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Abstract 
Background The rhizosphere is the interface 
between roots and the soil and the site of nutrient and 
water uptake for plant growth. Root anatomy and the 
physical, chemical, and biological components of the 
rhizosphere interact to influence plant growth. Several 
root developmental and rhizosphere signals combine 
in the patterning of root cortical anatomy and have 
implications for the plant’s hydro-mineral nutrition 
and carbon partitioning and therefore crop productiv-
ity, especially in edaphic stress.
Scope Here, we highlight how mutualistic myc-
orrhizal fungi from the rhizosphere mobilize plant 
molecular actors controlling root anatomical traits, 

including cortical cell size, to facilitate their estab-
lishment and accommodation within the cortex. We 
explore the effects on plant growth and stress toler-
ance that may result from the changes in root anat-
omy driven by interactions with arbuscular mycorrhi-
zal fungi, including altering the metabolic efficiency 
required for nutrient exploitation. We also discuss 
opportunities for understanding the genetic control of 
root anatomy and rhizosphere interactions to enable 
a comprehensive understanding of the benefits and 
trade-offs of root-rhizosphere interactions for more 
productive crops.

Keywords Root anatomy · Rhizosphere · Genetic 
control · Mycorrhizal fungi · Crop productivity

Introduction

In the next 25 years, food production needs to be dou-
bled to meet the demands of the growing population 
(Hunter et al. 2017). This challenge is further compli-
cated by climate change, where altered weather pat-
terns, increasing temperature, degrading soil quality, 
and depletion of freshwater resources will reduce the 
regions and growing seasons suited for agricultural 
production (IPCC 2021). Thus, we urgently need novel 
strategies to develop crops with improved resource effi-
ciency. Roots play a critical role in the efficiency of soil 
resource acquisition and dynamically interact with the 
soil matrix around the root (defined as the rhizosphere) 
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to influence stress adaptation and yield. One promising 
approach for the development of crops with improved 
resource efficiency is selecting varieties with root ana-
tomical traits that enhance interactions with beneficial 
microorganisms from the rhizosphere, with positive 
effects on plant hydro-mineral nutrition and abiotic 
stress tolerance (Galindo-Castañeda et al. 2022).

Root anatomy differs substantially both within 
and among species (Enstone et al. 2003; Lynch et al. 
2021). Optimization of root anatomical traits such as 
root cortical cell size, root cortical cell wall thick-
ness, root cortical cell file number, or root cortical 
aerenchyma can reduce the nutrient and respiratory 
demands of root tissues, enabling greater acquisition 
of soil resources for a given level of metabolic invest-
ment and improving yield under stress (reviewed in 
Lynch et  al. 2021). In addition, anatomical traits 
can influence root oxygen availability (Kotula et  al. 
2009), and exudation of chemical signals (Canarini 
et al. 2019), impacting root associations with micro-
organisms in the rhizosphere (as reviewed in Lynch 
et al. 2021; Galindo-Castañeda et al. 2022).

Root and rhizosphere interactions can be benefi-
cial, neutral, or antagonistic in terms of plant fitness. 
Root associations with arbuscular mycorrhizal fungi 
are one such example of potential positive interplay 
between the root and rhizosphere. The arbuscular 
mycorrhizal fungi develop an extensive network of 
hyphae that grow both in the rhizosphere and inter-
cellularly in the root cortex, thereby functionally 
extending the root system. In the root, hyphae grow 
into individual cortical cells where they develop 
highly branched hyphal structures, arbuscules, where 
inorganic nitrogen, phosphorus, and other miner-
als are unloaded for plant growth in exchange for 
photosynthetically derived lipids and carbohydrates. 
Arbuscular mycorrhizal symbiosis can provide up 
to 40% nitrogen and 80% phosphorus uptake in rice 
and increase yield by 30% in maize (Yang et al. 2012; 
Ramírez-Flores et al. 2020; Wang et al. 2021).

There has been significant progress in understand-
ing the signaling associated with the early stages of 
arbuscular mycorrhizal symbiosis (e.g., Kosuta et  al. 
2003; Besserer et  al. 2006; Choi et  al. 2018). Root 
infection by the fungus and development of arbuscules 
necessitate a substantial transcriptional reprogramming 
process, involving the exchange and perception of sig-
nals between the plant and fungus (Lanfranco et  al. 
2018). This reprogramming is orchestrated by plant 

transcription factors that play a crucial role in effecting 
root morphological and developmental changes essen-
tial for the accommodation of arbuscules (Gobbato 
et al. 2012; Wang et al. 2012; Volpe et al. 2013; Foo 
et al. 2013; Devers et al. 2013; Xue et al. 2015; Park 
et al. 2015; Heck et al. 2016; Floss et al. 2017; Russo 
et  al. 2019; Choi et  al. 2020; Seemann et  al. 2022). 
Interestingly, there is evidence that rhizosphere sig-
nals from arbuscular mycorrhizal fungi influence root 
cortical patterning (Heck et  al. 2016; Seemann et  al. 
2022). A better understanding of the interplay of rhizo-
sphere and plant signals is directly relevant for improv-
ing plant hydro-mineral nutrition, and therefore plant 
growth and abiotic stress tolerance.

How may the interplay of mycorrhizal fungi 
arbuscule development and genetic control of root 
cortical traits be exploited for crop improvement?

Root growth depends on mechanisms balancing cellular 
axial and radial expansion in the elongation zone. Root 
cell axial expansion has been associated with gibber-
ellin/DELLA signaling in Arabidopsis (Ubeda-Tomás 
et al. 2008). It was shown that the gibberellin-mediated 
destabilization of DELLA proteins of the GRAS family 
in the endodermis promoted anisotropic growth in the 
cortex (i.e., axial expansion) while disruption of this 
gibberellin response by expressing a stabilized DELLA 
protein slowed anisotropic cell growth causing radial 
expansion of cortical cells. SCARECROW-LIKE 3 
(SCL3), another GRAS transcription factor, acts as 
a positive regulator of the gibberellin pathway and 
DELLA repressor, and works in conjunction with the 
SHORTROOT–SCARECROW (SHR-SCR) stem cell 
program to coordinate ground tissue elongation during 
root development (Zhang et al. 2011).

DELLA proteins also play essential roles in regu-
lating the establishment of arbuscular mycorrhizal 
symbiosis. They are important in the initial stages of 
arbuscule development when the host cells increase 
their size to accommodate the fungal structure. 
In Medicago, MYCORRHIZA INDUCED GRAS1 
(MIG1) is induced in cortical cells colonized by 
the fungus and interacts with DELLA to promote 
radial cell expansion and allow arbuscule develop-
ment (Heck et  al. 2016). Recently, MYCORRHIZA 
INDUCED GRAS2 (MIG2) was identified as another 
positive regulator of radial cortical cell expan-
sion during arbuscule formation in Medicago roots 
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(Seemann et  al. 2022). Conversely, MYCORRHIZA 
INDUCED GRAS3 (MIG3) restrains cortical cell 
growth and is a negative regulator of arbuscule devel-
opment (Seemann et  al. 2022). Overexpression of 
MIG1 and MIG2 increased cortical cell size, cortical 
cell file layers and root diameter (Fig. 1) while over-
expression of MIG3 has opposite effects on cortical 
cell size and root diameter in the absence of mycor-
rhizal fungus (Seemann et al. 2022). In the presence 
of mycorrhizal fungus, overexpression of MIG1 and 
MIG2 have no impact on root fungus infection and 
arbuscule development (Seemann et al. 2022).

MIG1 and MIG2, and their homologues in crop 
species, represent opportunities for enhanced stress 
adaptation through both enhanced accommodation 
of the fungal structure and the genetic manipula-
tion of root cortical cell size which may have addi-
tive or even synergistic effects on plant drought and 
nutrient stress tolerance. Roots that have a greater 
cortical cell size may enhance plant growth under 
drought and nutrient stress (Chimungu et  al. 2014; 
Lopez-Valdivia et  al. 2023). An increased volume 
of individual cortical parenchyma cells, or the size 
of cortical cells, can decrease the metabolic costs 
of root growth and maintenance, in terms of both 
carbon costs of root respiration and the nutrient 
content of cortical tissue. For example, contrast-
ing maize lines exposed to drought in the field or 

simulated under suboptimal nutrient availability 
with functional-structural plant models, demon-
strated that plants with a larger cortical cell size had 
reduced respiration, deeper rooting, greater water 
and nitrogen uptake, and hence greater growth and 
yield (Chimungu et  al. 2014; Lopez-Valdivia et  al. 
2023). The benefits of mycorrhizal colonization for 
enhanced plant nutrient and water status combined 
with greater cortical cell sizes that enhance soil 
foraging and stress tolerance may have synergistic 
effects for stress adaptation and enhanced yield.

While mycorrhizal fungi can mobilize plant 
molecular actors to alter the size and number of 
root cortical cells, it remains unclear how localized 
these responses are in the root. For example, these 
responses have been observed to be localized to only 
colonized cortical cells (Balestrini et  al. 2007), but 
also at distal sites of the root and in both colonized 
and uncolonized cortical cells (Maldonado-Mendoza 
et al. 2005). While MIG1 and MIG2, and their homo-
logues, may represent opportunities for enhanced 
stress adaptation, the benefit of altering cortical cell 
properties for enhanced stress tolerance will depend 
on the extent of these changes in cortical tissue within 
the entire root organ and if the magnitude of these 
benefits (or trade-offs) is enough to influence the met-
abolic cost of soil foraging and subsequently stress 
tolerance.

Fig. 1  Arbuscular mycorrhizal colonization effects on corti-
cal cell size in Medicago truncatula and their impacts on tis-
sue structure and plant nutrition. Arbuscular mycorrhizal fungi 
(AMF) induce cell radial expansion in the cortex through 
recruitment of GRAS transcription factors. AMF induces 

expression of MIG1 and MIG2 proteins that induce DELLA1 
expression and inhibits its gibberellin acid-mediated destabili-
sation. The DELLA1 complex induces the expression of target 
genes promoting radial cell expansion. ST: stele; EN: endoder-
mis; CO: cortex
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A better understanding of the trade-offs between root 
cortical traits and mycorrhizal fungi colonization in 
the root cortex may be useful for crop improvement

While a larger cortical cell size may promote the 
accommodation of arbuscular mycorrhizal fungi in 
cortical cells, other anatomical traits also influence 
the ability of colonization and hyphae growth and 
spread in the cortex. For example, root cortical aer-
enchyma can facilitate mycorrhizal spread as inter-
cellular hyphae may benefit from a low-resistance 
path (i.e., air-filled lacunae) to grow through young 
roots (Brundrett et  al. 1985; Brundrett and Kend-
rick 1987; Smith and Smith 1997). In maize inbred 
lines, increased arbuscular mycorrhizal colonization 
was associated with decreased aerenchyma formation 
(Galindo-Castañeda et  al. 2019). However, in maize 
hybrid lines mycorrhizal colonization increased with 
larger aerenchyma lacunae, which coincided with 
larger root diameters (Galindo-Castañeda et al. 2019). 
Generally, mycorrhizal colonization occurs in living 
regions of the cortex not occupied by aerenchyma 
tissue with large, air-filled lacunae (Figs.  2 and 3) 
(Strock et  al. 2019). In addition to its potential role 
in influencing mycorrhizal spread and spatial coloni-
zation, root cortical aerenchyma can improve abiotic 
stress tolerance. Aerenchyma can reduce the nutrient 
and respiratory demands of root tissues, reducing root 
metabolic costs that can translate into increased car-
bon allocation for deeper root growth and improved 
yield under suboptimal nutrient and water condi-
tions (reviewed in Lynch et al. 2021). The interaction 
between root cortical aerenchyma formation and root 
mycorrhizal colonization, and their respective effect 
on plant hydromineral nutrient, remains to be further 
explored.

Similar to aerenchyma formation, the development 
of the anatomical trait, multiseriate cortical scleren-
chyma, may also be an adaptation to improve soil for-
aging in edaphic stress. Multiseriate cortical scleren-
chyma are characterized by small cell with thick cell 
walls encrusted with lignin in the outer cortex which 
enable plants to penetrate hard, dry soil and enhance 
soil foraging in deeper soil domains by increasing the 
tensile strength of the root (Schneider et  al. 2021). 
However, mature palm root tissue with extensive 
cortical aerenchyma formation and sclerenchyma in 
the outer cortex showed reduced mycorrhizal colo-
nization (Fig. 2) (Dreyer et al. 2010). Suberized and 

lignified apoplastic barriers in outer cortical tissue 
may reduce initial penetration of mycorrhiza into the 
root tissue and therefore reduce mycorrhizal coloniza-
tion of the cortex (Sharda and Koide 2010). Further 
studies are required to understand the dynamics of 
these complex interactions between root anatomi-
cal traits and mycorrhizal colonization to unravel the 
benefits and trade-offs of these interactions for stress 
adaptation and enhanced yield.

Since both cortical traits and mycorrhizal fungi 
have the potential to improve plant hydro-mineral 
nutrition, the interplay of rhizosphere signals altering 
root cortical traits have the potential to have syner-
gistic or potentially antagonistic interactions for soil 

Fig. 2  Potential trade-offs effect of root aerenchyma and 
multiseriate cortical sclerenchyma on arbuscular mycorrhizal 
infection. The patterning and development of root anatomi-
cal traits can have direct physical interactions with the ability 
of soil microorganisms to interact and colonize the root spa-
tially and temporally. In different panels, four root-cross sec-
tions are depicted with different cortical traits. Several corti-
cal traits may enhance or reduce mycorrhizal colonization in 
roots. A simple cortex with large cortical parenchyma cells 
may enhance colonization, B lignified multiseriate cortical 
sclerenchyma in outer cortical tissue may reduce coloniza-
tion, C multiseriate cortical sclerenchyma and root cortical 
aerenchyma formation reduce colonization, and (D) the forma-
tion of cortical aerenchyma tissue may reduce colonization. 
These traits alter the cortical habitat for colonization and paths 
for initial penetration and subsequent growth through cortical 
tissue. However, the impact of anatomical traits on arbuscular 
mycorrhizal colonization appears species specific and may also 
largely depend on the environment
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resource acquisition and plant growth, particularly 
under drought and nutrient stress. We advocate for 
a comprehensive understanding of the benefits and 
trade-offs of root anatomical traits and root-rhizos-
phere interactions for plant growth in specific envi-
ronments. The benefits of several anatomical traits 
for soil foraging and water and nutrient capture have 
been documented (as reviewed in Lynch et al. 2021), 
however the benefits and trade-offs of many of these 
traits on rhizosphere interactions in diverse environ-
ments remain to be explored. A cost-benefit optimiza-
tion (i.e., applying microeconomic principles to plant 
resource allocation) may be used to determine the 
most beneficial plant (and rhizosphere) phenotypes 

in specific environments. Only after understanding 
the interplay between the root and rhizosphere can 
we identify optimal anatomical traits and root-rhizo-
sphere interactions for improved plant performance in 
specific environments.

Perspectives and conclusions

Many opportunities remain to understand how devel-
opmental root and rhizosphere signals combine in the 
patterning of root cortical anatomy. For example, cor-
tical cells colonized by arbuscular mycorrhizal fungi 
are not only typically larger in size, but also have 

Fig. 3  Maize root cross-
sections with root cortical 
aerenchyma and arbuscular 
mycorrhizal colonization. 
Maize root cross-sectional 
images of non-inoculated 
(left panels) and inoculated 
(right panels). Arbuscular 
mycorrhizal colonization is 
segmented in red (b, e) and 
root cortical aerenchyma 
is segmented in green 
(c, f). Segmentation was 
performed based on RGB 
spectra from cross-sectional 
images (a, d). Reprinted 
from Strock et al. 2019 
by permission of Oxford 
University Press
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thicker cell walls with altered cell wall characteristics 
including increased cellulose and hemicellulose con-
tent (Balestrini et al. 2005; Basyal and Emery 2021). 
While many of the molecular mechanisms of cell wall 
remodeling upon mycorrhizal signaling and coloniza-
tion are unknown, several plant cell wall related genes 
have been shown to respond to symbiosis of mycorrhi-
zal fungi (Balestrini and Bonfante 2014; Gutjahr et al. 
2015). Thicker cell walls in cortical cells colonized by 
mycorrhizae may also be beneficial in edaphic stress. 
An increased proportion of volume occupied by 
energy-efficient compartments including vacuoles and 
cell walls can potentially reduce root metabolic cost 
and thereby plant fitness under conditions of drought, 
suboptimal nutrient availability, and soil mechanical 
impedance (Sidhu and Lynch 2024). We propose that 
arbuscular mycorrhizal fungi and plant developmen-
tal signals can frequently and extensively combine to 
alter root anatomy with potential synergistic interac-
tions for enhanced nutrient efficiency.

A challenge to understanding root anatomy and 
rhizosphere interactions is the complexity of these 
interactions in time and space. Root exudation and 
nutrient, water, and oxygen concentration in the 
rhizosphere, and many other factors vary spatially and 
temporally on the root system. In addition, root anat-
omy depends on many factors including root class, 
tissue age, and root-microbe interactions (Canarini 
et al. 2019; Lynch et al. 2021; Salas-González et al. 
2021). For example, the soil microbiome has been 
demonstrated to influence aerenchyma formation 
and endodermal suberization (Kawa et al. 2022). The 
integration of multiple root anatomical and archi-
tectural traits and rhizosphere characteristics may 
have synergistic or antagonistic effects for nutrient 
and water acquisition, pathogen resistance, and ulti-
mately plant performance. In addition, consideration 
of dependency between anatomical and rhizosphere 
traits is important as the utility of specific traits can 
be masked by the integrated effects of multiple root 
and rhizosphere traits.

The influence of root anatomical and rhizosphere 
interactions on plant growth, health, and productivity 
are multifaceted and we must embrace this complex-
ity to better define optimal phenotypes for specific 
environments. Because of these intricate complexi-
ties, it will be essential to study root anatomy and 
rhizosphere interactions on the same plant, rather 
than integrating information from distinct plants and 

systems. Due to the vast diversity of plant species and 
traits, microbiota, and growth environments a holis-
tic approach is needed to study these interactions, 
emphasizing the importance of interdisciplinary col-
laboration among geneticists, microbiologists, agron-
omists, and computational biologists.

There is evidence that signals from the rhizos-
phere can mobilize plant molecular actors to modify 
the patterning and development of root anatomy. We 
highlight an example of this interplay describing 
how mycorrhizal fungi from the rhizosphere mobi-
lize plant molecular actors controlling root anatomi-
cal traits including cortical cell size to facilitate their 
establishment and accommodation within the cortex. 
In addition, root anatomy and mycorrhizal fungi can 
have physical interactions in the cortex to promote or 
inhibit colonization. Research and breeding efforts 
targeting root anatomy to improve soil resource cap-
ture should consider microbial tradeoffs and micro-
bial-root feedback that have the potential to modify 
or be modified by the root-rhizosphere environment. 
Understanding how roots and the rhizosphere interact 
is critical in mitigating impacts of abiotic and biotic 
stress on plant productivity.
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