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Abstract 
Background and aims Cover cropping is a strat-
egy to increase soil phosphorus (P) use efficiency in 
agroecosystems. We investigated adaptations on P 
acquisition strategies of nine cover crops grown in a 
calcareous and a non-calcareous chernozem with low 
available P.
Methods Through a 108-day pot experiment using a 
calcareous and a decalcified chernozem, we evaluated 
black oat (Avena strigosa Schreb.), white lupin (Lupi-
nus albus L.), narrow-leaf lupin (Lupinus angustifo-
lius L.), phacelia (Phacelia tanacetifolia Benth.), ber-
seem clover (Trifolium alexandrinum L.), buckwheat 
(Fagopyrum esculentum Moench), linseed (Linum 
usitatissimum L.), ramtil (Guizotia abyssinica [Lf] 
Cass.) and white mustard (Sinapis alba L.) for their 

dry biomass production, tissue P concentration and 
uptake, and effects on soil pH, phosphatase activity, 
mycorrhiza infection rate and soil P fractions.
Results Cover crops differed in several parameters 
between the two soils. Dry biomass varied from 3.3 
(white lupin) to 41.6 g  pot-1 (mustard). Tissue P con-
centrations ranged from 0.046% (mustard) to 0.24% 
(clover). Species affected pH of both soils, rang-
ing from − 0.66 to + 0.24. Acid phosphatase activ-
ity was higher in the decalcified soil, while alkaline 
phosphatases were higher in the calcareous soil. Root 
mycorrhizal infection rates ranged from 0 to > 50%. 
Most plants explored soil labile P exclusively, with 
organic P mineralization being more relevant in the 
calcareous soil.
Conclusion We confirm that cover crops favoured 
distinct strategies to access the predominant soil 
labile P forms in each soil. Mycorrhizal species were 
particularly efficient in the decalcified soil, while spe-
cies with high phosphatase secretion accessed higher 
Po, especially in the calcareous soil.

Keywords Chernozem · Cover crops · Mycorrhiza · 
Phosphorus fractions · Phosphatases · pH

Introduction

Enhancing phosphorus (P) management in agricul-
ture is a complex but crucial task to guarantee the 
stability of agri-food sectors worldwide. Uneven P 
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distribution on the globe and uprising geopolitical 
tensions worldwide mean that efficient P use is now a 
more critical matter than ever before. Similar to most 
western countries, overfertilization in Austria has led 
to the accumulation of large soil total P (Pt) stocks 
(Zoboli et  al. 2016). However, complex interactions 
such as fixation in Fe and Al (oxy)hydroxides and 
precipitation as Ca-P, can rapidly render 95–99% of 
the Pt unavailable for plant uptake, even in the long 
term (Asomaning 2020). The resulting low P avail-
ability can lead to deficiencies and limit crop produc-
tivity (Vance et al. 2003).

To tackle this challenge, cover cropping has 
emerged as a promising approach to make better use 
of limited P resources. Certain plant species have 
shown the ability to acquire P efficiently, which is 
essential for their growth. These species possess 
specific traits that aid in P acquisition. These traits 
include displaying high internal P-use efficiency 
(Hallama et  al. 2019), symbiotic relationships with 
arbuscular mycorrhizal fungi (AMF, Plenchette 
et  al. 2011), high potential activity of phosphatases 
(Maseko and Dakora 2019; Nannipieri et  al. 2011), 
high rhizosphere acidification capacity (Oburger et al. 
2011), adapted root structures, and promoting soil 
microbial activity (Schilling et al. 1998).

Cover cropping is a well-established practice; its 
use is often centred around soil coverage and ero-
sion reduction, mitigation of nitrogen leaching, soil 
organic matter accumulation, and soil chemical, 
physical and biological improvement. Soil nutrient 
cycling is often stated as a benefit of cover cropping; 
however, it has seldom been characterised for nutri-
ents other than nitrogen. Therefore, its effects on P 
pools and availability are overlooked in practice or 
are, at best, seen as a secondary benefit. Studies con-
cerned with cover crops’ effects in soil P availability 
have been eloquently summarized by Hallama et  al. 
(2019), who concluded that although P related ben-
efits of cover crops can generally be observed, they 
vary highly between species and site characteristics. 
Therefore, these effects need to be investigated care-
fully in different environments, soils, crops and cli-
matic conditions.

In this research, we investigate how both popu-
lar (lupines, white mustard, buckwheat, black oat) 
and less frequently used cover crop species (ramtil, 
linseed, phacelia and clover) adapt their P-acqui-
sition strategies when grown in a decalcified and 

a calcareous chernozem. These species and soils 
were selected due to their importance in the Aus-
trian region of Lower Austria (Bock 2014), the most 
important agricultural region in the country, repre-
senting  ~44% of the countries’ crop value output in 
2021 (REAA 2021).

We hypothesize that (1) cover crops differentiate 
their P-acquisition strategies to take up the predomi-
nant P forms in each soil, (2) rhizosphere acidifica-
tion and phosphatase activity is more relevant for P 
acquisition in the calcareous soil, as it increases dis-
solution of easily soluble Ca-Pi,o forms, and (3) myc-
orrhization is more important in the decalcified soil 
due to the predominance of labile Pi forms.

In this study, we explore the interactions and dif-
ferentiation of cover crop P-acquisition strategies and 
investigate how they facilitate the uptake of specific 
P fractions in soils with differential properties. These 
insights enable a better-informed selection of cover 
crop species tailored to the unique characteristics and 
predominant P-species of diverging soils, supporting 
researchers and farmers who are looking to improve P 
management and overall soil health.

Materials and methods

To assess the cover crop P acquisition strategies and 
their effects on the P fractions of two Austrian soils, 
a greenhouse pot experiment was conducted for 108 
days. The soils were collected from the topsoil (0–20 
cm) of two sites in Lower Austria and were selected for 
their low available P, relatively high Pt, contrasting pH, 
 CaCO3 content, and texture. Both soils were classified 
according to the international soil classification system 
(IUSS Working Group 2014). The first, a clayey cher-
nozem, was collected from an arable plot in Langenle-
barn – AT, with a decalcified A horizon. The second, 
a calcareous loamy chernozem, was collected from an 
experimental site in Groß-Enzersdorf – AT.

Prior to establishment, both soils were analysed 
for pH (0.01 M  CaCl2 ) at a 1:2.5 (soil:solution) ratio 
(pH meter inoLab®Multi 9620 IDS), total P (aqua 
regia digestion); Olsen-P (0.5M  NaHCO3 pH 8.5) 
according to Olsen and Sommers (1982); maximum 
water holding capacity (MWHC) as described by 
ISO (2019) and  CaCO3 via dissolution in excess 1M 
HCl followed by titration with a 1M NaOH solution 
(Horváth et al. 2005, Table 1). Total carbon and total 
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organic carbon were obtained through combustion at 
400 °C and at 600 °C, respectively using a soli TOC 
(Elementar Analysensysteme GmbH, Langenselbold, 
Germany).

Experimental setup and treatments

For each soil, the cover crops tested and their sow-
ing density can be seen in Table 2. One control treat-
ment with no plant was added for each soil, resulting 
in a (9 + 1) × 2 design with 4 replicates. Pots were 
filled with 2 kg of air-dried and sieved (1 cm) soil and 
placed inside the greenhouse in a randomized block 

design. Pots were moved twice a week to decrease 
positioning effects. Irrigation was supplied manually 
with tap water, and soils were maintained at 60-70% 
MWHC throughout the experiment. The temperature 
in the greenhouse varied between 16  °C (night) and 
30 °C (day).

Establishment and conduction

Seeds were sown to a depth of 3 cm on Jan 25th 2022. 
Sowing density was chosen based on the regional 
field density for each crop, multiplied by three. 
Twenty days after sowing (DAS), plants were thinned 
to match the target number of plants per pot for each 
species. Weeds were removed manually.

Fertilization

To ensure P as the only growth limiting nutrient, no 
P was applied in any form, while other nutrients were 
supplemented in sufficient amounts through nutrient 
solutions. At 3 DAS, 230 mg  kg−1 N, 310 mg  kg−1 K, 
45 mg  kg−1 Mg, 65 mg  kg−1 S, 107 mg  kg−1 Ca were 
applied to every pot. At 35 DAS, Fe (3 mg  kg−1), Zn 
(3 mg  kg−1), Mn (3 mg  kg−1), Cu (1.5 mg  kg−1), B 
(0.3 mg  kg−1) and Mo (0.3 mg  kg−1) were also added. 
At 50 DAS, a second application of N (150 mg  kg−1) 
and K (50  mg  kg−1) was conducted. The composi-
tion of the nutrient solutions can be seen in Online 
Resource 1.

Sampling and analyses

The plants were harvested on May  13th 2022 (108 
days cycle). At harvest, the whole shoot and root bio-
mass of plants was collected and cleaned with tap 
water to remove dirt particles. Subsamples of roots 
were collected and stored at 4 ºC in 30% ethanol solu-
tion for arbuscular mycorrhiza infection rate (%AMF) 
determination. These subsamples were stained 
according to Vierheilig et al. (1998) and %AMF was 
determined through the Gridline intersect method 
(Giovanetti and Mosse 1980).

The plant shoots and remaining roots were oven-
dried at 60 ºC for 48 h, weighed for dry biomass yield, 
milled to 2  mm and subjected to microwave diges-
tion  (HNO3 +  H2O2). Shoot and root P concentra-
tions were determined using ICP-OES (Optima 8300, 
PerkinElmer, Massachusetts, USA). By dividing the 

Table 1  Soils’ chemical and physical parameters prior to 
establishment of the experiment

1 Aqua regia digestion; 2Maximum water holding capacity

Soil parameters Unit Soil

Decalcified Calcareous

pH  CaCl2 - 6.6 7.6
Total  P1 mg  kg−1 679 747
Olsen-P mg  kg−1 3.3 4.6
MWHC2 ml  kg−1 437 540
CaCO3 g  kg−1 ~ 0.0 202.2
Total organic carbon g  kg−1 25.3 15.3
Total carbon g  kg−1 25.6 47.3
Sand g  kg−1 168 286
Silt g  kg−1 388 467
Clay g  kg−1 444 247

Table 2  Cover crop common names, species and target num-
ber of plants per pot

Common name Species Target 
plants per 
pot

Black oat Avena strigosa Schreb. 4
White lupin Lupinus albus L. 2
Narrow-leaf lupin Lupinus angustifolius L. 3
Phacelia Phacelia tanacetifolia Benth. 4
Berseem clover Trifolium alexandrinum L. 6
Buckwheat Fagopyrum esculentum 

Moench
3

Linseed Linum usitatissimum L. 5
Ramtil Guizotia abyssinica [Lf] Cass. 4
White mustard Sinapis alba L. 2
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plant’s total P uptake (mg  pot−1) by their root dry bio-
mass (g  pot−1), we calculated the root P acquisition 
efficiency (mg  g−1) of the individual species in each 
soil, a parameter which represents the amount of P 
acquired per unit root biomass.

At harvest, rhizospheric soil samples were col-
lected by gently shaking the soil attached to the roots 
into plastic bags and were then divided into two 
subsamples. One was air-dried, sieved at 2 mm and 
used for pH  (CaCl2) determination and P fractiona-
tion according to Hedley et  al. (1982) as modified 
by Rheinheimer (2000). The fractionation allows the 
extraction of inorganic (Pi) and organic (Po) P forms, 
which were grouped in labile (anion exchange resin 
membrane extracted Pi  [PResin] and 0.5M  NaHCO3 
extracted Pi,o); moderately labile (0.1M NaOH 
extracted Pi,o and 1M HCl extracted Pi); and non-
labile P pools (0.5M NaOH extracted Pi,o and resid-
ual P). The P in the extracts was determined via the 
phosphomolybdate blue method (Murphy and Riley 
1962).

A second soil subsample was stored at ambient 
humidity at 4 ºC, and was used for the determination 
of the potential activity of the acid  (APASE) and alka-
line  (AlkPASE) phosphatases, obtained through col-
orimetric determination of the p-nitrophenol released 
per kg of soil (corrected for humidity) per hour (mg 
 kg−1  h−1) after incubation at 37 ºC with a p-nitrophe-
nyl phosphate (Sigma N4645) buffered solution (pH 
6.5 and 11.0, respectively), according to Tabatabai 
and Bremmer (1969).

Finally, all quantitative parameters analyzed were 
ranked in a scale of 0-100, where the highest grade 
(100) was conferred to the highest average value for 
each parameter considering only the species with 
observations in both soils (lupines and mustard 
excluded to determine the 100). All other replicates 
of treatments were graded in proportion to the highest 
values observed, and the average grades and standard 
deviations were displayed in a table, allowing a visual 
comparison of the cover crops and their performance 
in the soils.

Statistical analyses

All quantitative data were tested for homogeneity of 
variance and normality of the residuals by the Lev-
ene and Shapiro–Wilk tests, respectively. They were 
then subjected the two-way ANOVA analysis of 

variance to determine the effects of plant species and 
soil type and their interaction on the measured vari-
ables. Means were compared through Tukey’s HSD 
test, except the calculated parameter ‘root P acquisi-
tion efficiency’, which was subjected to a pairwise 
comparison through a t-test to determine differences 
between the same plants in each soil. The cut-off for 
statistical significance was taken as p ≤ 0.05 for all 
analyses. All tests were performed using RStudio ver-
sion 4.2.2. All figures were drawn using a combina-
tion of Microsoft Excel and PowerPoint.

Results

Plant biomass and P parameters

Shoot and root dry biomass (Fig. 1a, b), P concentra-
tion (Fig. 1c, d) and total P uptake (Fig. 1e, f) in both 
soils are presented for each cover crop species. All 
data for the narrow-leaf lupin in the the calcareous 
soil, however, was omitted due to the crop’s high sen-
sitivity to soil pH ≥ 6.0 (Tang et al. 1993) and high Ca 
environments (Ding et al. 2018), which resulted in its 
premature senescence in this soil. All other crops had 
their results reported for completeness; however, due 
to impaired development of the narrow-leaf lupin and 
the mustard in the decalcified soil as well as the white 
lupin in the calcareous soil, these are not discussed 
in detail and are excluded from the summary com-
parison in the discussion. All other crop species were 
shown to develop well in a range of soil types (Myers 
and Meinke 1994, Ranganatha et al. 2013, Ugrenović 
et al. 2021, Casa et al. 1990, Kilian 2016).

In terms of biomass, the black oat and buckwheat 
performed comparatively well and consistently in 
both soils. The mustard under-performed in the decal-
cified but was the best performing cover crop in the 
calcareous soil. Conversely, the biomass of white 
lupin was statistically equal to buckwheat, linseed 
and ramtil in the decalcified  soil, but was the low-
est among all species in the calcareous soil. Overall, 
crops produced higher biomass in the latter except for 
the white lupin and the clover.

Plant shoot and root P concentrations across the 
different species were generally similar when they 
were grown in the same soil. However, higher con-
centrations were observed in crops grown in the 
calcareous soil, following a similar pattern of that 
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of biomass. Clover and linseed had the highest P 
concentrations in both soils, indicating low internal 
physiological P-use efficiency (high P requirement 
for biomass production). Meanwhile, ramtil showed 
an above average P concentration, being higher than 
white lupin, phacelia and mustard in decalcified soil, 
and higher than buckwheat in the calcareous soil.

Due to these differences in P concentrations, total 
P uptake by the cover crops followed a slightly dif-
ferent pattern than that observed for biomass, with 
clover, linseed and ramtil showing comparable or 

higher P uptake than those obtained by plants with 
greater biomass. The clover P uptake was compa-
rable to that of the black oat despite its lower bio-
mass in the decalcified soil and comparable to that 
of phacelia in calcareous soil, despite its significantly 
lower biomass production in both soils. The P uptake 
of linseed and ramtil, in turn, was even higher in this 
soil, being similar to that of black oat regardless of 
their significantly lower biomass production.

The root P acquisition efficiency of the individ-
ual species in each soil is shown in Table  3. This 

Fig. 1  Cover crops shoot 
and root dry mass (g  pot−1), 
root and shoot P concentra-
tions (g  kg−1) and P uptake 
(mg  pot−1) in the decalci-
fied (a, c, e) and calcareous 
(b, d, f) soils. Means of the 
totals (n = 4) followed by 
the same letter did not differ 
significantly in the Tukey 
test at p ≤ 0.05. **=data not 
reported
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parameter revealed a significantly higher root P 
acquisition efficiency for linseed and ramtil in the 
calcareous soil than in the decalcified soil.

Root activity and soil phosphorus fractions

Soil pH

Variations in rhizospheric soil pH (Δ pH) when 
compared to the controls before establishment are 
shown in Fig. 2. While soil pH did not vary in both 

control treatments when compared to the original 
soils, all species acidified the soil except for the 
mustard (both soils), and the white lupin and clover 
in the calcareous soil. Buckwheat acidified the soil 
more strongly than all other plants in the decalci-
fied soil (-0.67 ± 0.10), and more strongly than white 
lupin in the calcareous. All plants except buckwheat 
acidified the soils on average by 0.51 ± 0.15 pH 
units, and their effects were not significantly differ-
ent from each other.

Arbuscular mycorrhizal fungi (AMF) infection

Root colonization with AMF (Fig.  3) was observed 
for certain crops in both soils. AMF infection was not 
observed in lupines, buckwheat and mustard in either 
soil. In the decalcified soil, all crops known to form 
mycorrhizal symbiosis displayed comparable infec-
tion rates, with the only significant difference being 
between clover (56.7%) and ramtil (29.9%). In the 
calcareous soil, however, black oat showed a similar 
proportion of infected roots (58.4%) to that of linseed 
(57.1%), which were significantly higher than that of 
the clover, ramtil and phacelia, which was only colo-
nized in this soil.

Potential phosphatase activity

The potential acid  (APASE) and alkaline  (AlkPASE) 
phosphatase activity varied significantly across treat-
ments (Fig.  4). Overall, higher  APASE levels were 
observed for control and all crops in the decalcified 

Table 3  Pairwise comparison between root P acquisition effi-
ciency (Total P uptake [mg  pot−1] / root dry mass [g  pot−1]) of 
the species in each soil

SD = Standard deviation (n = 4), - = data not reported

Cover crop 
species

Decalcified 
soil

Calcareous 
soil

p value t-test

Root P acquisition efficiency 
(mg  g−1) ± SD

Black oat 4.05 ± 0.59 5.13 ± 1.52 0.260
White lupin 2.12 ± 0.53 - -
Narrow-leaf 

lupin
- - -

Phacelia 3.17 ± 0.29 5.43 ± 2.41 0.156
Berseem 

clover
9.47 ± 0.87 9.13 ± 1.55 0.869

Buckwheat 6.12 ± 3.52 5.58 ± 2.05 0.710
Linseed 4.57 ± 1.90 7.54 ± 1.29 0.018
Ramtil 3.77 ± 0.18 5.96 ± 0.78 < 0.010
Mustard - 9.48 ± 2.77 -

Fig. 2  Soil Δ pH as 
affected by cover crop 
species in the decalcified 
and calcareous soils. Means 
(n = 4) followed by the same 
letter in the same case did 
not differ significantly in 
the Tukey test at p ≤ 0.05. 
Error bars represent stand-
ard deviation. NS = non-
significant. **=data not 
reported
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soil, while the  AlkPASE was higher in the calcareous 
soil. In the former, phacelia, buckwheat and black oat 
promoted the highest  APASE levels, while clover and 
ramtil also performed above the control baseline activ-
ity (140.6 ± 7.9), indicating plant effects. For  AlkPASE, 
buckwheat promoted the highest values, followed by 
phacelia, black oat, ramtil and linseed, all of which 
performed above the control baseline (84.6 ± 6.3).

In the calcareous soil, significantly higher lev-
els of  APASE compared to the control baseline 

(102.3 ± 6.4) were obtained by black oat, buckwheat, 
linseed, ramtil and mustard. Meanwhile, black oat, 
phacelia, linseed, ramtil and mustard, all increased 
 AlkPASE at similar rates and were higher than control 
(232.7 ± 29.6). Although all crops had higher  AlkPASE 
in this soil, the mustard can be highlighted here, since 
it did not promote any changes in this parameter in 
the decalcified soil. In the calcareous soil, however, 
it showed the highest  AlkPASE activity, which may be 
related to its higher biomass production in this soil.

Fig. 3  Arbuscular mycor-
rhiza root colonization rates 
(%) for each crop species in 
the decalcified and calcare-
ous soils. Means (n = 4) fol-
lowed by the same letter in 
the same case did not differ 
significantly in the Tukey 
test at p ≤ 0.05. Error bars 
represent standard devia-
tion. **=data not reported

Fig. 4  Potential acid 
and alkaline phosphatase 
activity (mg  h−1  kg−1) as 
affected by cover crop spe-
cies in the decalcified (a) 
and calcareous (b) soils. 
Means (n = 4) followed 
by the same letter in the 
same case did not differ 
significantly in the Tukey 
test at p ≤ 0.05. Error bars 
represent standard devia-
tion. **=data not reported
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Soil P fractions

During the 108-day cycle, no variations in P fractions 
were observed for the controls compared to their values 
before establishment (Online resource 2). The plant × 
soil interaction affected soil  PResin and  PoNaHCO3 (labile 
fractions) significantly. No significant reductions in 
soil  PiNaHCO3 or in any fraction of the moderately and 
the non-labile soil P pools were observed in either 
soil. The complete data on soil P fractions and pools 
can be accessed in Online resource 3. Data on labile 
P removal discriminated by extractant can be seen in 
Fig. 5. Strong linear correlations were found between 
labile P removed from the soil and the crop’s total P 
uptake, with R² = 0.79 in the decalcified soil and R² = 
0.78 in the calcareous soil (Online Resource 4).

Overall, higher  PResin and  PoNaHCO3 removal was 
seen in the calcareous soil. In this soil, linseed, black 
oat, ramtil and mustard showed the highest  PResin 
removal. In the decalcified soil, black oat took up 
the most  PResin while the clover was consistent in the 
exploration of this fraction in both soils. Interest-
ingly, despite significantly higher soil organic matter 
in the decalcified soil (4.7%) when compared to the 
calcareous (3.0%), the latter had significantly more 
 PoNaHCO3 removed, which, associated with its higher 
values for this P pool, reveal a different Po content 
in each soil (the former with higher  PoNaOH 0.1M).

The soil  PoNaHCO3 reduction was strongly cor-
related with the  AlkPASE in both soils (Fig.  6), 

including the exceptional values for both parameters 
seen in buckwheat in the decalcified soil.

Discussion

Cover crop P acquisition strategies and intensities are 
influenced by plant-soil interactions, varying substan-
tially between environments, climates and production 
systems (Hallama et al. 2019). Here, we explore how 

Fig. 5  Soil labile P frac-
tions (mg  kg−1) removed 
by cover crop species in the 
decalcified and calcareous 
soils in comparison to the 
control treatments. Within 
individual P fractions, 
means (n = 4) followed 
by the same letter (in the 
same order as the bars are 
displayed) did not differ 
significantly in the Tukey 
test at p ≤ 0.05. Error bars 
represent standard devia-
tion. **=data not reported

Fig. 6  Correlation between potential alkaline phosphatase 
activity (p-nitrophenol released [mg  h−1  kg−1]) and the concen-
tration reduction of  NaHCO3 extracted organic P in the decal-
cified and calcareous soils. Data points represent means of the 
replicates (n = 4)
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nine cover crop species differentiate their P-acqui-
sition strategies when grown on a decalcified and a 
calcareous chernozem. Specifically, changes in plant 
biomass production, tissue P concentration, total P 
uptake, AMF colonization rates, potential activity of 
 APASE and  AlkPASE, as well as soil ΔpH and P frac-
tions are investigated.

In calcareous soils,  CaCO3 dissolution increases 
the activity of  Ca2+ and  HCO3

−. Depending on the 
solution Ca:P ratios (Wang and Nancollas 2008), 
these species contribute to the precipitation of Ca-P 
forms such as monocalcium (Ca(H2PO4)2), dicalcium 
 (CaHPO4) and tricalcium phosphate  (Ca3(PO4)2) 
thereby reducing P plant availability (Geng et  al. 
2022). Additionally, lime dissolution releases  OH−, 
neutralizing direct  (H+) and indirect  (Al3+) sources of 
acidity (Hinsinger 1998; Havlin et al. 2017). Rhizos-
phere acidification, therefore, can increase P availabil-
ity by solubilizing Ca-P (Baccari and Krouma 2023).

In our study, cover crops acidified both soils at 
similar rates, despite the higher buffering capacity of 
the calcareous soil, indicating that  H+ release was an 
important P acquisition strategy for these plants in this 
soil. The slight alkalinizing effect (although statisti-
cally non-significant) by the mustard in both soils has 
also been reported for Sinapis alba L. (Schwerdtner 
and Spohn 2022) and Brassica juncea L., a species of 
same family (Kim et al. 2010). In our experiment, we 
hypothesize that the nitrogen form  (NH4NO3) applied 
later in the cycle could have caused an imbalance in 
the cation-anion uptake by the mustard, minimizing 
its effects on soil pH. In the decalcified soil, the low 
biomass might not have been sufficient to promote sig-
nificant acidification in the mustard rhizosphere, while 
in the calcareous soil the mustard could have tapped 
into the  NO3

− after quick  NH4
+ depletion due to its 

high biomass, neutralizing the acidity generated.
High biomass production is one of the most impor-

tant traits for cover crops regardless of their P acqui-
sition strategies (Aime et  al. 2020). In our study, 
biomass contrasts between soils can be explained 
partially by the significantly higher available P val-
ues observed in the calcareous soil, both for Olsen-P 
and  PResin. Although Olsen-P suggest a smaller dif-
ference in available P between soils (27% higher in 
the calcareous soil), the resin test pointed at a much 
higher difference of 71%. Possibly, the Olsen extrac-
tion  (NaHCO3 at pH 8.5) in the calcareous soil might 
not have extracted certain P compounds (e.g. weakly 

bound monocalcium phosphates) that were released 
at the lower pH levels of the resin extraction. Differ-
ences in biomass can also be attributed to specific 
plant tolerance to  Ca2+ (calcifuges vs. calcicoles, 
White and Broadley 2003), which affected the growth 
of both lupines in the calcareous soil.

Moreover, high P accumulation is also relevant 
because plant biomass production is tightly associated 
with genetic factors (Ain et  al. 2022). Since the mus-
tard has a high biomass production potential, its low P 
uptake and yield in the decalcified soil was likely due to 
the small volume of soil used and the soils’ native low P 
levels. In turn, the clover and the linseed naturally yield 
lower biomass, requiring less resources to reach their 
growth potential and may obtain high P uptake even 
under limiting conditions. The tissue P concentrations 
(dry weight basis) observed in our experiment ranged 
from 0.046% (mustard in the decalcified soil) to 0.24% 
(clover in the calcareous soil), which is within the lower 
half of the 0.05–0.5% range often reported in literature 
(Johri et al. 2015). This was expected since no P was 
applied to the already impoverished soils.

Interestingly, despite non-significant differences 
in the biomass of linseed and ramtil in each soil, the 
higher root P acquisition efficiency observed for these 
species in the calcareous soil allowed for significantly 
higher P uptake, indicating their adaptability to the 
calcareous soil. This higher efficiency was also likely 
associated with the higher  AlkPASE activity observed 
for both species in the calcareous soil compared to the 
decalcified soil, which resulted in two of the highest 
Po removal rates among all cover crops in both soils. 
The clover had a high root P acquisition efficiency in 
both soils, showing certain adaptability to chemically 
and physically divergent soils.

Another factor contributing to crop P acquisition 
was the symbiosis between AMF and roots, which 
can increase the explored soil volume up to 40 times 
(Giovannetti et al. 2001). In our study, no AMF were 
observed in the roots of lupines, buckwheat and mus-
tard, all of which have been reported to be weak or 
non-hosts (Lambers et  al. 2013; Likar et  al. 2008; 
Vierheiligh et al. 2003). Phacelia was the only species 
to show AMF infections in only one soil (calcareous), 
a species that has been reported to host some AMF 
strains (Cripps and Eddington 2018; Casanova-Katny 
et al. 2011), but also to not be infected in many soils 
(Bacq-Labreuil et  al. 2019). Because no AMF were 
inoculated in our experiment, the plants depended on 
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the soil’s native fungal communities to be infected. 
An interesting aspect is, that despite similar AMF 
infection rates in both soils, host species consist-
ently took up higher Pi than non-hosts in the decalci-
fied soil. As AMF can only directly absorb labile Pi 
forms (Antunes et al. 2007; Etesami et al. 2021), the 
increased soil volume exploration promoted by the 
AMF might have been more important in the decalci-
fied soil due to its lower available P content.

AMF can also recruit and stimulate phosphatase-
secreting microorganisms and can secrete phos-
phatases themselves (Della Mónica et  al. 2018), 
which aided Po mineralization especially in the cal-
careous soil. In our experiment, the AMF hosts black 
oat, phacelia, linseed and ramtil, had the highest 
 AlkPASE activities, which are exclusively secreted by 
microbes (Spohn and Kuzyakov 2013; Hallama et al. 
2019). These results also corroborate with Peng et al. 
(2020), who reported higher  AlkPASE under AMF 
inoculated alfalfa (Medicago sativa L.) when com-
pared to their non-inoculated counterparts.

One exception to this rule was the mustard in the 
calcareous soil, which had high  AlkPASE activity 
despite no AMF colonization, possibly because it did 
not acidify the soil. Slight soil alkalinity could have 
stimulated higher  AlkPASE activity, since its optimal 
pH range is between 8.5 and 11, while for  APASE it is 
between 4 and 6.5 (Niemi and Vepsäläinen 2005; Nan-
nipieri et al. 2011). For this reason,  AlkPASE activity 
was overall greater in the calcareous soil, while  APASE 
levels were higher in the decalcified soil. In the lat-
ter, the non-AMF-colonized phacelia and buckwheat 
also stimulated high  AlkPASE activities, which could 
indicate significant participation of their root exu-
dates (e.g. organic acids, phenolic compounds, sug-
ars and amino acids) in stimulating microbial activity 
(Kalinova et al. 2007; Hallama et al. 2021).

Black oat, phacelia and buckwheat had the highest 
 APASE activities while also promoting the highest pH 
decreases in the decalcified soil, suggesting a synergy 
between both strategies. In the calcareous soil, only 
black oat and buckwheat maintained high  APASE activ-
ity, while the  AlkPASE activity of phacelia increased. 
This shows that while soil pH seems to have deter-
mined the baseline levels of phosphatase activities in 
each soil, black oat and buckwheat showed the capac-
ity to still exude high  APASE levels even in the calcare-
ous soil, indicating the importance of this strategy to 
these species under both soil conditions.

The discussed differential P acquisition strategies 
resulted in the exploration of different soil P fractions. 
Despite the contrasts in the P-acquisition strategies of 
the investigated species, the moderately and non-labile 
P pools were virtually unexplored in a 108-day growth 
cycle in both soils. In a field experiment, Soltangheisi 
et al. (2020) reported that cover crops grown on non-
P-fertilized soils did not significantly alter any soil P 
pools. In our experiment, however, most species suc-
cessfully accessed labile P in both soils, which can be 
explained by the lower soil volume available for plants 
grown in pots and the ease of representative sampling 
when compared to field conditions.

In the calcareous soil, the higher share of  PResin taken 
up are explained by its higher native available P content 
in comparison to the decalcified soil. A clear difference 
between soils, however, was the higher contribution of 
labile Po to total P uptake in the calcareous soil, repre-
sented by this soil’s significantly higher initial  PoNaHCO3 
levels and reduction rates through plant uptake. The 
high moderately labile organic P (Online Resource 3) 
observed in this soil can be explained by  Ca2+ floccu-
lation of organic matter (predominant in the calcareous 
soil), which promotes the formation of larger and more 
stable organic matter aggregates, reducing its solubil-
ity and protecting it from microbial degradation (Wud-
divira and Camps-Roach 2006). With the depletion of 
the labile P pools, however, slow mineralization of this 
Po could be further made available by  AlkPASE activity, 
which could play a crucial role in increasing P availabil-
ity to plants (Nannipieri et al. 2011).

Interestingly, all crops showing significant 
 PoNaHCO3 reduction also displayed comparatively high 
 AlkPASE, especially seen for buckwheat in the decalci-
fied soil, and for mustard, linseed, ramtil, black oat and 
phacelia in the calcareous soil. This is important due 
to crops inability to take up Po directly, requiring its 
mineralization to Pi forms prior to absorption (Hayes 
et al. 2000). In turn, this mineralized P buffers other P 
pools, such as the  PiNaHCO3, which explains its seem-
ingly low removal rates. It is likely that the removal of 
 PiNaHCO3 by these species is replenished by Po miner-
alization, increasing Pi availability, but also leading to 
no statistical differences between the observed levels 
of the Pi fraction among soils or crops.

The P acquisition parameters analysed in this study 
were combined and transformed to a qualitative rank-
ing for the comparison of cover crop species perfor-
mance in each soil (Table 4).
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This ranking shows that, except for the legume spe-
cies, all cover crops performed better in biomass pro-
duction, P concentration and P uptake in the calcar-
eous soil. While this probably is related to its higher 
initial Pi levels, Po also played a more important role 
for P supply to plants in this soil. This is because the 
high initial pH of this soil allowed for generally higher 
alkaline phosphatase activity levels, which contributed 
to a greater Po mineralization when compared to the 
decalcified soil. In the latter, the overall higher lev-
els of soil acidification and acid phosphatase activity 
obtained by cover crops can be explained by its lower 
initial pH and buffering capacity in comparison to the 
alkaline and calcareous soil. Interestingly, the buck-
wheat promoted high activity for both phosphatases in 
both soils, mineralizing comparatively high Po in the 
decalcified but taking up high Pi in the calcareous soil, 
showing a differential contribution of P pools to this 
plant species in each soil.

Conclusions

Cover crops adapted their P-acquisition strategies 
to the predominant soil P fractions in a calcareous 
and a decalcified chernozem. The species tested 
accessed mostly labile P forms  (PResin,  PNaHCO3). 
In the decalcified soil with lower labile P (pre-
dominantly Pi), the mycorrhizal species black oat, 
clover, linseed, and ramtil excelled in Pi uptake, 
likely attributable to their extensive soil explora-
tion. In the calcareous soil, Po played a more impor-
tant role in plant nutrition. In this soil, black oat, 
buckwheat, phacelia, linseed, ramtil, and mustard 
increased  AlkPASE activity levels (also seen for 
buckwheat in the decalcified soil), which correlated 
positively with Po removal. Additionally, despite 
the high pH buffering capacity of the calcareous 
soil, black oat and buckwheat promoted particu-
larly high rhizosphere acidification in this soil. This 

Table 4  Summary of P related parameters of the cover crops species in each soil organized in a scale of 0–100 (lowest to highest) 
where the highest value observed for each parameter was set as 100

1 Parameters were calculated using a grading system from 0 to 100, where the highest average value observed for each trait among all 
treatments with observation in both soils was graded 100. Subsequently, all other individual replicate values were graded in propor-
tion to the highest average value, allowing for the calculation of averages and standard deviations

P related  parameters1 Decalcified soil
Black oat Phacelia Clover Buckwheat Linseed Ramtil White lupin Mustard

Total dry mass 76 ± 4 15 ± 1 27 ± 3 46 ± 13 35 ± 9 44 ± 3 44 ± 6 -
Plant P concentration 32 ± 2 27 ± 7 70 ± 19 33 ± 4 45 ± 8 37 ± 1 24 ± 1 -
Total P uptake 69 ± 1 11 ± 4 54 ± 10 43 ± 13 43 ± 5 46 ± 2 29 ± 5 -
Soil Δ pH 86 ± 7 92 ± 8 85 ± 22 100 ± 13 82± 8 87 ± 23 71 ± 27 -
Mycorrhizal infection rates 82 ± 11 0 97 ± 27 0 78 ± 26 55 ± 23 0 -
Alkaline phosphatase activity 41 ± 3 54 ± 3 30 ± 9 75 ± 3 40 ± 4 41 ± 5 25 ± 4 -
Acid phosphatase activity 90 ± 6 100 ± 7 62 ± 4 94 ± 6 53 ± 7 68 ± 7 46 ± 3 -
Labile Pi removed 44 ± 2 3 ± 3 45 ± 1 12 ± 2 23 ± 3 26 ± 1 21 ± 1 -
Labile Po removed 28 ± 6 23 ± 4 16 ± 4 53 ± 18 38 ± 6 36 ± 2 6 ± 1 -
P related parameters Calcareous soil

Black oat Phacelia Clover Buckwheat Linseed Ramtil White lupin Mustard
Total dry mass 100 ± 7 50 ± 11 14 ± 1 84 ± 12 43 ± 10 55 ± 6 - 164 ± 15
Plant P concentration 36 ± 4 35 ± 15 100 ± 2 28 ± 12 68 ± 3 54 ± 7 - 36 ± 5
Total P uptake 100 ± 7 48 ± 18 40 ± 3 64 ± 21 82 ± 16 83 ± 5 - 166 ± 32
Soil Δ pH 90 ± 5 69 ± 7 55 ± 20 99 ± 6 84 ± 30 84 ± 8 - 0
Mycorrhizal infection rates 100 ± 12 22 ± 9 38 ± 23 0 98 ± 14 43 ± 12 - 0
Alkaline phosphatase activity 100 ± 11 92 ± 22 70 ± 8 71 ± 5 97 ± 8 96 ± 6 - 115 ± 6
Acid phosphatase activity 83 ± 8 39 ± 8 33 ± 3 85 ± 6 65 ± 4 68 ± 3 - 54 ± 4
Labile Pi removed 86 ± 12 29 ± 8 56 ± 11 70 ± 9 100 ± 6 91 ± 3 - 93 ± 1
Labile Po P removed 59 ± 2 28 ± 3 17 ± 3 37 ± 4 91 ± 8 100 ± 5 - 146 ± 2
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indicates an important participation of acidification 
to P acquisition for these species, which synergis-
tically exhibited elevated activity of  APASE in this 
soil. The activity of both phosphatases was particu-
larly important in the calcareous soil, suggesting 
the hydrolysis of Po. This confirms that rhizosphere 
acidification and phosphatase activity was more 
relevant in the calcareous soil, and that mycorrhi-
zation was more important in the decalcified soil. 
Consequently, in P-deficient soils dominated by 
labile Pi, mycorrhizal species such as black oat, clo-
ver, linseed and ramtil may be more suitable for P 
exploration.

The high root P acquisition efficiency of linseed 
and ramtil in the calcareous soil suggests suitability 
to P acquisition in high Ca environments. Addition-
ally, the clover and the linseed had the highest tissue 
P concentrations, which resulted in relatively high P 
uptakes despite low biomass, making these species 
strong candidates for P cycling in scenarios which 
limit biomass production potential. The lupines did 
not take up high amounts of P in either soil in our 
experiment, and thus are not recommended for P min-
ing in these conditions. On the other hand, black oat 
and mustard can be very efficient for P acquisition, 
the latter already being extensively used in Lower 
Austria as cover crop. Our results show that the cover 
crops tested in differentiated their P acquisition strate-
gies according to soil characteristics such as pH, Ca 
content and predominant P forms. As no single mech-
anism completely explained plant P concentrations 
and P uptake, the P acquisition efficiency of these 
cover crops is due to a combination of P mobilization 
strategies.
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