2019). In this new 
study, we broaden this approach by reporting a recov-
ery of the EcM fungal species diversity, species com-
position with abundance data, taxonomic distinctness, 
and phylum. Other studies found similar outcomes for 
EcM fungi associated with Quercus rubra in North 
America which recovered up to 63% of their species 
richness after 43  years since mining cessation (Geb-
hardt et al. 2007). EcM fungal species richness in jar-
rah forest in Australia recovered in 16-year-old reha-
bilitated mine sites, but species composition did not 
(Glen et  al. 2008). A meta-analysis from temperate, 
Mediterranean and boreal planted or secondary forests 
estimated that EcM fungal species richness required 
on average 90 years (between 45 years to unrecover-
able at 95% prediction limits) to reach old-growth 
forests’ values (Spake et  al. 2015). More broadly, a 
global meta-analysis reported that species richness 
in restored forests may converge to reference levels 
within a century, while the recovery of species com-
position may take up to an order of magnitude longer 
(hundreds to thousands of years) (Curran et al. 2014).

Although both mines share EcM fungal species 
with the preserved surroundings, some species that 
are abundant either inside or outside the mines are 
absent in the counterpart location. These dissimilari-
ties may be driven by different abiotic conditions and 

Table 1  Results of the PERMANOVA analysis to test the 
effect of location (mine 1, mine 2 and outside the mines) and 
sampling season (spring and autumn), and soil variables on 
ectomycorrhizal fungal community composition found in 
European beech roots

Df  degrees of freedom, Sum Sq  sum of squares, Pseudo-F  F 
value by permutation, p(perm): p-values based on 9999 permu-
tations (statistically significant p-values are shown in bold)

Location & sampling season

Source Df Sum Sq Pseudo-F R2 p(perm)
Location 2 2.066 2.482 0.103 <0.001
Sampling season 1 0.466 1.121 0.023 0.292
Residuals 42 17.484 0.873
Total 45 20.018 1.000
Soil variables
Source Df Sum Sq Pseudo-F R2 p(perm)
pH 1 0.832 2.013 0.087 0.001
NH4

+ 1 0.525 1.271 0.055 0.121
NO3

− 1 0.341 0.826 0.036 0.786
SOC 1 0.427 1.034 0.045 0.409
PO4

2− 1 0.446 1.080 0.047 0.328
Residuals 17 7.023 0.732
Total 22 9.595 1.000
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distinct forest-recovery stages (Smith et al. 2002; van 
der Linde et al. 2018). For example, L. laccata, known 
for its ability to assimilate  NO3

− (Finlay and Frost-
egård Åand Sonnerfeldt 1992; Hobbie et  al. 2008), 
was only present inside the mines, mainly in mine 1, 
where we found the highest concentration of  NO3

−. 
Although it would have been desirable to increase the 
sampling effort outside the mines, we still detected 
that its EcM fungal communities are characterized 
by i) the dominance of C. geophilum, a generalist in 
temperate forests (Douhan and Rizzo 2005; Gebhardt 
et  al. 2007); ii) the presence of acidophilic species 
with a preference for long-established beech forests, 
like Lactarius blennius (Sarrionandia et  al. 2009; 
Correia et al. 2021); and iii) an increasing abundance 
of species of the genus Russula, commonly found in 
mature forests (Durall et al. 2006; Twieg et al. 2007). 

These results might indicate that EcM fungal commu-
nities inside the former mines have not yet recovered 
to reference more mature stages. Other studies based 
on temperate and boreal forests also demonstrated an 
evolution towards old-growth EcM fungal communi-
ties during secondary forest succession (Twieg et al. 
2007; Spake et al. 2016).

The higher similarity of beech EcM fungal com-
munities between mines compared to the surrounding 
preserved forest, together with the effect of location 
(i.e. mine 1, mine 2 or outside the mines) on those 
interactions, suggests that previous mining impacts 
explain part of the differences in species composi-
tion. To test the influence of previous mining impacts, 
it would have been preferable to include replicate 
sites from other mined forests. Unfortunately, the 
uniqueness of the study area in the densely populated 

Fig. 3  Non-metric multidimensional scaling (NMDS) plot of 
the ectomycorrhizal fungal communities found in European 
beech roots inside and outside the mines (stress value = 0.19). 

Points on the ordination space represent sampled trees based on 
Bray-Curtis dissimilarity indices. Centroids and standard devia-
tion ellipses of the three locations are also overlaid
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temperate forests in Western Europe makes it ideal 
for studying long-term recovery but hampers the pos-
sibility to find other sites with similar environmental 
conditions and resource exploitation approaches. The 
study sites were affected by the same impact and for 
the same period of time, recovering for more than 
100  years. Nevertheless, the dissimilarity between 
EcM fungal communities from disturbed and pre-
served forests was higher for mine 2 than for mine 1. 
We propose two ways to explain this. First, the differ-
ence in mining ending dates between mines, as activi-
ties ended later in cut A and B of mine 2 (in 1910) 
compared to cut C (in 1892 ± 15 years) and mine 1 (in 
1879 ± 25  years). A second explanation may be the 
difference in soil chemistry, as suggested by our ques-
tion three. Our third hypothesis about the effects of 

legacy of mining on soil microbial communities was 
confirmed by the ANOVA. We found different val-
ues of pH and  NH4

+ in mine 2 compared to mine 1 
and outside the mines. The CCA and PERMANOVA 
analyses evidence that the values of pH and  NH4

+ 
were the strongest determinants of beech EcM fungal 
communities in our study area. These findings paral-
lel large-scale experimental studies in beech forests 
revealing a major influence of pH and  NH4

+ on EcM 
fungal community composition (de Witte et al. 2017; 
van der Linde et al. 2018), but with no effect on spe-
cies richness (Toljander et al. 2006; Geml et al. 2022).

Regarding our question two, the ANOVA con-
firmed our hypothesis that reproductive structures 
allowing a longer dispersion may have better chances 
to colonize recovering forests, as those EcM fungi 

Fig. 4  Mean value (± standard error) of the soil variables 
measured (soil organic carbon (SOC), ammonium  (NH4

+), 
nitrate  (NO3

−), Olsen phosphorus  (PO4
2−P) and pH) inside and 

outside the mines. Asterisks indicate significant differences (*: 
P < 0.05, ***: P < 0.001) obtained from Tukey post-hoc pair-
wise comparisons of the ANOVA results (see Table S4)
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with “stipitate” sporocarps were more abundant in 
mine 2, the youngest forest, than in the reference, 
older forest. Previous studies based on observed 
sporocarps instead of EcM sampled in planta, docu-
mented differences in the abundance of hypogeous 
and epigeous fungi among forest-recovery stages 
(Smith et al. 2002; Durall et al. 2006). In relation to 
the exploration type, the ANOVA showed no differ-
ences in their exploration type inside and outside the 
mines. This result contrasts with our initial hypothe-
sis that long-distance exploration type will be scarcer 
outside the mines and other studies highlighting dif-
ferences in the exploration type among forest suc-
cessional stages (LeDuc et al. 2013; Rudawska et al. 
2018; Wasyliw and Karst 2020). Although this fungal 
functional trait is considered an adequate indicator of 
restoration success in later stages (Avis et al. 2017), 

the oldest stand sampled in these previous studies 
was 87 years old, lacking insights about the dominant 
exploration type in older forests (> 100 years). There-
fore, our findings suggest that the effect of mining on 
the exploration type and sporocarp type recovered 
after more than 107–148 years of mine abandonment.

Overall, our outcomes suggest that while eco-
systems may seem recovered over the long term 
based on metrics with low levels of ecological 
information, like those measuring the number and 
abundance of species, complete recovery may not 
be happening. We have found that alpha diversity 
recovered while species composition, i.e. the iden-
tity of beech associated EcM fungi species, did not 
recover after more than 107–148  years, stressing 
critical value of mature, preserved forests for fun-
gal conservation (Kranabetter et  al. 2018), as they 

Fig. 5  Canonical correspondence analysis (CCA) plot of the 
ectomycorrhizal fungal communities found in European beech 
roots inside and outside mines. Points in the ordination space 
represent sampled trees based on the effect of the soil vari-

ables measured (soil organic carbon (SOC), ammonium  (NH4
+), 

nitrate  (NO3
−), Olsen phosphorus  (PO4

2−) and pH). Standard 
deviation ellipses of the three locations are also overlaid
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are also crucial natural inoculum reservoirs (Bau-
man et  al. 2012). Metrics with more ecological 
information may better incorporate the assemblage 
of ecosystem complexity (Moreno-Mateos et  al. 
2020; Rydgren et al. 2020). Monitoring changes in 
these more complex metrics after restoration will 
likely provide a more accurate estimate of its per-
formance. Restoration efforts could then favor EcM 
fungal communities existing in late-stages of forest 
recovery to accelerate this process. To improve this 
knowledge, further studies estimating how much 
nitrogen is absorbed by the plant thanks to each 
EcM fungal species (Pena et al. 2013) would enable 
to identify highly functional species or clusters of 
species to be used in forest restoration (Hawkins 
et al. 2015). In addition, assessing ecosystem recov-
ery with metrics that incorporate more ecosystem 
complexity may also help to better predict the time 
required to full recovery and provide deeper insights 
into the real magnitude of ecosystem degradation.
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