Skip to main content
Log in

Responses of metabolic pathways in soybean nodules and roots to long-term indirect nitrogen supply by dual-root system

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

While the effects of fertilizer nitrogen (N) on N fixation in soybean nodules lead to both local inhibition and systemic regulation, the specific mechanism is not clear. This study aimed to elucidate the mechanism by which systemic N regulation affects soybean root growth and N fixation.

Methods

Dual-root soybean plants containing unilateral nodulation were cultivated using grafting and sand culture with the addition of N-containing nutrient solution to the non-nodulated root portion and N-free nutrient solution to the nodulated portion during the VC-R1 period (28 d). The effects of N supplementation on changes in the expression of genes and proteins, as well as metabolite levels, in nodules and roots were examined, together with an evaluation of alterations in metabolic pathways in response to the indirect N supply.

Results

The results demonstrated that a 28-day supply of N to non-nodulated part of the root reduced nodulation while promoting the growth of the root system on the nodulation side. A comparative evaluation of the soybean plants cultivated with and without N supplementation revealed that N promoted the synthesis of signaling compounds, such as asparagine and trehalose, in nodules and inhibited flavonoid-associated metabolic pathways. Starch syntheis in nodules under long-term high-N was inhibited while the metabolism of organic acids was enhanced. Long-term indirect N supply also influenced pathways associated with amino acid metabolism and phenylpropanoid biosynthesis pathway in the roots.

Conclusion

The different response metabolic pathways of roots and nodules supported the different characteristics of soybean roots and nodules after indirect nitrogen supply. Additionally, the duration of nitrogen supply affects the regulatory pathway of nitrogen fixation of nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data that support the findings of this study can be found in the article and/or Supplementary Information.

Abbreviations

N:

Nitrogen

ARA:

Acetylene reduction activity

SNA:

Specific nitrogenase activity

DAMs:

Differentially accumulated metabolites

DEGs:

Differentially expressed genes

DEPs:

Differentially expressed proteins

GO:

Gene Ontology

KEGG:

Kyoto encyclopedia of genes and genomes

TMT:

Tandem mass tag

UPLC-ESI-MS/MS:

Ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry

UPLC-MS/MS:

Ultra-performance liquid chromatography/tandem mass spectrometry

VC:

Cotyledon stage

R1:

Initial flowering stage

Asp:

Asparagine

CYP73A:

Trans-cinnamate

C3′H:

5-O-(4-coumaroyl)-D-quinate 3′-monooxygenase

ENO:

Enolase

glgA:

Glycogen synthase

glgB:

Glycogen branching enzyme

glgc:

Glucose-1-phosphate adenylyltransferase

Gln:

Glutamine

Glu:

Glutamate

GOGAT:

Glutamine 2-oxoglutarate aminotransferase

GS:

Glutamine synthetase

HCT:

Shikimate O-hydroxycinnamoyltransferase

HK:

Hexokinase

I2H:

isofl

avone 2′-hydroxylase

IFS:

Isoflavone synthase

MDH:

Malic dehydrogenase

MRM:

Multiple reaction monitoring

otsB:

Treh

a

lose-6-phosphate phosphatase

PEPC:

Phosphoenolpyruvate carboxylase

PFK:

6-phosphofructokinase

PK:

Pyruvate kinase

scrK:

Fructokinase

PAL:

Phenylalanine ammonia-lyase

4CL:

4-coumarate-CoA ligase

CAD:

Cinnamyl-alcohol dehydrogenase

ALT:

Alanine transaminase

gdhA:

Glutamate dehydrogenase (NAD(P)+)

SS:

Sucrose synthase

TPS:

Trehalose-6-phosphate synthase

References

  • Ban Y, Song YH, Kim YJ, Cha J, Ali I, Baiseitova A, Shah A, Kim WY, Park K (2021) A significant change in free amino acids of soybean (Glycine Max L. Merr) through ethylene application. Molecules 26:1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth N, Smith P, Ramesh S, Day D (2021) Malate transport and metabolism in nitrogen-fixing legume nodules. Molecules 26:6876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985) Isolation and properties of soybean [Glycine max (L.) Merr.] Mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci U S A 82(12):4162–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J (2013) A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6(6):1769–1780

    Article  CAS  PubMed  Google Scholar 

  • Contador CA, Lo SK, Chan SHJ, Lam HM (2020) Metabolic analyses of nitrogen fixation in the soybean microsymbiont sinorhizobium fredii using constraint-based modeling. mSystems 5:e00516-00519

    Article  PubMed  PubMed Central  Google Scholar 

  • Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang WS, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsky MJ (2007) Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol 189(19):6751–6762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Ghanati F, Gresshoff PM (2012) Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. S Afr J Bot 79:9–18

    Article  Google Scholar 

  • Dubey A, Kumar A, Abd_Allah EF, Hashem A, Khan ML (2019) Growing more with less: breeding and developing drought resilient soybean to improve food security. Ecol Indic 105:425–437

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R-27R

    Article  CAS  PubMed  Google Scholar 

  • Fujikake H, Yashima H, Sato T, Ohtake N, Sueyoshi K, Ohyama T (2002) Rapid and reversible nitrate inhibition of nodule growth and N2 fixation activity in soybean (Glycine max (L.) Merr). Soil Sci Plant Nutr 48:211–217

    Article  CAS  Google Scholar 

  • Fujikake H, Tamura Y, Ohtake N, Sueyoshi K, Ohyama T (2003) Photoassimilate partitioning in hypernodulation mutant of soybean (Glycine max (L.) Merr.) NOD1-3 and its parent williams in relation to nitrate inhibition of nodule growth. Soil Sci Plant Nutr 49:583–590

    Article  CAS  Google Scholar 

  • Goyal RK, Mattoo AK, Schmidt MA (2021) Rhizobial–host interactions and symbiotic nitrogen fixation in legume crops toward agriculture sustainability. Front Microbiol 12:669404

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signaling: opportunities and challenges for improving plant-microbe interaction. J Exp Bot 63(9):3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Hernández G, Valdés-López O, Ramírez M, Goffard N, Weiller G, Aparicio-Fabre R, Fuentes SI, Erban A, Kopka J, Udvardi MK, Vance CP (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol 151(3):1221–1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Xiao F, Yang D, Lyu X, Ma C, Dong S, Yan C, Gong Z (2021) Nitrate transport and distribution in soybean plants with dual-Root systems. Front Plant Sci 12:661054

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu A, Contador CA, Fan K, Lam HM (2018) Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes. Front Plant Sci 9:1860

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu X, Xia X, Wang C, Ma C, Dong S, Gong Z (2019) Effects of changes in applied nitrogen concentrations on nodulation, nitrogen fixation and nitrogen accumulation during the soybean growth period. Soil Sci Plant Nutr 65:479–489

    Article  CAS  Google Scholar 

  • Lyu X, Li M, Li X, Li S, Yan C, Ma C, Gong Z (2020) Assessing the systematic effects of the concentration of nitrogen supplied to dual-root systems of soybean plants on nodulation and nitrogen fixation. Agronomy 10:763

    Article  CAS  Google Scholar 

  • Lyu X, Sun C, Lin T, Wang X, Li S, Zhao S, Gong Z, Wei Z, Yan C, Ma C (2022a) Systemic regulation of soybean nodulation and nitrogen fixation by nitrogen via isoflavones. Front Plant Sci 13:968496

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu X, Sun C, Zhang J, Wang C, Zhao S, Ma C, Li S, Li H, Gong Z, Yan C (2022b) Integrated proteomics and metabolomics analysis of nitrogen system regulation on soybean plant nodulation and nitrogen fixation. Int J Mol Sci 23(5):2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Boller T, Wiemken A (2001) Trehalose becomes the most abundant non-structural carbohydrate during senescence of soybean nodules. J Exp Bot 52:943–947

    Article  PubMed  Google Scholar 

  • Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59(5):1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174(4):879–891

    Article  PubMed  Google Scholar 

  • Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9(5):496–502

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Fukasawa M, Sueyoshi K, Ohtake N, Sato T, Tanabata S, Toyota R, Higuchi K, Saito A, Ohyama T (2021) Application of nitrate, ammonium, or urea changes the concentrations of ureides, urea, amino acids and other metabolites in xylem sap and in the organs of soybean plants (Glycine max (L.) Merr). Int J Mol Sci 22(9):4573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichereau V, Hartke A, Auffray Y (2000) Starvation and osmotic stress induced multiresistances: influence of extracellular compounds. Int J Food Microbiol 55:19–25

    Article  CAS  PubMed  Google Scholar 

  • Reid D, Ferguson B, Gresshoff P (2011) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microbe Interact 24:606–618

    Article  CAS  PubMed  Google Scholar 

  • Ribet J, Drevon JJ (1995) Phosphorus deficiency increases the acetylene-induced decline in nitrogenase activity in soybean (Glycine max (L.) Merr). J Exp Bot 46:1479–1486

    Article  CAS  Google Scholar 

  • Riviezzi B, Cagide C, Pereira A, Herrmann C, Lombide R, Lage M, Sicardi I, Lage P, Castro-Sowinski S, Morel M (2020) Improved nodulation and seed yield of soybean (Glycine max) with a new isoflavone-based inoculant of Bradyrhizobium elkanii. Rhizosphere 15:100219

    Article  Google Scholar 

  • Roux MRL, Khan S, Valentine AJ (2009) Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 48:102–109

    Article  Google Scholar 

  • Sakazume T, Tanaka K, Aida H, Ishikawa S, Nagumo Y, Takahashi Y, Norikuni O, Sueyoshi K, Ohyama T (2014) Estimation of nitrogen fixation rate of soybean (Glycine max (L.) Merr.) By micro-scale relative ureide analysis using root bleeding xylem sap and apoplast fluid in stem. Bull Fac Agric Niigata Univ 67:27–41

    Google Scholar 

  • Schulze J, Tesfaye M, Litjens RHMG, Bucciarelli B, Trepp G, Miller S, Samac D, Allan D, Vance CP (2002) Malate plays a central role in plant nutrition. Plant Soil 247:133–139

    Article  CAS  Google Scholar 

  • Searle I, Men A, Laniya T, Buzas D, Iturbe-Ormaetxe I, Carroll B, Gresshoff P (2003) Long-distance signaling in nodulation directed by a CLAVATA1Like receptor kinase. Science 299:109–112

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Vadez V, Denison RF, Sinclair TR (1999) Involvement of ureides in nitrogen fixation inhibition in soybean1. Plant Physiol 119:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stobiecki M, Kachlicki P (2006) Isolation and identification of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer New York, New York, NY, pp 47–69

    Chapter  Google Scholar 

  • Streeter JG (1991) Transport and metabolism of carbon and nitrogen in legume nodules. In: Callow JA (ed) Advances in botanical research. Academic Press, pp 129–187

    Google Scholar 

  • Sugiyama A, Yamazaki Y, Yamashita K, Takahashi S, Nakayama T, Yazaki K (2016) Developmental and nutritional regulation of isoflavone secretion from soybean roots. Biosci Biotechnol Biochem 80(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Sulieman S, Abdelrahman M, Tran LSP (2022) Carbon metabolic adjustment in soybean nodules in response to phosphate limitation: a metabolite perspective. Environ Exp Bot 196:104810

    Article  CAS  Google Scholar 

  • Sulieman S, Kusano M, Ha CV, Watanabe Y, Abdalla MA, Abdelrahman M, Kobayashi M, Saito K, Mühling KH, Tran LSP (2019) Divergent metabolic adjustments in nodules are indispensable for efficient N2 fixation of soybean under phosphate stress. Plant Sci 289:110249

    Article  CAS  PubMed  Google Scholar 

  • Suzaki T, Yoro E, Kawaguchi M (2015) Chapter three-leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int Rev Cell Mol Biol 316:111–158

  • Tajima S, Nomura M, Kouchi H (2004) Ureide biosynthesis in legume nodules. Front Biosci 9:1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Takanashi K, Sasaki T, Kan T, Saida Y, Sugiyama A, Yamamoto Y, Yazaki K (2016) A dicarboxylate transporter, LjALMT4, mainly expressed in nodules of lotus japonicus. Mol Plant Microbe Interact 29(7):584–592

    Article  CAS  PubMed  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  CAS  PubMed  Google Scholar 

  • Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42(1):373–390

    Article  CAS  Google Scholar 

  • Vriezen JA, de Bruijn FJ, Nüsslein K (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol 73(11):3451–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by Rhizobia. Plant Cell 18(7):1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Gu C, He S, Zhu D, Huang Y, Zhou Q (2021) Widely targeted metabolomics analysis reveals new biomarkers and mechanistic insights on chestnut (Castanea mollissima bl.) Calcification process. Food Res Int 141:110128

    Article  CAS  PubMed  Google Scholar 

  • Yamashita N, Tanabata S, Ohtake N, Sueyoshi K, Sato T, Higuchi K, Saito A, Ohyama T (2019) Effects of different chemical forms of nitrogen on the quick and reversible inhibition of soybean nodule growth and nitrogen fixation activity. Front Plant Sci 10:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Yang L, Yang S, Gai J, Zhu Y (2016) Overexpression of rice phosphate transporter gene OsPT2 enhances nitrogen fixation and ammonium assimilation in transgenic soybean under phosphorus deficiency. J Plant Biol 59:172–181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the China Postdoctoral Science Foundation (Project NO. 2022M710651), Heilongjiang Provincial Postdoctoral Science Foundation (Project NO. LBH-Z22076).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were mainly performed by Xiaochen Lyu, Xuelai Wang, Sha Li, Chao Yan, Chunmei Ma, Shuhong Zhao and Zhenping Gong. The first draft of the manuscript was written by Xiaochen Lyu with help from Zhenping Gong, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenping Gong.

Ethics declarations

Conflict of interest

It is declared that the authors do not have any competing interests.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Pot plot of dual-root soybeans (Fig. S1), preparation of dual-root soybean plants material (Fig. S2), the qRT-PCR data (Fig. S3). The primer sequences used for qRT-PCR (Table S1), soybean nodules metabolomics data (Table S2), soybean roots metabolomics data (Table S3), soybean nodules proteomics data (Table S4), soybean roots proteomics data (Table S5), soybean nodules transcriptome data (Table S4), soybean roots transcriptome data (Table S6).

ESM 1

(DOCX 295 KB)

ESM 2

(XLSX 7.97 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, X., Wang, X., Li, S. et al. Responses of metabolic pathways in soybean nodules and roots to long-term indirect nitrogen supply by dual-root system. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06518-9

Keywords

Navigation