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of linked top-canopy  leaf and bulk soil samples col-
lected from tall (old) trees in the natural forest of 
Bavarian Forest National Park.
Results This study shows sphere-specific communi-
ties in European temperate forests, characterized by 
low connectivity. Results highlight that spheres exert 
stronger influence than host identity. Only a few taxa 
inhabited both spheres, yet they accounted for the 
bulk of the (relative) abundance in each sphere.
Conclusion Analysing the divergence and shared 
characteristics of these interlinked communities rede-
fines the tree holobiont concept and enhances our 
understanding of the evolution of plant-associated 
microbial communities in a sphere-specific manner. 
This study emphasizes the importance of examin-
ing multiple microbiome components for a thorough 
understanding of temperate forest ecology, while also 
highlighting the existence of a small group of over-
lapping taxa that may play a bigger role than previ-
ously anticipated.

Keywords Temperate forest microbiome · 
Phyllosphere · Bulk soil · 16S rRNA gene · ITS 
rRNA region · eDNA

Introduction

Temperate forests are structurally complex ecosys-
tems containing a great variety of habitats. Biotic 
and abiotic variables exhibit a high level of spatial 

Abstract 
Aims The phyllosphere and soil are crucial and dis-
tinct microbial spheres in forests, connected through 
trees that interact with both. As part of the tree’s hol-
obiont, these communities are vital to the fitness and 
evolution of the host. Differences between the spheres 
may be particularly evident at the two extreme ends 
of tall and long-lived trees of natural temperate for-
est; the top-canopy and the soil. Here, we evaluated 
the connectivity between the top-canopy and soil 
microbial communities of European beech and Nor-
way spruce trees to determine the significance of tree-
sphere and host-species identity, and to assess the 
contribution of taxa inhabiting both spheres.
Methods Bacterial and fungal community composi-
tion was determined through metabarcoding analysis 

Responsible Editor: Luz E. Bashan.

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11104- 023- 06364-1.

A. Siegenthaler (*) · A. K. Skidmore · M. Rousseau · 
Y. Duan 
Faculty of Geo-Information Science and Earth Observation 
(ITC), University of Twente, Drienerlolaan 5, PO Box 217, 
7500 AE Enschede, The Netherlands
e-mail: a.siegenthaler@utwente.nl

G. A. de Groot · I. Laros 
Wageningen Environmental Research, Wageningen UR, 
P.O. Box 46, 6700 AA Wageningen, the Netherlands

http://orcid.org/0000-0003-3480-4747
http://orcid.org/0000-0002-7446-8429
http://orcid.org/0000-0001-7308-9200
http://orcid.org/0000-0002-4537-9099
http://orcid.org/0000-0003-1710-2014
http://orcid.org/0000-0003-4951-4654
http://crossmark.crossref.org/dialog/?doi=10.1007/s11104-023-06364-1&domain=pdf
https://doi.org/10.1007/s11104-023-06364-1
https://doi.org/10.1007/s11104-023-06364-1


320 Plant Soil (2024) 496:319–340

1 3
Vol:. (1234567890)

heterogeneity within forest ecosystems, both horizon-
tally (e.g., between different forest stands) and verti-
cally, from the soil to the top canopy. The microbial 
communities living in these habitats play important 
ecological roles at multiple spatial scales (Baldrian 
2017). They impact individual plant health as either 
plant-promoters or pathogenic taxa (Terhonen et  al. 
2019), and also provide ecosystem services due to 
their role in, among others, nutrient cycling, and 
carbon sequestration (Graham et  al. 2016). Forest 
microbial communities generally display high diver-
sity, encompassing both r-strategists (higher growth-
rates in resource-rich environments) and K-strategists 
(slow growth but adept energy source utilization) 
(MacArthur and Wilson 1967). These communities 
can be can be shaped by both deterministic (where 
species occurrence and abundance stem primar-
ily from abiotic and biotic factors) and stochastic 
processes (influenced by random and probabilistic 
events) (Dini-Andreote et  al. 2015). Soils host some 
of the densest microbial communities on earth, with 
high taxonomical and functional diversity (Pulle-
man et  al. 2012). Forest soils provide a vast habitat 
for microbes, being characterised by high nutrient 
levels and extensive spatial heterogeneity of micro-
habitats (Kadowaki et  al. 2014; Martins et  al. 2013; 
Zhou et al. 2022). The canopy also covers a massive 
surface area which is characterized by an oligotrophic 
environment in combination with rapidly fluctuating 
environmental stressors such as ultraviolet (UV) radi-
ation and desiccation (Lindow and Brandl 2003). The 
soil and canopy are thus important “spheres” in for-
est ecosystems, depicting the extremities of tall and 
long-lived trees. In the context of plants, we define 
sphere as a term to describe the zone of influence 
or the area of interaction between the plant, envi-
ronmental components, and microbial communities. 
Examples of plant spheres are the phyllosphere (the 
microenvironment on aerial plant surfaces), rhizos-
phere (the soil zone surrounding/adhering to a root), 
endosphere (habitats within the plant’s tissues) and 
the spermosphere (zone around the seeds of a plant) 
(Bais et  al. 2006; Lemanceau et  al. 2017; Vacher 
et  al. 2016). The host plants connect these different 
spheres, forming a complex ecological unit with the 
microbial communities living within these spheres. 
The plant, as host organism, and its associated sym-
biotic microbial community are often considered as a 
holobiont in which the microbes play a central role in 

host biology, ecology, and evolution, and vice versa 
(Simon et al. 2019).

The concept of the holobiont emphasizes the idea 
that host organisms and their associated microorgan-
isms are interdependent and co-evolve over time (Zil-
ber-Rosenberg and Rosenberg 2008). Plants actively 
select microbial communities via plant exudation 
and anatomical properties (Whipps et  al. 2008; Zhou 
et al. 2022). The plant is also a prominent factor in the 
(cross-)colonization of the different spheres, for exam-
ple via xylem and phloem transport, leaf fall or seed 
germination (Barret et al. 2015; Chi et al. 2005; Guer-
reiro et al. 2017). Other colonization pathways include 
transport via air, rainfall/stemflow, rain splash or organ-
isms (insect, bird, animal) (Bittar et al. 2018; Coluccio 
et  al. 2008; Levetin and Dorsey 2006; Zarraonaindia 
et  al. 2015; Zhou et  al. 2020). In the soil, trees can 
influence microbial communities up to several meters 
from the tree stem, as shown by studies on soil micro-
bial communities under European beech and Norway 
spruce trees (Nacke et al. 2016). Within the tree-asso-
ciated soil habitat, rhizosphere communities can be 
considered as a subset of bulk soil communities (bare 
soil next to the plant/roots), with the latter showing a 
lower density but higher diversity of microbes (Bulgar-
elli et al. 2013; Zhou et al. 2022). The rhizosphere has, 
compared to the bulk soil, a limited spatial influence 
beyond immediate adjacency to the direct fine root 
material since it only covers nanometers or milimeters 
from the roots.

Analysing overlapping taxa and connectivity 
between the different spheres of a plant can provide 
essential insight in plant health, holobiont evolution, 
and ecosystem response to environmental change 
(Coince et al. 2014; Zilber-Rosenberg and Rosenberg 
2008). Microbial communities do not solely affect 
processes within a sphere but can also exert effects 
throughout various plant compartments, either by 
influencing plant health (i.e., via biomass, metabolites 
or pathogen resistance) (Berlanga-Clavero et al. 2020) 
or by microbe-microbe interactions via the secretion 
of secondary metabolites (Liu et al. 2017). While dif-
ferent spheres can be controlled by dissimilar environ-
mental variables resulting in divergent communities 
(Coince et  al. 2014), abundant generalist microbes 
occurring in multiple spheres may be part of a core 
microbiome; being on the one hand actively selected 
by the host plant (Bai et  al. 2022) and on the other 
hand shaping microbe-microbe and microbe-plant 
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interactions throughout the host (Hassani et al. 2018). 
Via these interactions, these shared taxa may play 
a central role in host ecology, fitness and evolution 
(Simon et  al. 2019). Studies on crops and annuals 
show varying levels of similarities and connectivity 
between the above-ground and below-ground plant 
associated communities (Bai et al. 2015; Tkacz et al. 
2020; Zarraonaindia et  al. 2015), but information 
about the connectivity of different spheres in natural 
temperate forests is scarce (some relevant examples: 
Coince et al. 2014; Haas et al. 2018; Rodríguez-Rod-
ríguez et al. 2023). The little research on the connec-
tivity of these spheres in European forests is  often 
either experimental (e.g. Haas et  al. 2018; Potthast 
et al. 2022) or focuses on a small number of plants or 
plots (e.g. Beule et al. 2017; Coince et al. 2014). Con-
nectivity and taxonomic similarities between these 
different microbial communities may be especially 
complex in trees due to the tree’s longevity and large 
size, resulting in sphere-specific variation in environ-
mental stresses and host-interactions (Flessa et  al. 
2012; Herrmann et al. 2021), calling for a deeper com-
prehension of the overlap and divergence within the 
tree holobiont.

In the current paper, we analyse and compare 
the bacterial and fungal communities in the canopy 
and soil of the temperate forests of Bavarian Forest 
National Park (Germany), in order to assess their con-
nectivity and divergence. We will focus on the com-
munities located in top canopy and tree-associated 
bulk soil (i.e., under the canopy and in the zone of 
influence of the individual trees; Nacke et  al. 2016) 
since these spheres are located at the most extreme, 
and environmentally dissimilar ends of the tree holo-
biont. Our hypotheses are: (i) Variation in European 
beech and Norway spruce leaf and soil bacterial and 
fungal communities can be primarily attributed to tree 
sphere rather than host-species identity. (ii) Taxa pos-
sessing the capability to inhabit both spheres demon-
strate a competitive advantage, leading to heightened 
(relative) abundances. Insights gained on the complex 
interactions of these distinct microbiomes have high 
relevance for developing strategies to manage and 
conserve forest ecosystems. Our study highlights the 
necessity to incorporate microbial diversity indices of 
multiple spheres in ecosystem assessments since this 
will provide a more all-inclusive picture of variation 
and vulnerability of microbial communities and eco-
system functions in European temperate forests.

Methods

Site description and sampling design

Top-canopy and bulk soil samples were collected in 
twenty-nine square plots of 30 × 30  m in Bavarian 
Forest National Park (Fig. 1). The park is located in 
south-eastern Germany and is part of the Bohemian 
Forest, one of the most extensive contiguous natu-
ral forest ecosystems in Central Europe (Křenová 
and Kiener 2013). The mountainous forests in the 
study area (altitudes between 300–1400 m a.s.l.) are 
dominated by European beech (Fagus sylvatica) and 
Norway spruce (Picea abies) (Bässler et  al. 2015). 
The park was established in 1970 and has a 40-year 
no-intervention management strategy (since 1983), 
resulting in a gradual decline in spruce (mainly due to 
bark beetle infestations) and an increase in abundance 
of beech (as well as, to some extent, other tree species 
such as Abies alba) (van der Knaap et al. 2020).

Plots were stratified over stands (> 75% canopy 
dominance) of European beech (N = 15) and Norway 
spruce (N = 14), and were situated at altitudes rang-
ing from 665 to 1160  m. Sampling was conducted 
in the same season, during July–August 2020, while 
broad leaves were fully mature and before senescence 
(Laforest-Lapointe et al. 2016). At each 300  m2 plot, 
leaves were collected from three representative trees. 
Per tree, a leaf sample consisted of 10 individual 
broadleaves from different branches or 20–30 needles 
from 10 separate cohorts (internodes of the same age). 
Leaf samples were collected from the sun-exposed 
top canopy using a large slingshot (Tree runner Big-
Shot) and a rope (Youngentob et al. 2016). A modi-
fied crossbow was used for tall trees (Ali et al. 2016). 
Wearing disposable gloves, falling leaves were caught 
before touching the ground to avoid contamination 
and stored in zip-lock bags. Leaves were pooled per 
tree to reduce between-leaves variation (Cordier et al. 
2012). Per tree, a composite bulk soil sample was col-
lected from the topsoil (0–10 cm depth, after removal 
of litter) in a 9  m2 subplot located under the canopy 
of the sampled tree (max 2 m distance from the tree 
trunk). Per subplot, 9 cores were collected in a 3 × 3 
grid using a 5 cm Ø × 5 cm height corer. Composite 
samples were collected by pooling the nine cores in 
a sterile bag, removal of roots and stones, manual 
homogenization, and subsequently transferring a 
subsample into sterile 50  ml tube. Samples were 
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transported on ice to the laboratory where they were 
stored at -20  °C until further processing. Between 
samples, the soil corer was sterilized with 10% bleach 
followed by deionised water to avoid cross-contami-
nation. For each fifth plot, an aliquot of the deionised 
water rinse of the corer was collected as field control.

DNA extraction and amplification

A sterile paper hole puncher (0.6 cm Ø) was used to 
punch leaf disks from broadleaf samples. For each 
tree, 0.1  g of broadleaf leaf-disks or needles were 
combined (representing 10 broadleaves or 10 nee-
dle cohorts) and homogenized using a Benchmark 
Beadbug™ Mini Homogenizer (D1030). Leaf-disks 
were cut-out and needles were selected from different 
parts of the leaves/cohorts to warrant a representa-
tive sample. Leaf total DNA (endophytes and epi-
phytes) was extracted using Qiagen Plant Pro extrac-
tion kit and the Qiagen Qiacube Connect extraction 
robot, following the manufacture’s instructions. No 
sterilization was conducted prior to DNA extractions; 

total DNA from combined endophyte and epiphyte 
taxa was extracted (Zarraonaindia et  al. 2015). Soil 
DNA was extracted following the phosphate extrac-
tion protocol of Taberlet et  al. (2012), using minor 
modifications. Briefly, 15 g of well-homogenised soil 
sample was mixed with 15  ml saturated phosphate 
buffer  (Na2HPO4; 0.12 m; pH ≈8) in order to extract 
extra-cellular DNA. After mixing and centrifugation, 
2  mL of supernatant was purified using the Nucle-
oSpin® soil extraction kit following the manufac-
ture’s instructions, but omitting the lysis step. Using 
the saturated phosphate buffer enabled processing 
larger soil volumes compared to the kit’s lysis step, 
minimizing the effects of local heterogeneity. Nega-
tive extraction controls were included for each batch 
of 22 (leaf) or 25 (soil) samples. DNA concentra-
tions were quantified on a Biotek Synergy HTX Multi 
Mode Reader, using the Quant-iT PicoGreen dsDNA 
Assay Kit, and standardised to 5  ng  µl−1 (sam-
ples < 5 ng µl−1 were not standardised). Soil samples 
were further 100 × diluted to reduce polymerase chain 
reaction (PCR) inhibition. Prior to PCR, the field and 

Fig. 1  Map of Bavarian 
Forest National Park show-
ing the sample locations 
and park boundary
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extraction controls for each sample and control type 
were combined.

DNA extraction and amplification were conducted 
at separate laboratories to reduce contamination risks. 
Bacterial (16S rRNA gene) and fungal (ITS rRNA 
region) DNA was amplified using the 515F/806R 
(Apprill et  al. 2015; Parada et  al. 2016) and ITS86/
ITS4-ngs (Tedersoo et al. 2014; Turenne et al. 1999) 
primer sets, respectively. Amplification protocols and 
polymerase chain reaction (PCR) recipes are shown 
in supplementary table  1. Peptide Nucleic Acid 
(PNA) clamps were used (PNA Bio Inc.) to block 
the amplification of host chloroplast and mitochon-
drial DNA in the leaf 16S PCR reactions (Lundberg 
et al. 2013). Amplicons were sent to Genome Quebec 
(Montreal, Canada) for library preparation and Next 
Generation paired-end sequencing. Primers contained 
a CS1 (forward primer) or CS2 (reverse primer) adap-
tor sequence at the 5’-end to allow for multiplexing 
using the Fluidigm Access Array System (Fluidigm, 
South San Francisco, CA). An indexing PCR was 
used to attach the indexes and i5/i7 Illumina adapter 
sequences to the amplicons. Sequencing was per-
formed on one lane of the Illumina NovaSeq 6000 SP 
platform using the PE250 kit.

Bioinformatic and data analyses

Bioinformatic analyses were performed using the 
QIIME 2™ software suite (Bolyen et al. 2019) and all 
statistical analyses were performed in R version 4.2.3 
(https:// www.R- proje ct. org/). Post-clustering cura-
tion was conducted using LULU (Frøslev et al. 2017), 
and the SILVA (Quast et al. 2012) and UNITE (Nils-
son et al. 2018) databases were used for Taxonomical 
assignment. ASV tables were further (i) blank cor-
rected (removal criteria: max reads in blanks ≥ max 
reads in samples), (ii) filtered to retain only bacterial 
and fungal reads, and (iii) corrected for tag-switching 
(following: Taberlet et al. 2018). All taxa present with 
less than 10 reads in total were removed to reduce low 
frequency noise (Alsos et al. 2016; Polling et al. 2022). 
Details of the bioinformatic pipeline can be found in 
supplementary table 2. Curated ASV tables were rare-
fied to 15,000 reads (supplementary Fig. 1) using the 
‘rrarefy’ function of the Vegan v. 2.6–2 R package 
(Oksanen et al. 2022). The average of 100 rarefactions 
was used to reduce stochastic effects (Cordier et  al. 
2019). The leaf and soil sample pairs of two subplots/

trees were removed from the ITS dataset due to a read 
count lower than 15,000, and one plot only contained 
information of 2 trees/subplots. The package ‘Vegan’ 
was also used to visualise and test for differences in 
community composition between spheres (leaf vs. soil 
samples) and tree species, using Principle Coordinate 
Analyses (PCoA) and PERMANOVA (999 permuta-
tions) on Bray–Curtis dissimilarities constructed from 
Hellinger-transformed read counts. Pearson correla-
tions between communities were tested using Mantel 
tests. Permutations were restricted per plot to account 
for within plot pseudo-replication in PERMANOVA 
and Mantel tests. Differences in alpha diversity were 
visualised using ASV accumulation curves and tested 
using linear mixed models (‘nlme’, v. 3.1–162) (Pin-
heiro et al. 2022) using plot ID as random effect. Venn 
diagrams were constructed (‘ggvenn’ v. 0.1.9) (Yan 
2021) to visualise differences in ASV overlap between 
spheres and tree species and differences in the frac-
tion of ASVs overlapping per sample were determined 
using linear mixed models (random effect: plot ID) on 
logit-transformed proportions. Connectivity between 
the spheres was assessed using SPIEC-EASI (Sparse 
InversE Covariance estimation for Ecological Asso-
ciation and Statistical Inference) co-occurrence net-
works (Kurtz et al. 2015) incorporated in the package 
‘NetCoMi’ (Peschel et  al. 2020). Soil and leaf data 
were combined per tree to allow for the construction 
of across-sphere networks, and taxa occurring in both 
spheres were allocated multiple nodes for each respec-
tive sphere. Data were filtered to remove any ASVs 
with < 10% prevalence, and read counts were centered 
log-ratio (clr) transformed as part of the SPIEC-EASI 
algorithm. Networks were constructed and compared 
using the ‘NetCoMi’ package, and the adjacency 
matrix was used to classify edges as within-spheres 
or between-spheres associations. Hub taxa (“key-
species”) were assigned based on highest eigenvector 
centralities (> 95% quantile), representing nodes that 
have a central position in the network (Peschel et  al. 
2020). Discriminant analyses (‘Maaslin2’ v. 1.12) 
(Mallick et  al. 2021) on Hellinger-transformed read 
counts were ran, with Plot ID as random effect, to 
determine sphere specificity of bacterial and fungal 
families. Families were classified as unique (occur-
rence in only one sphere), dominant (discriminant 
[p < 0.05] to a specific sphere), or non-specific (not 
discriminant [p > 0.05] to a specific sphere). Differ-
ences in relative read abundances of discriminant taxa 

https://www.R-project.org/
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(ASVs with > 10% prevalence) between spheres and 
tree species were further visualised over multiple tax-
onomic levels using heat trees analyses (‘metacoder’ 
v. 0.3.5) (Foster et al. 2017).

Results

Data summary

A total of 31,620,621 bacterial and 34,032,206 fungal 
reads remained after bioinformatic processing (sup-
plementary table 2), with a mean (± SD) read count of 
92,089 (± 42,250) 16S rRNA and 147,280 (± 86,560) 
ITS rRNA in leaf and 275,592 (± 41,831) 16S rRNA 
and 248,443 (± 36,380) ITS rRNA in soil samples. 
Rarefaction to 15,000 reads per sample resulted in 
a total of 38,538 bacterial ASVs (mean ± SD leaf: 
389 ± 194; mean ± SD soil: 2235 ± 507) and 5,168 
fungal ASVs (mean ± SD leaf: 246 ± 96; mean ± SD 
soil: 101 ± 33), al loss of 856 bacterial (2.2%) and 
62 Fungal (1.2%) ASVs compared to the non-rar-
efied dataset. Phyllosphere bacterial communities 
were dominated by Proteobacteria (mean relative 
abundance in European beech samples: 55%; Nor-
way spruce samples: 58%), Bacteroidota (beech: 
34%; spruce: 9%) and Acidobacteriota (beech: 5%; 
spruce: 18%) while soil bacterial communities were 
dominated by Acidobacteriota (beech: 33%; spruce: 
35%), Proteobacteria (beech: 22%, spruce: 19%) and 

Actinobacteriota (beech: 11%, spruce: 16%). Phyl-
losphere fungal communities mainly consisted of 
Ascomycota (beech: 97%, spruce: 93%) while the 
most abundant phyla in soil fungal communities 
were Basidiomycota (beech: 77%, spruce: 71%) and, 
to a lesser extend, Ascomycota (beech: 22%, spruce: 
27%).

Diversity and community composition differences 
between compartments and host tree species

Bacterial and fungal communities differ both between 
plant spheres and host tree species (Fig.  2). PER-
MANOVA and Principle Coordinate (PCoA) analy-
ses showed a significant (p < 0.01) influence of sphere 
and tree species, and a significant (p < 0.01) inter-
action between them for both 16S and ITS (Fig.  2; 
supplementary table  3). Samples clustered among 
spheres along the first PCoA axis, which explained 
40% and 21% of the variance in community structure 
for 16S and ITS respectively. Clustering based on 
tree-species was along the second PCoA axis for the 
leaf samples (explaining 11% and 14% of the variance 
for 16S and ITS respectively) and the third axis for 
the soil samples (explaining 6% and 5% of the vari-
ance for 16S and ITS respectively). PERMANOVA 
analyses (supplementary table 3) confirmed the attri-
bution of a larger proportion of variation to tree spe-
cies in leaf samples (bacterial  R2: 0.34; fungal  R2: 

Fig. 2  Principal Coordinates Analysis of bacterial (A) and fungal (B) communities, based Bray–Curtis dissimilarities constructed 
from Hellinger-transformed read counts of Amplicon Sequence Variants (rarefied to 15,000 reads)
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0.39) than in soil samples (bacterial  R2: 0.06; fungal 
 R2: 0.09).

Total bacteria richness was several orders of mag-
nitude higher in soil samples than in leaf samples 
and only the ASV accumulation curves of leaf sam-
ples showed no overlap in 95% confidence intervals 
between tree species (Fig. 3A). Total fungal richness 
was a factor 10 lower compared to total bacterial 
richness, which could mainly be attributed to a sub-
stantially lower diversity detected in the soil. Differ-
ences in fungal richness between spheres varied per 
tree species (Fig. 3B). Linear mixed model analyses 
of Shannon diversity on the subplot level (Fig.  3C-
D) confirmed these patterns with significant differ-
ences between groups for both bacterial  (F83 = 524.8, 
p < 0.0001, marginal  R2  [R2m] = 0.80) and fungal 

 (F81 = 54.9, p < 0.0001,  R2m = 0.52) ASVs. Pairwise-
comparisons showed significantly (p < 0.001) higher 
bacterial Shannon diversity in soil versus leaf sam-
ples and beech leaf versus spruce leaf samples, while 
soil bacterial diversity did not differ significantly 
(p = 0.12) between tree species (Fig. 3C). Spruce leaf 
samples contained a significant (p < 0.0001) higher 
fungal Shannon diversity than beech leaf samples and 
soil samples, independent of tree species. Soil fungal 
diversity did not differ significantly between tree spe-
cies (Fig. 3D; p = 0.19).

ASV connectivity between phyllosphere and soil

The majority of bacterial and fungal ASVs were 
unique to either the soil or to the leaf samples (Fig. 4 
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Fig. 3  Variation in bacterial (A-C) and fungal (B-D) accu-
mulative ASV richness (± 95% confidence interval) and mean 
Shannon diversity of leaf and soil samples (rarefied to 15,000 
reads) collected from two tree species (European beech and 

Norway spruce). Different letters indicate significantly dif-
ferent groups (linear mixed model with Benjamini–Hochberg 
pairwise comparisons, p < 0.05)
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& supplementary table 4). A substantially lower pro-
portion of families was unique to either of the spheres 
compared to ASV-level taxa specificity (supplemen-
tary table 4), indicating that most variation in unique 
taxa is at lower taxonomic ranks. Only a small pro-
portion of ASVs occurred in both spheres (bacterial: 
2.8%; fungal: 6.0%). See supplementary table  5 for 
the top 10 overlapping taxa per kingdom. A total of 
448 bacterial ASVs were detected in both soil and 
leaf samples within the same subplot, with a signifi-
cantly higher mean proportion of shared bacterial 
ASVs in spruce compared to beech subplots (LMM: 
 F27 = 22.4, p < 0.001,  R2m = 0.23). Although when 
comparing proportions separately per sphere, this dif-
ference was only significant for the soil communities 
(supplementary Fig.  2A-C). The number of fungal 
ASVs detected in both soil and leaf samples within 
the same subplot was 119, and no significant differ-
ence was detected in the mean proportion of shared 
fungal ASVs per subplot between tree species (sup-
plementary Fig.  2D-F; LMM:  F27 = 1.52, p = 0.23, 
 R2m = 0.02). A significant positive correlation was 
found in the community composition of bacterial 
phyllosphere and soil communities in Norway spruce 
forests (Mantel test: R = 0.32 P < 0.01). No signifi-
cant correlations, though, were detected in European 
beech forest communities (supplementary table  6). 
Also no correlations were shown for Alpha diver-
sity between the leaf and soil samples, independent 
of tree species or microbial kingdom (supplemen-
tary table  6). Correlation analyses of the relative 

abundance of individual families between spheres 
did only detect three families with significant (BH-
adjusted) Spearman correlations in Norway spruce 
forest stands (Xanthobacteraceae: R = 0.56, P < 0.05; 
Pleomassariaceae: R = 0.56, P < 0.01; and Sclerococ-
caceae: R = 0.64, P < 0.001), while none of the bacte-
rial or fungal families showed significant correlations 
between the two spheres in European beech forest 
stands.

Co-occurrence network analyses showed no explicit 
clustering of taxa (nodes) per sphere in either the bac-
terial nor the fungal networks (Fig. 5). Global network 
statistics (supplementary table  7) showed differences 
between bacterial and fungal networks, especially in 
terms number of nodes (2068 vs. 142), modularity 
(0.2 vs. 0.6) and positive edge percentages (57–58% 
vs. 64–74%), indicating kingdom specific variation in 
ecological associations within the host tree. Fungal net-
works showed more pronounced differences in network 
structure between host tree species compared to bacte-
rial networks. Particularly the number of components 
(48 vs. 16), clustering coefficient (0.13 vs. 0.07) and 
positive edge percentage (74% vs. 64%) were higher in 
the fungal beech network than the fungal spruce net-
work. Taxa detected in soil samples were dominant in 
the bacterial networks, as shown by the high number of 
nodes and hubs (i.e. keystone species), while the fungal 
networks were dominated by taxa from leaf samples. 
The low number of edges (6–12%) between taxa from 
different spheres indicates low connectivity between the 
spheres (Table 1). Even for the few taxa that do occur in 
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both spheres, the nodes were not linked, i.e. occurrence 
patterns did not correlate between spheres.

Taxa specificity and relative abundance in 
phyllosphere and soil

Even though the majority of ASVs detected were 
unique to either the soil or the leaf samples (Fig. 6A), 

the contribution of these unique taxa was low in terms 
of relative abundance (Fig.  6B). Discriminant taxa 
(significant higher relative abundance in leaf or soil 
samples based on Maaslin2 discriminant analyses) 
showed a substantially lower ASV richness compared 
to unique taxa but contributed most to the microbial 
communities in terms of relative read abundance, 
especially in leaf samples (Fig. 6). Variation in taxa 

Fig. 5  Co-occurrence 
networks of bacterial (A-B) 
and fungal (C-D) ASVs 
(> 10% prevalence) detected 
in forest bulk soil and 
phyllosphere samples. Data 
from soil and leaf samples 
was combined per tree prior 
to SPIEC-EASI network 
construction, and taxa 
occurring in both spheres 
were allocated multiple 
nodes for each respective 
sphere. Edge colour rep-
resents negative (red) and 
positive (green) associa-
tions. Hub nodes (based on 
eigenvector centralities) 
have a red outline. Node 
size represents differences 
in relative read abundance. 
Maximum 1000 nodes 
with the highest degree are 
shown

European beech Norway spruce

C D

A B

European beech Norway spruce
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Table 1  Number of edges 
between nodes of similar 
and different spheres 
in bacterial and fungal 
co-occurrence networks 
generated by SPIEC-EASI

Edge type Positive Negative Total

Bacteria Beech Soil-soil 41,858 29,388 71,246
Leaf-leaf 2066 300 2366
Soil-leaf 2797 (6.0%) 3758 (11.2%) 6555 (8.2%)

Bacteria Spruce Soil-soil 45,812 31,546 77,358
Leaf-leaf 1636 934 2570
Soil-leaf 3928 (7.6%) 4047 (11.1%) 7975 (9.1%)

Fungi Spruce Soil-soil 20 4 24
Leaf-leaf 208 94 302
Soil-leaf 19 (7.7%) 25 (20.3%) 44 (11.9%)

Fungi Beech Soil-soil 4 2 6
Leaf-leaf 198 56 254
Soil-leaf 8 (3.8%) 9 (13.4%) 17 (6.1%)
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Fig. 6  Variation in ASV specificity of bacterial (A & B) 
and fungal (C & D) detected in leaf and soil samples in 
European beech and Norway spruce forests stands. Panels 
A and C show variation in ASV richness and panels B and 

D show variation in mean relative read abundances. Sam-
ples have been rarefied to 15,000 reads and specificity was 
determined by Maaslin2 discriminant analyses
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specificity between tree species was most pronounced 
in the phyllosphere. Spruce stands show a higher con-
tribution of unique leaf bacterial and fungal ASVs, 
both in terms of richness and relative abundance 
(Fig.  6). Soil profiles did not show pronounced dif-
ferences in the ratio unique:dominant taxa of both 
microbial kingdoms, either in terms of richness or 
relative abundance (Fig.  6). The phyllosphere com-
munities also showed clear patterns in variation in the 
relative abundance of leaf-discriminant taxa between 
the beech and spruce phyllosphere, while this was 
much less apparent in the soil (Fig. 7, supplementary 
Figs. 3 and 4).

Sphere-specific patterns of dominant taxa

Abundant families mainly varied in terms of rela-
tive abundance between spheres (Fig.  8). Soil-dis-
criminant bacteria were found in a wide range of 
phyla (Fig. 8A) while soil-discriminant fungi mainly 
belonged to one phylogenetic group, the order Aga-
ricomycetes in the phylum Basidomycota (Fig.  8B). 
In case of leaf-discriminant taxa, both the bacterial 
and fungal taxa belonged to a wide range of phyloge-
netic groups (Fig. 8). Acidobacteriota were underrep-
resented in the phyllosphere with Acidobacteriaceae 
as notable exception (Fig.  8A). Abundant (> 5%) 
ASVs in the leaf samples were assigned to genera 
1174–901-12 (Beijerinckiaceae) and Mucilaginibac-
ter while the most abundant (> 1%) ASVs in the soil 
samples were all uncultured Acidobacteriales (sup-
plementary table 8). Abundant (> 5%) fungal ASVs in 
the leaf samples were assigned to the genera Naevala 
and Erysiphe, and the family Phaeosphaeriaceae. In 
the soil samples, the most abundant (> 5%) fungal 
taxa were Russula cyanoxantha, Russula vesca, Imle-
ria badia and an unassigned ASV in the order Atheli-
ales (supplementary table 8).

Discussion

The top canopy phyllosphere and bulk-soil bacterial 
and fungal communities of European beech and Nor-
way spruce trees in Bavarian Forest National Park 
showed distinct microbial communities, with little 
overlap. In line with our first hypothesis, tree spheres 
had a multitude stronger (2–7 times) influence 
than host-species on both the fungal and bacterial 

communities, respectively, indicating that the micro-
biome ‘worlds’ in the soil under a tree and in the 
leaves of the upper crown are detached in terms of 
community composition, both across tree species as 
well as within a host species.

Host identity effects were sphere and kingdom 
specific, with main differences between beech and 
spruce fungal communities in the phyllosphere. 
While the majority of taxa were rare and specialised 
in either the soil or top-canopy, the few taxa possess-
ing the capability to inhabit both spheres were rela-
tively abundant, as postulated in our second hypoth-
esis. Divergent microbial communities between 
plant spheres have been shown in a large variety of 
plant species (Fonseca-García et al. 2016; Yang et al. 
2022), including a limited number of studies on tem-
perate European natural forests (e.g. Beule et al. 2017; 
Coince et al. 2014; Haas et al. 2018; Lynikiene et al. 
2020; Schneider et al. 2021). Our study adds to this 
knowledge by providing a comprehensive represen-
tation of the microbial communities across multiple 
spheres of the same individual tall forest tree, reveal-
ing patterns in two environmental spheres and among 
two microbial kingdoms sampled from 86 trees dis-
tributed over 29 plots in one of the largest contiguous 
natural forest ecosystems in Central Europe (Křenová 
and Kiener 2013). By sampling the top-canopy and 
bulk soil, our study focusses on the two most extreme 
environmental spheres of the tree’s holobiont which 
have distinct functions in the forest ecosystem (Bul-
garelli et al. 2013).

Limited connectivity and sphere-specific community 
composition

The phyllosphere and soil are two unique ecological 
spheres that are linked by the same host plant (Van-
denkoornhuyse et al. 2015). The host plant and asso-
ciated microbial communities can be viewed as an 
holobiont in which the microbes play a central role 
in host biology, ecology, and evolution (Simon et al. 
2019). The host tree has been traditionally postulated 
to be an important constant in this assemblage, not 
only by physically connecting the different microbial 
components, but also by actively selecting and shap-
ing these communities by selective pressure via root 
exudates, secondary metabolites, and leaf chemical 
and topological properties (Bais et  al. 2006; Cesarz 
et  al. 2013; Karamanoli et  al. 2005). Our results, 
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however, indicate that the environmental sphere has 
a larger influence on tree-associated communities 
than host-selective pressures. Additionally, network 
analyses showed limited connectivity between the 
spheres, with only a fraction (6–12%) of associa-
tions detected across spheres. Concerning these few 

co-occurrences that span across spheres, it is improb-
able that they originated from direct interactions 
among microbiome species. Instead, they are more 
likely the outcome of indirect interactions facilitated 
through the host tree. Known examples of these indi-
rect interactions within host plants are the transfer of 
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[6] Dermateaceae [7] Erysiphaceae [8] Hyaloscyphaceae [9] Taphrinaceae [10] Amanitaceae [11] Boletaceae
[12] Clavulinaceae [13] Inocybaceae [14] Russulaceae [15] Thelephoraceae [16] Tylosporaceae

Bacterial family
[1] Acidobacteriaceae_(Subgroup_1) [2] Bryobacteraceae [3] Solibacteraceae [4] Subgroup_2 [5] Acidothermaceae
[6] Solirubrobacteraceae [7] Chi�nophagaceae [8] Hymenobacteraceae [9] Sphingobacteriaceae [10] Polyangiaceae
[11] Gemmataceae [12] Acetobacteraceae [13] Beijerinckiaceae [14] Caulobacteraceae [15] Sphingomonadaceae
[16] Xanthobacteraceae [17] Oxalobacteraceae [18] WD260 [19] Pedosphaeraceae

Fig. 7  Heat trees summarising differences in relative read 
abundance of bacterial (A-B) and fungal (C-D) taxa detected 
in soil and leaf samples over different taxonomic levels. Nodes 
highlighted in brown and green were significantly (p < 0.05) 
discriminant for the soil and leave compartments, respectively 
(based on Maaslin2 discriminant analyses). Colour intensity 

represent differences in Log2 ration median proportions of 
relative read abundances and node size represents total read 
count of the taxon. Abundant families (> 1% mean relative 
abundance) are highlighted. Full taxonomical key is provided 
in supplementary Figs.  3–4. Samples were rarefied to 15,000 
reads prior to analysis
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Fig. 8  Heatmaps of bacterial (A) and fungal (B) taxa identi-
fied in phyllosphere and soil samples in European beech and 
Norway spruce forest stands, showing variation in mean rela-
tive read abundance and prevalence (proportion of samples 

present) of abundant families (> 1% mean relative abundance). 
Family specificity was determined by Maaslin2 discriminant 
analyses and samples were rarefied to 15,000 reads prior to 
analysis
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genes, fluctuations in the host’s C-dynamics and the 
production of phytohormones (Chen et al. 2017; Liu 
et  al. 2017; Potthast et  al. 2022). The bacterial net-
work exhibited a substantial contribution of taxa from 
soil samples, both in terms of number of nodes and 
hub taxa, while their role in the fungal network was 
comparatively minor. A similar pattern was observed 
in the heat trees, with soil-specific taxa dominating 
the bacterial trees and leaf-specific taxa being most 
apparent in the fungal trees. The leaf-taxa dominated 
fungal networks also showed a 3.8 times higher mod-
ularity compared to the soil-taxa dominated bacte-
rial networks, indicating a higher subdivision of the 
network in different subcommunities which poten-
tially inhabit different niches within the phyllosphere 
(Abdelfattah et al. 2016; Herrmann et al. 2021). Soil 
environments provide temporally stable, highly nutri-
tious and micro-heterogenous habitats while the phyl-
losphere is characterised by oligotrophic habitats with 
harsher environmental conditions and large temporal 
variation (Kadowaki et al. 2014; Lindow and Brandl 
2003; Zhou et al. 2022). As a result of these sphere-
specific environmental influences, forest soil commu-
nities are driven by long-term and deterministic pro-
cesses, such as long-term forest stand conditions and 
micro-scale variation in soil conditions (especially 
pH) (Hannam et al. 2007; Rodríguez-Rodríguez et al. 
2023), while phyllosphere communities are largely 
influenced by host-identity (Laforest-Lapointe et  al. 
2016) and spatio-temporal variation in environmen-
tal and host variables such as climate and leaf senes-
cence (Coince et al. 2014; Flessa et al. 2012). Limited 
cross-colonization may also further the establishment 
of sphere-specific communities, especially in the case 
of large trees (i.e. some trees were 30 m + as sampled 
in our study, and average height was 24 m) in which 
the top canopy is located at large distance from the 
soil, and is characterized by extreme conditions com-
pared to the phyllosphere of shorter plants (Boden-
hausen et al. 2013; Herrmann et al. 2021; Unterseher 
et al. 2007).

The sphere-specific adaptations of the microbial 
communities are exemplified by a distinction in the 
functions associated with the main observed taxo-
nomic groups. The soil showed highly diverse com-
munities (Dukunde et al. 2019; Wilhelm et al. 2023; 
Wubet et  al. 2012), and the soil discriminant fungal 
taxa (e.g. Russulaceae, Elaphomycetaceae and Glo-
niaceae) were mainly ectomycorrhizal groups with 

known associations with a diversity of tree species 
(Castellano and Stephens 2017; Nacke et  al. 2016; 
Spatafora et  al. 2012). As indicated by our results, 
leaf communities showed a substantial lower bac-
terial alpha diversity (a factor 10 lower) and largely 
consisted of families which are well adapted to the 
phyllosphere. An example are the members of the 
bacterial family Hymenobacteraceae, which con-
tain carotenoid pigments that can provide protection 
against the high levels of UV radiation typical for the 
phyllosphere (Munoz et al. 2016; Vacher et al. 2016). 
The identified leaf discriminant fungal taxa predomi-
nantly belonged to the very diverse fungal orders 
Dothideomycetes and Leotiomycetes, which are 
common endophytes of temperate trees (Delhomme 
et  al. 2015; Lazarević et  al. 2022; Lynikiene et  al. 
2020; U’Ren et  al. 2012; Unterseher et  al. 2013), 
and encompass many plant pathogens, saprobes and 
extremotolerant species that are associated with a 
broad range of hosts (Hujslová et al. 2012; Ohm et al. 
2012; Zhang and Wang 2015).

Host-identity was more pronounced in the phyl-
losphere than the soil, both in terms of diversity 
and community composition. Within the soil, fun-
gal communities showed a sharper distinction 
between host tree species than bacterial commu-
nities, likely related to the symbiotic association 
of these ectomycorrhizal fungi with specific tree 
species (Urbanová et  al. 2015). Within the phyl-
losphere, the high diversity of fungi in coniferous 
trees is probably related to the longevity of needles 
compared to broadleaves, providing a more stable 
and longer-lived environment for the fungal com-
munity (i.e., filamentous ascomycete endophytes) 
to inoculate and reach a steady state (Abdelfattah 
et  al. 2016; Flessa et  al. 2012; Osono 2008). Nor-
way spruce trees also showed a higher connectivity 
(number of positive network edges) and proportion 
of shared bacterial taxa between the bulk-soil and 
leaf samples, compared to European beech trees. 
The latter could mainly be attributed to a higher 
proportion of soil taxa found in the phyllosphere 
(Supplementary Fig.  2). Coniferous forest soils 
are characterised by a low pH and high concen-
trations of difficult to digest components such as 
lignin (Achilles et al. 2021; Berg 2008). Coniferous 
soil microbial communities are, consequentially, 
dominated by acidophilic taxa and saprophytic 
species which show resistance to environmental 
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stressors such as drought and season (Nacke et  al. 
2016; Wilhelm et al. 2023), characteristics that may 
increase survival in the phyllosphere. Coniferous-
deciduous specific differences in multi-year versus 
single-year leaf fall (relating to host life history 
traits such as leaf age) may further be an especially 
relevant host-driven factor in the highly seasonal 
temperate forests sampled here which could influ-
ence host-specific connectivity between the phyl-
losphere and soil. This would include (i) increasing 
the rate of ‘seeding’ with bacteria and fungal taxa 
and spores from fallen leaves on the ground dur-
ing leaf senescence in deciduous forests (especially 
in autumn) and (ii) providing a stable environment 
over time for leaf communities to develop, mature 
and evolve in coniferous trees due to the longevity 
(multi-year duration) of needle leaves (Flessa et al. 
2012). Other relevant differences in host attributes 
may include leaf surface properties (e.g. leaf mor-
phology and area), the excretion of soluble carbo-
hydrates and (micro) nutrients, and the production 
of secondary metabolites and antibiotics (Boden-
hausen et al. 2014; Kembel et al. 2014; Lajoie et al. 
2020). Deciduous and coniferous trees also have 
distinct feedback loops between trees and the sur-
rounding soil through the formation of humus (mor, 
moder and mull) (Handley 1954); influencing soil 
fertility and properties (Nacke et  al. 2016; Ponge 
2013). These humus forms are characterised by dif-
ferent soil characteristics including pH, C:N ratio 
and nutrient composition, which in turn drive soil 
microbial community structure (Cesarz et al. 2013; 
Choma et  al. 2020; Dukunde et  al. 2019; Nacke 
et  al. 2016). The strong link to host identity might 
limit the dispersal of phyllosphere communities, 
increasing their sensitivity to habitat fragmentation 
(David et al. 2016; Helander et al. 2007). This is of 
less concern for bulk soil communities due to their 
weaker link between host and microbial phylogeny 
and the less discrete nature of the soil environment. 
Other soil-associated spheres as the rhizosphere 
may, though, be more sensitive to habitat fragmen-
tation due to their stronger relationship with the host 
(Bai et al. 2022). Overall, host identity can be con-
sidered as an important driver of microbial commu-
nities. Though less influential than the tree sphere 
habitat, host identity exhibits sphere-specific influ-
ences on the microbial communities impacting the 
fitness and evolution of the whole tree holobiont.

The characteristics of shared taxa in forest soil and 
phyllosphere communities

Taxa inhabiting both spheres were a major compo-
nent of both the phyllosphere and soil communities 
in terms of relative read abundance, especially con-
sidering that only a small subset of taxa were shared 
between the spheres. Even though most of these taxa 
showed sphere-specific preferences, the capabil-
ity to inhabit multiple spheres within the holobiont 
indicates a competitive advantage, which could be 
related the plant-beneficial/pathogenic capabili-
ties of these taxa. Taxa occurring in both spheres 
(supplementary table  5) shared characteristics of 
high habitat flexibility, allowing them to adapt to 
the divergent environment of both the soil and top-
canopy. They largely belonged to taxonomic groups 
with ecological phenotypic diversity and occurrence 
in a wide range of habitats (Bozoudi and Tsaltas 
2018; Heuchert et al. 2005; Kaur et al. 2017; White 
et al. 1996; Willems 2014). Many of these taxa are 
moreover capable of N-fixation or are in other ways 
involved in nutrient or carbon cycling, functions 
that can be either part of the microbe-plant sym-
biosis in the rhizosphere or provide a competitive 
advantage in the oligotrophic phyllosphere (Azcón-
Aguilar and Barea 2015; Kielak et  al. 2016; King 
and Weber 2007; Marín and Arahal 2014). Also 
adaptations such as the production of pigments can 
be beneficial in both spheres since these can reduce 
competition in the soil due to their anti-bacterial 
properties and provide protection against UV-radia-
tion in the canopy (Asaf et al. 2020; Pankratov and 
Dedysh 2010; Rashid et  al. 2014). Many of these 
sphere-overlapping taxa show a strong association 
with the host. The bacterial taxa Burkholderiaceae, 
Conexibacter and Sphingomonas have, for example, 
known plant-beneficial or plant-pathogenic capabili-
ties (some exhibit both functions based on contex-
tual factors) (Akinola et al. 2021; Asaf et al. 2020; 
Romero-Gutiérrez et al. 2020). Many of the overlap-
ping Ascomycota fungal taxa (e.g. Cladosporium 
and Aureobasidium pullulans), on the other hand, 
come from plant pathogenic families (Cooke 1959; 
Heuchert et  al. 2005). Remarkable was the inclu-
sion of several fruitbody forming basicomicetes 
(e.g. I. badia and R. cyanoxantha) in the group of 
overlapping taxa, which are typical arbuscular myc-
orrhizal soil-associated fungi (Luptáková and Mihál 



334 Plant Soil (2024) 496:319–340

1 3
Vol:. (1234567890)

2020). These taxa were possibly detected as dormant 
spores or carried by wind or vectors. Field observa-
tions and laboratory studies show that Blascomicota 
generally produce more and smaller spores than 
Ascomycota which can abundantly be detected in 
aerial samples, including samples collected above 
the canopy of trees (David et al. 2016; Elbert et al. 
2007; Womack et  al. 2015). As a more transient 
habitat, the phyllosphere may provide niches suit-
able for colonization species that easily spread (e.g., 
via small spores) or by r-strategists (Maignien et al. 
2014). These factors can also influence the variabil-
ity of phyllosphere communities, which are more 
sensitive to seasonal variation than soil (Coince 
et al. 2014; Dukunde et al. 2019; Gomes et al. 2018; 
Haas et  al. 2018). Sampling during multiple sea-
sons or years was, unfortunately, not possible dur-
ing this study. Samples were collected during one 
narrow two-month window during a leaf-on season, 
allowing us to generate a sufficient sample number 
to compare host species and connectivity, and mini-
mizing the impact of seasonal, leaf-phenological, 
and year-to-year alterations. Also, no distinction was 
made between leaf endophyte and epiphyte taxa for 
which there is some evidence they may form distinct 
communities with different environmental suscepti-
bilities (Bodenhausen et al. 2013). Phyllosphere and 
soil microbial communities are shaped by a combi-
nation of specific biotic and abiotic environmental 
constraints, plant genotype and phenotype, and plant 
selective pressures (Liu et  al. 2020; Llado et  al. 
2018). Taxa occurring in multiple spheres could 
provide insight in these processes and the evolution 
of the tree holobiont, since these taxa are strongly 
associated with the host tree while keeping the envi-
ronmental flexibility to survive in very dissimilar 
environments.

Conclusions

This paper confirms the primary influence of plant 
sphere for microbial communities within plant holo-
bionts, specifically in the case of tall temperate trees. 
While the number of taxa present across spheres was 
limited, they exert a disproportionate role in their 
communities in terms of relative abundance. These 
taxa generally exhibit specific ecological traits, 
such as ecological flexibility, growth-promotion, or 

pathogenic properties, which likely account for their 
dominance within the plant holobiont. Considering 
plants and their associated communities as an holo-
biont or “individual unit of selection” (Zilber-Rosen-
berg and Rosenberg 2008) may assist in linking these 
communities to ecosystem processes, but glazes over 
these differences in microbial community composi-
tion and function of the different spheres, especially 
between the soil and above ground components of 
plants. Consequentially, plant-microbiome co-evo-
lution likely vary across spheres, in which taxa with 
the capability to occupy multiple spheres may play a 
crucial role given their evident functional connection 
to the host’s fitness (e.g. nutrient cycling, plant-bene-
ficial or pathogenic traits). While this study provides 
a snapshot of the microbial composition at a single 
time point, it lays the groundwork for exploring tem-
poral changes and deeper monitoring in subsequent 
research. This study highlights the need to carefully 
assess multiple components of the tree microbiome 
and their connectivity to understand and assess the 
ecology of temperate forests since each component 
tells an unique story.
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