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Abstract 
Purpose The fuel reduction prescribed burning and 
biochar application can have significant impacts on 
water and nitrogen (N) use efficiency of understory 
acacia species as well as soil carbon (C) and N pools 
in a suburban native forest subject to N deposition in 
Southeast Queensland, Australia.
Methods We evaluated the impact of biochar appli-
cation rates (0, 5.0 and 10.0 t biochar per hectare) and 
prescribed burning on soil-plant interactions in car-
bon (C) and N cycling in a suburban native forest in 
the first two years of biochar application or three and 
half years of the recently prescribed burning.
Results Anthropogenic N deposition not only 
enhanced N losses caused by N leaching and deni-
trification, but also inhibited biological N fixation 
(BNF) by increasing N availability in forest systems. 

The Acacia leiocalyx with higher water use effi-
ciency was more inclined to utilize easily available 
N resources (from N deposition), compared with A. 
disparismma. In this study, biochar application could 
indeed reduce N loss in forest soil and improve soil 
fertility by improving plant water and N use effi-
ciency. Meanwhile, soil moisture content affected by 
biochar application also influenced soil N transforma-
tions by affecting soil microbial activity.
Conclusion For urban forest soils, the high N 
availability caused by N deposition could inhibit 
the BNF in a suburban native forest ecosystem. The 
high-porosity physical structure of biochar applied 
increased the soil water content and soil N retention 
capacity.

Keywords N deposition · Water use efficiency · N use 
efficiency · Forest system · Soil moisture content · δ15N

Introduction

Since the industrial revolution and rapid develop-
ment in the 150  years, we have dramatically altered 
the global nitrogen (N) cycle, with widespread and 
often divergent effects on ecological systems and 
environmental quality (Galloway et al. 2008; Xu et al. 
2009; Succarie et al. 2022). The N cycling in terres-
trial ecosystems is mainly driven by three primary 
sources: biological N fixation (BNF), N mineraliza-
tion, and atmospheric N deposition. Among them, 
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the potential threat of atmospheric N deposition to 
forest health (Binkley and Högberg 1997) may cause 
N saturation, which increases the risk of N leaching, 
soil acidification and N denitrification (Conley et al. 
2009; Huang et  al. 2015; Zhang et  al. 2018a, b, c), 
which is causing concern about significant impacts on 
global forest health and plant biodiversity (Vitousek 
et al. 1997; Sala et al. 2000; Phoenix et al. 2006; Cec-
chini et al. 2021). At the same time, forest N dynam-
ics interact closely with other biogeochemical cycles 
and greater N emissions contribute to a litany of well-
documented and undesirable environmental changes, 
including loss of biodiversity (Bobbink et  al. 2010; 
Aryal et  al. 2022), soil and surface water acidifica-
tion (Moldan and Wright 2011; Zhou et al. 2023) and 
reductions in air quality (Wolfe and Patz 2002; Wang 
et al. 2023).

Biochar is formed by heating organic material 
under low oxygen concentrations in a process known 
as pyrolysis (Lehmann et al. 2011; Rady et al. 2016; 
Haldar and Purkait 2021). Biochar is enriched in C, 
considered relatively stable in the soil, and has better 
nutrient retention than other forms of organic matter 
(Woolf et al. 2010; Nguyen et al. 2017; Farrar et al. 
2022). Hence, adding biochar to the soil becomes 
an option for carbon (C) sequestration, potentially 
improving soil quality and reducing environmen-
tal pollutant release (Lehmann 2007; Gurwick et  al. 
2013; Das et al. 2023). Moreover, biochar can act as 
a soil amendment to affect nutrient cycling and plant 
growth by affecting microbial community composi-
tion and activity, water holding capacity and pH, as 
well as improving root growth (Kuzyakov et al. 2009; 
Liang et al. 2010; Robertson et al. 2012; Biederman 
and Harpole 2013; Thomas and Gale 2015; Liu et al. 
2021). In addition, labile C fractions of biochar may 
also accelerate the decomposition of old soil organic 
matter through the priming effect (Cross and Sohi 
2011; Zimmerman et  al. 2011; Wang et  al. 2016; 
Rasul et al. 2022).

Recently, although people have been interested in 
biochar as a soil amendment to improve soil qual-
ity, improve and maintain soil fertility, and increase 
soil C sequestration (Glaser et  al. 2002; Das et  al. 
2021; Luo et  al. 2023), there is still a lack of clear 
understanding of the characteristics of biochar pro-
duced from different raw materials and under differ-
ent pyrolysis conditions and its interaction with soil. 
In addition, some researchers believe that biochar can 

be used as a fertilizer to provide N for plant growth 
(Wu et al. 2016, 2017). By improving the pH, cation 
exchange capacity (CEC), organic carbon and ash 
content of the soil (Rahim et al. 2020; Tomczyk et al. 
2020), biochar may further reduce N loss from N 
leaching and ammonium volatilization (Deluca et al. 
2015). In addition to helping the soil retain water and 
nutrients, the oxygen-containing functional groups 
on the biochar surface also improve the soil’s water 
holding capacity (WHC) and nitrogen use efficiency 
(NUE) (Yu et al. 2018), promoting plant productivity 
and improving soil fertility (Palansooriya et al. 2019; 
Bai et  al. 2022). The ability of biochar to directly 
supply nutrients is limited, but its application to soil 
can improve soil fertility by changing the availabil-
ity of soil N (Zhu et  al. 2017; Asadyar et  al. 2021). 
The high-temperature biochar (600  °C) used in this 
study usually has a higher surface area, porosity and 
alkalinity, thereby enhancing the soil water hold-
ing capacity and nutrient use efficiency of the soil 
and improving soil nutrient uptake by plants (Zhang 
et al. 2015; Burrell et al. 2016; Ding et al. 2016; Zor-
noza et  al. 2016). However, the optimal application 
rate of high-temperature biochar and its relationship 
with plant-soil interactions have not been studied well 
(Zhang et al. 2015; Lan et al. 2018).

Prescribed burning has been widely used as a forest 
management tool to reduce the risk of wildfire spread 
(May and Attiwill 2003; Reverchon et  al. 2011; Bai 
et  al. 2012; Francos and Úbeda 2021). Prescribed 
burning may cause N losses through volatilization 
and release terrestrial carbon (C) into the atmosphere 
(Thonicke et al. 2010; Muqaddas et al. 2016). Acacia 
species can help soil nutrient recovery by biological 
N fixation (BNF) and increasing carbon (C) seques-
tration, especially in forests after prescribed burning 
and fire (Guinto et al. 2000; Bai et al. 2014; Witt et al. 
2017; Reverchon et  al. 2020). Most forest soil N is 
in organic form, but N mineralization rates are low, 
and tree growth is N-limited (Sponseller et al. 2016). 
Biochar application has been shown to stimulate soil 
organic matter decomposition by increasing net N 
mineralization and nitrification rates (Ameloot et  al. 
2015; Case et al. 2015; Gundale et al. 2016).

Based on previous studies, plant-soil δ13C and 
δ15N values are related to soil N and water avail-
ability and are closely related to C and N cycling of 
soil-to-plant (Werth and Kuzyakov 2010; Nogués 
et al. 2023). There is a significant correlation between 
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plant δ13C and soil moisture content, which makes 
the δ13C a powerful tool to evaluate plant water use 
efficiency (Klaus et  al. 2016). By analysing δ15N in 
soil and plants, we can better understand the retention 
and use efficiency of N in forest ecosystems (Schles-
inger 2009; Hietz et al. 2011; Ibell et al. 2013; Mao 
et  al. 2022). According to the reports, in the pro-
cess of microbial transformation, the soil substrate 
is usually rich in 15N due to the rapid movement of 
the substrate in the process of N loss (Kuzyakov and 
Xu 2013; Nogués et  al. 2023). However, the altered 
global N cycle will have important consequences. 
The N deposition will increase the N losses via deni-
trification and leaching of nitrate and the production 
of reactive N, adversely affecting the environment, 
climate, biodiversity and human health (Robertson 
and Vitousek 2009; Fowler et al. 2013; Cheng et al. 
2020; Song et  al. 2020). This study aimed to quan-
tify the impact of biochar application rates (5.0 and 
10.0  t biochar per hectare) on soil-plant interactions 
in C and N cycling in a suburban native forest in the 
first two years of biochar application or three and half 
years of the recent prescribed burning. Generally, 
biochar always causes a short-term limited positive 
priming effect, but long-term field experiments about 
the impacts of biochar in urban forest ecosystems 
subjected to prescribed burning are rare (Bruckman 
et al. 2015; Mitchell et al. 2015; Page-Dumroese et al. 
2016).

Materials and methods

Study area and experiment design

The study site was located in Toohey Forest, Bris-
bane, South Queensland, Australia  (27032′53”S; 
 153003′21″E). This area is one of Australia’s native 
forests dominated by Eucalyptus species. Toohey 
forest is a subtropical climate area with an average 
annual temperature of 27  °C and an average annual 
rainfall of 1350 mm (Bai et al. 2012). Toohey forest 
has been subject to prescribed burning since 1993, 
and the risk of wildfire spread has been reduced by 
dividing areas for prescribed burning (Catterall et al. 
2001; Wang et  al. 2020a). The experimental site in 
this study was last burned in August 2017, and a field 
biochar application trial was established in this area 
in May 2019 after 20 months of prescribed burning. 

The test area was randomly placed in a site, which 
included a mixture of understorey legumes Acacia 
leiocalyx, Acacia disparismma and overstorey such as 
Eucalyptus psammitica, which is typical of the area.

In brief, the experimental design is a random com-
plete block design, with 4 plots as 4 replicates. These 
four circular plots with a radius of 12.62 m, giving an 
internal area of 500  m2, were randomly located within 
the site, offering a total sampling area of one-fifth of 
a hectare. Each plot has 13 sub-samples, including 
two understorey legume species of Acacia with Euca-
lyptus planchoniana as a reference plant. Each plant 
area is defined by four steel pegs providing an area of   
4  m2 (2 m × 2 m). Biochar was applied to each acacia 
plant at three rates of 0, 5 and 10 t  ha−1. In each plot, 
there are 3 different treatment methods: 1) control 
(no biochar), 2) biochar 5 t   ha−1 (2 kg/plant), and 3) 
biochar 10  t   ha−1 (4 kg/plant), respectively. Biochar 
was manually scattered on the soil surface in May 
2019. First, the grass in each plant area was manually 
removed, and the biochar was homogeneously distrib-
uted and mixed manually on the soil surface to mini-
mise biochar loss. Soil samples were collected from 
the central area of each plant area after the removal of 
the litter layer to avoid edge effects.

Characterization and application of biochar

Biochar material used in this experiment was pro-
duced from pine wood (Pinus radiata) through slow 
pyrolysis at 600 °C introduced in Western Australia. 
The N isotope composition (δ15N) and C isotope 
composition (δ13C) of the chosen high-temperature 
biochar were 2.3‰ and − 27.5‰ respectively in 
this study. It is pertinent to note that we chose high-
temperature biochar that was made above 500  °C 
because this study region is in a natural forest with 
high N deposition pollution (Bai et al. 2012). In terms 
of sustainability, the two biochar rates were selected 
in this study, as it has been confirmed and reported 
that 5 t  ha−1 and 10 t  ha−1 are ideal and economically 
feasible application rates (Williams and Arnott 2010; 
Bruckman et  al. 2016). The biochar properties are 
summarized in Table S1.

Soil and foliage sample collection

After 24  months of the field establishment, soil 
samples were collected from three different depths 
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of 0–5, 5–10 and 10–20 cm using a soil auger with 
a diameter of 7.5  cm at various points across each 
plant area in May 2021. After collecting soil and 
plant samples, the soil samples were sieved by 
using a 2 mm sieve and mixed thoroughly, then sub-
sampled were collected for the following analyses: 
1) air drying a part of the soil samples to analyse 
the soil pH value; 2) oven drying (60 °C) a part of 
soil samples for mass spectrometry analysis and 
determination of soil moisture content.

Similarly, plant samples (foliage) were oven-
dried to a constant weight for 72  hours at 60  °C 
to a constant weight. After that, the dried foliage 
samples were ground into a fine powder using the 
Rocklabs™ ring grinder and weighted for mass 
spectrometry analyses. For foliage samples and 
oven-dried soil samples, we have evaluated the total 
C, total N, and their isotope composition (e.g., δ13C 
and δ15N) (Xu et al. 2000).

Data collection and measurements

Measurements of soil physiochemical properties

After collecting and processing soil samples, some 
initial soil characteristics were determined, such as 
soil moisture content and pH value. Soil moisture 
content (SMC) was determined by drying the field 
moist soil at 105 °C for 24 hours. The value of SMC 
was determined using the following equation (Voro-
ney 2019):

The ratio of soil and water mass was 1:5 to deter-
mine soil pH. The 5  g of air-dried soil was taken 
into a 50  ml falcon and 25  ml of deionized water 
was added. The samples were then shaken in an 
end-to-end shaker for an hour, and then they were 
allowed to stand to settle down the solution for 
20 minutes. After calibrating the machine with two 
buffer solutions, the soil pH was measured with a 
pH electrode.

Oven-dried soil samples were ground into fine 
powder by using the Rocklabs™ ring grinder. Then 
approximately 40–50 mg of soil (0–5 and 5–10 cm), 
about 50–60  mg (10–20  cm) and about 6–7  mg 

Soil moisture content (%) =

[

Wwet soil −Wdry soil

]

Wdry soil

× 100

foliage samples were transferred into tin capsules for 
total C total N, δ13C and δ15N analyses by using the 
isotope ratio mass spectrometer (IRMS, Elementar, 
Langenselbold, Hesse, Germany).

The value of δ13C and δ15N were determined using 
the following two equations:

where,

R  the isotope ratio

Rsample  the ratio of 13C/12C and 15N/14N of sample 
respectively

RVPDB  the ratio of 13C/12C of the international 
standard (Vienna Pee Dee. Belemnite 
(VPDB))

Rair  the ratio of 15N/14N of the international 
standard (atmospheric  N2)

The results for δ13C and δ15N were expressed as 
parts per thousand (‰).

Measurements of plant growth and physiochemical 
properties

Plant height and diameter at ground level (DGL) were 
measured in May 2021 at four plots by using diameter 
tape and height measurements hypsometer (Vertex 
IV), respectively. All understory plants, such as Aca-
cia and Eucalyptus species for all plots, were included 
for growth measurements. Four plots contain an aver-
age of 52 plants, 48 plants for each Acacia spp. (A. 
leiocalyx = 24; A. disparimma = 24) and 4 reference 
plants of E. psammitica.

The percentage of N derived from atmospheric  N2 
(%Ndfa) was calculated using the following equation 
(Shearer and Kohl 1986).

δ13Csample =

[

Rsample−RVPDB

]

RVPDB

× 1000

δ15Nsample =

[

Rsample−Rair

]

Rair

× 1000

%Ndfa =

[
(

δ15Nref − δ15Nacacia

)

δ15Nref − Bvalue

]

× 100
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where:

δ15Nref  The δ15N value of the reference plants

δ15Nacacia  The δ15N value of the Acacia spp.

B value  The relative isotopic abundance of Aca-
cia spp. growing under an N-free nutrient 
condition

The B values reported from a large array of 
sources vary from −2.9‰ to 1.0‰ for woody 
plants (Shearer and Kohl 1986; Boddey et  al. 
2000). In the present study, using a B value of 
−1.3‰ resulted in an estimation of %Ndfa that was 
greater than 100%. Assuming B = −1.3‰ resulted 
in 75.0% of all cases having the %Ndfa greater 
than 100% (n = 30 out of 40), while this percentage 
dropped to 5.0% when B was assumed to be −0.8‰ 
(n = 2 out of 40). None of the cases were greater 
than 100% when B values were either −0.3‰ or 
1.0‰. Therefore, different B values varying from 
−1.3‰ to 1.0‰ were examined to determine an 
applicable B value for Acacia spp. under the exper-
imental condition. In our study, we chose a B value 
of −0.3‰ to report the results of BNF determina-
tion based on the 15N natural abundance method.

Statistical analyses

A general linear model was used to analyse treat-
ment effects (SPSS 19.0, IBM Crop., Armonk, NY, 
US) (Bruckman et al. 2016). All data were tested for 

homogeneity of variance and normality of distribu-
tion. A three-way ANOVA was performed to test for 
these three factors (i.e., soil depths, biochar rates and 
plant species) and their interactions on each measured 
parameter. Pearson’s correlation analysis was used to 
assess relationships between soil properties across 
all data of three biochar rates at different soil depths. 
Statistical significance was set at α = 0.05.

Results

Chemical and physical properties of plant samples

The results from Table  1 show that after biochar 
application at the Toohey forest for 2 years, the foliar 
N isotope compositions (δ15N) and C isotope com-
position (δ13C) were significantly different between 
the two understorey acacia species (P < 0.05). The 
foliar δ15N of A. disparimma (−1.46‰) was signifi-
cantly higher than that of A. leiocalyx (−2.01‰), and 
foliar δ13C of A. disparimma (−32.1‰) was also sig-
nificantly higher than that of A. leiocalyx (−32.8‰) 
(Table  1). The foliar total N was also significantly 
increased by these two biochar application rates. 
The %Ndfa of A. disparimma was 58.0%, which was 
significantly higher than the %Ndfa of A. leiocalyx 
(37.4%) (P < 0.05) (Table 1).

There were no significant differences in plant 
height, diameter at ground level (DGL), basal area 
(BA) and volume between the three different bio-
char application rates and the two species (P > 0.05) 
(Table  2). Relative to the control, biochar addi-
tion increased plant growth in natural forests and 

Table 1  Effects of biochar application rates and understorey 
acacia species on foliar total carbon (total C), total nitrogen 
(total N), C and N isotope composition (δ13C and δ15N), and 

biological N fixation (BNF) of Acacia leiocalyx and Acacia 
disparimma in Toohey forest after 2 years of biochar applica-
tion

Lower case letters indicate significant differences among biochar rates and/or acacia species. All differences were considered signifi-
cant at P < 0.05

Treatments Total C (%) Total N (%) δ13C (‰) δ15N (‰) BNF (%)

Biochar rates (t  ha−1)
  0 48.2 a 1.99 b −32.0 a −1.93 a 51.7 a
  5 48.2 a 2.45 a −32.4 a −1.80 a 46.3 a
  10 48.0 a 2.42 a −32.6 a −1.76 a 45.1 a

Species
  Acacia leiocalyx 47.4 b 2.57 a −32.8 b −2.01 b 37.4 b
  Acacia disparrima 49.0 a 2.31 a −32.1 a −1.46 a 58.0 a
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biochar applied at a rate of 10 t  ha−1 led to the great-
est improvement in plant growth (0.05 < P < 0.10). 
Further details are documented in the Supplementary 
Material. Table  S3 provides the interactive effects 
of the biochar application rates and species on plant 
height, diameter at ground level (DGL), basal area 
(BA) and volume.

Soil chemical properties

As the soil depth increased, soil total C was 6.81%, 
4.77%, and 3.27% for 0–5, 5–10 and 10–20  cm 
respectively, while the corresponding soil total N 
was 0.250%, 0.168% and 0.106% respectively, sig-
nificantly decreased as the soil depth increased 
(P < 0.05) (Table 3). Soil δ13C values were − 27.10‰, 
−25.86‰ and − 25.63‰ respectively for the 0–5, 
5–10 and 10–20  cm soil depths (Table  3). For soil 

δ15N from 5 to 10  cm depth (1.044‰) was signifi-
cantly higher than those of the other two soil depths 
(P < 0.05) (Table 3). The results of Table 3 also show 
that soil total C and total N were significantly higher 
only when the biochar application rate was 10  t/ha 
(P < 0.05) (Table 3).

After two years of biochar application, the soil 
moisture content of the biochar application rate of 
10 t/ha was 14.3% and 13.8% higher than that under 
the control treatment at 0–5  cm and 5–10  cm soil 
depth (0.05 < P < 0.10) (Table  4). At the 0–5  cm 
soil, the results of Table 4 also showed that soil total 
C for the biochar application rate at 10 t/ha was sig-
nificantly higher than that of the biochar application 
rate at 0 t/ha (P < 0.05). The soil total N at 5 and 10 t/
ha biochar application rates (0.262% and 0.265%) 
were higher than that of without biochar application 
(0.230%) (Table 4).

Table 2  Effects of biochar application rates and understorey 
acacia species on plant height (cm), diameter at ground level 
(DGL, cm), basal area (BA,  cm2) and volume  (cm3) of Aca-

cia leiocalyx and Acacia disparimma after 2 years of biochar 
application in Toohey Forest, Australia

Lower case letters indicate significant differences among biochar rates and/or acacia species. All differences were considered signifi-
cant at P < 0.05

Treatments Height (cm) DGL (cm) BA  (cm2) Volume  (cm3)

Biochar rates (t  ha−1)
  0 131.6 a 1.31 B 1.43 B 68.02 B
  5 130.4 a 1.41 AB 1.70 AB 75.49 B
  10 153.0 a 1.67 A 2.29 A 124.42 A

Species
  Acacia leiocalyx 151.4 a 1.50 a 1.85 a 99.74 a
  Acacia disparrima 125.3 a 1.43 a 1.76 a 78.88 a

Table 3  Effects of soil 
depths, biochar application 
rates and understorey 
acacia species on soil total 
carbon (total C), total 
nitrogen (total N), C and N 
isotope composition (δ13C 
and δ15N) after two years 
of biochar application in 
Toohey forest, Australia

Lower case letters indicate 
significant differences 
among biochar rates and/
or acacia species. All 
differences were considered 
significant at P < 0.05

Treatments Total C (%) Total N (%) δ13C (‰) δ15N (‰)

Depth (cm)
  0–5 6.81 a 0.250 a −27.10 c −0.236 b
  5–10 4.77 b 0.168 b −25.86 b 1.044 a
  10–20 3.27 c 0.106 c −25.63 a −1.066 c

Biochar rates (t  ha−1)
  0 4.62 b 0.165 b −26.19 a −0.092 a
  5 5.01 ab 0.177 ab −26.24 a −0.220 a
  10 5.39 a 0.186 a −26.16 a 0.057 a

Species
  Acacia leiocalyx 4.98 a 0.176 a −26.24 a 0.058 a
  Acacia disparrima 5.13 a 0.177 a −26.16 a −0.212 a
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Relationship plant physiological variables

Regression analysis showed that there was a signifi-
cant positive relationship between foliar δ15N (‰) 
and plant BNF capacity, which depended on differ-
ent acacia species. It has been shown from Fig.  1 
that Acacia disparrima foliar δ15N was more strongly 
related to plant BNF capacity  (R2 = 0.863, P < 0.001) 
than that of Acacia leiocalyx  (R2 = 0.661, P < 0.001).

Relationships between soil physiological variables

In the Toohey Forest, it has been shown from Fig. 2, 
soil δ13C was positively related to soil δ15N at soil 
depths of 5–10 cm, and soil δ13C was strongly related 
to soil δ15N on biochar rate of 10  t/ha  (R2 = 0.641, 
P < 0.001) than those of biochar rates of 5  t/ha 
 (R2 = 0.388, P = 0.01) (Fig.  2). There were strong 
correlations between soil total N and soil δ15N at 
soil depth of 0–5 and 5–10  cm, but the relationship 

Table 4  Effects of 
biochar application rates 
and understorey acacia 
species on soil total carbon 
(total C), total nitrogen 
(total N), C and N isotope 
composition (δ13C and 
δ15N), soil moisture content 
and pH value at different 
soil depths (0–5, 5–10, 
10–20 cm) after two years 
of biochar application in 
Toohey forest, Australia

Lower case letters indicate 
significant differences 
among biochar rates and/
or acacia species. All 
differences were considered 
significant at P < 0.05

Treatments Total C (%) Total N (%) δ13C (‰) δ15N (‰) Soil Moisture 
Content (%)

pH

0–5 cm
Biochar rates (t  ha−1)

  0 6.10 b 0.230 B −27.08 a −0.205 a 12.74 B 5.29 a
  5 7.20 ab 0.262 A −27.21 a −0.424 a 13.53 AB 5.27 a
  10 7.49 a 0.265 A −27.01 a −0.093 a 14.56 A 5.28 a

Species
  Acacia leiocalyx 6.75 a 0.249 a −27.11 a −0.114 a 13.80 a 5.30 a
  Acacia disparrima 7.20 a 0.255 a −27.04 a −0.306 a 13.44 a 5.25 a

5–10 cm
Biochar rates (t  ha−1)

  0 4.50 a 0.161 a −25.85 a 0.958 a 12.47 B 5.28 a
  5 4.78 a 0.171 a −25.88 a 1.068 a 13.06 AB 5.25 a
  10 5.15 a 0.177 a −25.85 a 1.149 a 14.19 A 5.25 a

Species
  Acacia leiocalyx 4.84 a 0.170 a −25.95 a 1.098 a 13.54 a 5.26 a
  Acacia disparrima 4.89 a 0.171 a −25.82 a 1.048 a 13.36 a 5.25 a

10–20 cm
Biochar rates (t  ha−1)

  0 3.25 a 0.105 a −25.64 a −1.029 a 13.65 a 5.21 a
  5 3.04 a 0.098 a −25.61 a −1.304 a 13.26 a 5.17 a
  10 3.54 a 0.115 a −25.63 a −0.885 a 14.30 a 5.15 a

Species
  Acacia leiocalyx 3.33 a 0.109 a −25.65 a −0.810 a 13.82 a 5.16 a
  Acacia disparrima 3.29 a 0.105 a −25.62 a −1.378 a 13.62 a 5.17 a

Fig. 1  Linear relationship between foliar δ15N (‰) and bio-
logical nitrogen fixation rate (% Ndfa) of Acacia leiocalyx and 
Acacia disparrima. This relationship represents the variation 
of two acacia species and shows the contribution of foliar δ15N 
in changing the BNF rate of Acacia leiocalyx and Acacia dis-
parrima respectively
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depended on the biochar application rates (Fig.  3). 
At soil depth of 0–5  cm, there was a tight non-lin-
ear relationship between soil total N and soil δ15N 
 (R2 = 0.424, P < 0.05) when the biochar application 
rate is 5  t/ha (Fig.  3a). In the 5–10  cm soil layer, 
the correlations between soil total N and soil δ15N 
became stronger and corresponding peaks also move 
backward as the biochar application rates increased 
(Fig. 3b).

In addition, a single regression analysis explained 
the non-linear relationship between soil mois-
ture content and soil δ15N at soil depth of 5–10  cm 

 (R2 = 0.407, P < 0.001) (Fig.  4). Biochar application 
rate also affects the correlation between soil moisture 
content and soil δ15N. It could be seen from Fig.  5 
that when the biochar application rate was 10 t/ha, the 
non-linear relationship between soil moisture content 
and soil δ15N  (R2 = 0.750, P < 0.001) was stronger 
than those of the biochar application rates of 0 and 
5 t/ha  (R2 = 0.197, P = 0.08;  R2 = 0.377, P = 0.046).

Discussions

The effect of N deposition and biochar application on 
plants

The negative δ15N values in the surface soil and foli-
age observed in this study are unusual for native for-
ests (Tables 1, 3 and 4), as the isotope discrimination 
usually demonstrates a level of 15N enrichment in 
soil and plant (Robinson 2001; Blumfield et al. 2006; 
Burton et  al. 2007; Murray 2013; Reis et  al. 2017). 
In this study, the negative soil δ15N may result from 
background soil in the Toohey forest near a busy 
highway, being affected by atmospheric N deposi-
tion. Because the δ15N in  NOx emitted from vehicles 
ranges from −13‰ to −2‰ (Heaton 1990; Zong 
et  al. 2020), this resulted in the negative soil δ15N 
we observed in this experiment. Meanwhile, high N 
availability would inhibit the BNF of forest systems 
(Marcarelli and Wurtsbaugh 2007; Barron et al. 2009; 

Fig. 2  Linear relationship between soil δ13C (‰) and soil 
δ15N (‰) of two biochar rates (5 and 10 t/ha) at soil depths of 
5–10 cm

Fig. 3  Non-linear relationship between soil total nitrogen (N) and soil δ15N (‰) of three biochar rates (0, 5 and 10 t/ha) at soil depth 
of 0–5 cm (a) and 5–10 cm (b) respectively
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Avila Clasen et  al. 2023). It could be seen from the 
results of Table 1 that for the two selected legumes, 
Acacia leiocalyx and Acacia disparrima, BNF of 
Acacia disparrima was significantly higher than that 
of Acacia leiocalyx. It can also be seen in Fig. 1 that 
the linear relationship between foliar δ15N and BNF 
was also closer in Acacia disparrima. In the previous 
studies, the higher BNF in Acacia leiocalyx may be 
due to its location in less fertile soil, which provided 
more N for photosynthesis (Bai et  al. 2012; Taresh 
et al. 2021). In this study, in the N deposition soil, as 
can be seen from Table 1, the total C value of Acacia 
leiocalyx was significantly lower than that of Acacia 

disparrima, indicating that Acacia leiocalyx grew 
faster than Acacia disparrima, and the rhizome sys-
tem was also more developed than that of Acacia dis-
parrima. At the same time, plants are more inclined 
to preferentially absorb N resources that are more 
readily available (from N deposition) and do not need 
to consume much energy (Gurmesa et  al. 2016; Xie 
et  al. 2021). From what has been observed in other 
ecosystems, increased N availability (such as N depo-
sition) may inhibit BNF in forest systems (Compton 
et al. 2004; Saiz et al. 2021). Therefore, the BNF of 
Acacia leiocalyx was relatively lower in this study, 
which is consistent with the results obtained in other 
studies. Meanwhile, under high N deposition, biochar 
applications in this study significantly increased the 
total N of Acacia foliage (Table  1). Several studies 
have shown that biochar improves N dynamics in soil, 
thereby improving plant growth and yield and hav-
ing a positive impact on plant nutrient content, which 
may increase plant N uptake and utilization (Rondon 
et al. 2007; Uzoma et al. 2011; Qian et al. 2019; Ali 
et al. 2020).

Meanwhile, in the previous studies, Acacia leio-
calyx generally showed a higher δ13C value than that 
of Acacia disparrima, suggesting higher water use 
efficiency. Additionally, within plant species, there 
is a genetic component to the distinction in the δ13C 
value, which may be as great as 3‰ (Tieszen 1991; 
Audiard et  al. 2018; Hussain et  al. 2022), and the 
higher δ13C value of Acacia leiocalyx indicated that 
it has a better water use strategy under drought stress 
(Raddad and Luukkanen 2006; Taresh et  al. 2021). 
In contrast, in this study, Acacia leiocalyx showed a 
significantly lower δ13C value, so it can be inferred 
that the forest soil is not restricted by moisture, and 
the water can be used freely by plants. In contrast, 
foliar δ15N of Acacia leiocalyx with much lower BNF 
in this study suggests that the 15N signature of depo-
sition N can alter plant δ15N by direct uptake in the 
canopy and by altering the signature of available N in 
the soil. In contrast, the total inorganic N in deposi-
tion was 15N-depleted (−10‰) (Craine et  al. 2015). 
The addition of N due to N depositional contamina-
tion resulted in the δ15N of plants towards the 15N 
signature of the added N, indicating the incorporation 
of added N into plants. Thus, foliar δ15N values were 
lower for Acacia leiocalyx, which is more likely to 
retain and take N from N deposition, than for Acacia 
disparrima. This again highlights the importance of 

Fig. 4  Linear relationships between soil moisture content (%) 
and soil δ15N (‰) at soil depths of 5–10 cm

Fig. 5  Non-linear relationship between soil moisture content 
(%) and soil δ15N (‰) of three biochar rates (0, 5 and 10 t/ha) 
at soil depth of 5–10 cm
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the 15N signature of input N in controlling ecosystem 
δ15N.

The effect of N deposition on soil C and N isotope 
compositions

The δ13C and δ15N in the soil can be used as an over-
all indicator of soil environmental processes in for-
est ecosystems, thereby providing comprehensive 
insights into the long-term changes of soil C and N 
cycles (Amelung et al. 2008; Brunn et al. 2014; Guil-
laume et  al. 2015; Wang et  al. 2018). In the entire 
ecosystem, soil δ15N has been used as a potential 
indicator of soil N status (Schulze et al. 1998; Craine 
et al. 2009; Ladd et al. 2010; Zhang et al. 2022). They 
usually accumulate as soil N availability increases, 
and human disturbance and climatic factors will 
change the N cycle process in forest soil (Pardo et al. 
2002; Wang et al. 2014; Mgelwa et al. 2019).

In the previous studies, soil δ15N and δ13C values   
usually increase with increasing depth (Eshetu 2004; 
Schneider et  al. 2021). In this study, soil δ13C was 
significantly enriched with the increase of soil depth, 
which may be because deeper soil layers have greater 
decomposition and humification of organic matter or 
mainly increase the residence time of organic C in the 
soil (Bird et  al. 2002; Lorenz et  al. 2020), which is 
consistent with the previous research results (Brunn 
et al. 2014). The value of surface soil δ13C was close 
to the δ13C of the applied biochar in this study, which 
may be because of surface-applied biochar on soil 
C pool (Table  3). However, in this study, with the 
increase of soil depth, the changing trend of soil δ15N 
value is different from the results of the previous stud-
ies. The negative δ15N value of the surface soil may 
be the result of atmospheric N deposition because this 
forest is close to a busy highway. The δ15N of NOx 
emitted by vehicles could lead to the negative soil 15N 
values   observed in this study at soil depths of 0–5 and 
10–20 cm (Savard et al. 2009; Su et al. 2020). How-
ever, soil δ15N value showed an abnormally positive 
value (1.044‰) at 5–10 cm soil depth, which was sig-
nificantly higher than those of the other two depths. 
In these N-rich ecosystems, the fate of the deposited 
N may be different, and most of the deposited N may 
be directly lost in humid climates (Amundson et  al. 
2003; Templer et al. 2012; Rivero-Villar et al. 2021). 
The forest system in this study has a large amount of 
N losses via denitrification and N leaching, so there 

is a large amount of N loss at a soil depth of 5-10 cm, 
which is consistent with the results of previous stud-
ies (Fang et  al. 2008; Liu et  al. 2023). In addition, 
we found that soil C and N content decreased with 
increasing soil depth as expected.

Responses of the relationship between soil moisture 
content and soil δ15N to biochar application

The critical role of soil moisture content in N leach-
ing and denitrification is demonstrated from the non-
linear relationship between soil δ15N and SMC in 
this study (Fig.  4), where higher SMC drives more 
soil N loss initially due to soil nitrification since N 
transformations such as nitrification, denitrification 
and N mineralization produce mobile, 15N-deleted 
N, it is easy to enrich soil δ 15N by leaching or gas-
eous emission of soil N (Bai et  al. 2013). However, 
the soil N loss rate slows as the soil moisture content 
continues to increase. The nitrification rates decline 
under these conditions since oxygen is essential for 
nitrification (Zhu et  al. 2011; Ouyang et  al. 2017). 
Meanwhile, the heavy rainfall event before sampling 
significantly increased leachate volume in the soil in 
this study (Yang et al. 2015). With increasing biochar 
application rate (10  t/ha), a stronger non-linear rela-
tionship between soil δ15N enrichment and soil mois-
ture content could be found in our study (Fig. 5). The 
reason for this is that applying biochar with a porous 
structure and higher surface area to the soil in this 
study, the ability of the soil to absorb and retain more 
water can be improved, thus providing more moisture 
to the soil-plant system (Zhang et al. 2008; Li et al. 
2018). Moreover, it can also be seen in Table 2 that 
with the biochar application, the soil total N content 
was higher. The regression relationship between soil 
total N and δ15N was also closer, and the enrich-
ment of soil δ15N slows down (Fig. 3). This may be 
because biochar addition can reduce nitrate leaching 
by retain more soil water and total N loss from forest 
soils by modifying the soil characteristics (Kanthle 
et al. 2016; Xu et al. 2016; Sun et al. 2018).

In Table 4, soil moisture content from the 0–5 and 
5–10 cm soil layers increased with the increasing bio-
char application rates. This can be attributed to the 
fact that the soil was added with biochar, which has 
a highly porous structure to retain water physically 
(Atkinson et al. 2010; Kang et al. 2022). Meanwhile, 
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water movement down into the deep soil is called 
infiltration. The application of biochar leads to the 
creation of more pores in the soil matrix and the for-
mation of tortuous interstitial spaces between the soil 
and the biochar particles, thereby increasing the mois-
ture penetration rate, which is consistent with previous 
research results (Ajayi et al. 2016; Liu et al. 2016).

Responses of soil δ13C and δ15N to biochar 
application

Previous studies showed that biochar application 
increased soil cation exchange capacity and absorbed 
N compounds, thereby reducing  NH4

+ leaching (Gla-
ser et al. 2002; Liang et al. 2006; Sun et al. 2017). The 
influence of biochar applications on soil N cycling is 
especially complex and may have a significant impact 
on soil N transformation processes by altering soil 
microbial activities and community structures (Streu-
bel et al. 2011; Song et al. 2014). It can be seen from 
Fig. 3 that at soil depths of 0–5 cm and 5–10 cm, the 
addition of biochar was an important adjustment fac-
tor for soil N loss on the corresponding variability of 
biochar. Significant differences were observed in this 
study. With the increase in the level of biochar addi-
tion, the influence of biochar on soil δ15N increased 
significantly (Fig. 3). The reason may be that the bio-
char addition can promote soil N transformation by 
increasing the abundance of soil ammonia-oxidizing 
bacteria and the activity of nitrifying bacteria, while 
retaining  NH4

+ through its acidic functional groups, 
thus offsetting the rapid soil N loss from biochar 
amended with soil N transformations (Zheng et  al. 
2013; Zhang et  al. 2020). At the same time, as can 
be seen from Fig. 3b with the gradual increase in the 
biochar application rate, the trend of soil N loss grad-
ually flattened, and the apex of the parabola appears 
later with the biochar addition of 5 t/ha. The results of 
the study are consistent (Cao et al. 2014). When the 
biochar application rate reached 10 t/ha, the observed 
positive correlation between the soil δ13C and δ15N 
was tighter (Fig.  2), which also illustrated that bio-
char application could improve the activity and struc-
ture of soil microorganisms, thereby providing new 
information on soil C and N turnover controlled by 
biochar application rates (Dijkstra et al. 2006; Werth 
and Kuzyakov 2010; Gerschlauer et al. 2019). These 

results highlight the importance of appropriate bio-
char application rates in soil N improvement.

Compared with the treatment without biochar 
application, a significant increase in the soil total 
C and total N content was observed under biochar 
application, especially for the surface soil (Tables 3 
and 4), which is consistent with the results of previ-
ous studies (Qiao-Hong et  al. 2014). It was shown 
that the biochar application improved soil char-
acteristics. In addition to soil samples, the total N 
content of foliage also increased significantly under 
biochar application (Table 1). These results are con-
sistent with previous studies (Ibrahim et  al. 2020). 
Among them, the biochar application has been 
proven to increase N uptake in plant and soil N con-
tent (Fiorentino et al. 2019; Wang et al. 2020b). Pre-
vious studies have proposed that biochar application 
generates a large amount of ion exchange capacity 
and improves the adsorption and immobilization of 
N forms required for plant uptake. When these N 
forms are adsorbed by biochar, they can be released 
again and become available for plant absorption and 
utilization (Xue et al. 2017), thus improving N use 
efficiency. Applying biochar to soil is a potential 
way to improve the bioavailability of nutrients and 
reduce soil nutrient loss (Lehmann et al. 2003; Shen 
et al. 2016).

Conclusions

The N deposition existing in urban forest soils had an 
impact on the internal N cycle of the soil-plant sys-
tem, and the resulting high N availability significantly 
inhibited the BNF capacity of the forest system. The 
biochar application significantly reduced N losses 
due to leaching and denitrification, and significantly 
increased the potential of soil to retain N. This also 
improved N uptake by plants and N utilization effi-
ciency. In this study, when the biochar application 
rate was applied at 10  t/ha, it had the best effect on 
improving soil N transformations while reducing soil 
N loss as well as improved plant growth.
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