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Minimal Inhibitory Concentration (MIC) of metals 
was determined by the plate dilution method using 
 (CH3COO)2Pb and  ZnSO4 supplemented medium; 
antibiotic susceptibility was determined by disk dif-
fusion method according to EUCAST version 11.0; 
the whole genome sequencing was performed using 
the MiSeq platform (Illumina). The physicochemical 
properties of soil were evaluated according to Euro-
pean Standards.
Results Toxic metal-resistant bacteria were iso-
lated from the green parts of Armeria maritima. The 
endophytes were identified as Pseudomonas spp. The 
annotated bacterial genomes carried genes encod-
ing numerous metal ion transporters, metal reducing 
enzymes and efflux pump components. The bacteria 
were resistant to streptomycin, fosfomycin and ß-lac-
tams. Moreover, genome analysis revealed the pres-
ence of MacAB-TolC efflux pump genes conferring 
resistance to macrolides, the multidrug efflux pumps 
AcrAB-TolC and MexAB-OprM.
Conclusion Armeria maritima is inhabited by endo-
phytic bacteria identified as Pseudomonas species 
that are resistant to metals and to antibiotics. Under 
the One Health concept the contamination of soil and 
plants with ARB and ARGs should be monitored and 
limited and a regulatory framework for safety use of 
bacterial bioinoculants should be established.

Keywords Antibiotic resistance · Armeria 
maritima · Endophytes · Metallophytes · 
Pseudomonas

Abstract 
Background and aims Recent research has rec-
ognized the presence of metal-resistant bacteria in 
plants and their role in phytoremediation intensifica-
tion. However, information on the antibiotic resist-
ance profile of those bacteria remains scarce. This 
study, describes the first isolation of endophytic bac-
teria from green parts of Armeria maritima growing 
on mine-tailing soil in southern Poland, and presents 
the resistance profile of these microorganisms.
Methods Bacteria were isolated from internal 
tissues of Armeria maritima and characterized. 
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Introduction

Careless management of agricultural and industrial 
activities can result in serious contamination of soils 
by metals (He et al. 2015; Sharma et al. 2007; Walker 
et  al. 2003). If unchecked, this can pose significant 
risk to public health. Therefore, new biosafety and 
effective technologies intended to reduce such con-
tamination are needed. A commonly used technol-
ogy to remove metals from soil is phytoextraction: 
a phytoremediation method based on the applica-
tion of hyperaccumulating plants that can decrease 
metal level in contaminated areas (Kumar et  al. 
1995). Hyperaccumulators are capable of sequester-
ing extremely high levels of metals in their tissues. 
Although phytoextraction is an eco-friendly, low-cost 
method, it tends to have low efficiency because of 
slow growth of the plants and the low mobility and 
bioavailability of the metals in soil (Khan et al. 2000; 
Liu et al. 2020). Hence, recent years have seen grow-
ing interest in developing new phytoextraction effi-
ciency approaches.

Recently, one promising technology for enhanc-
ing phytoextraction based on the use of plant-growth 
promoting bacteria (PGPB) to increase plant biomass 
production and tolerance to metals has been approved 
(Ahemad 2015; Kong and Glick 2017; Silambarasan 
et al. 2020). These PGPB include rhizosphere micro-
organisms inhabiting plant roots (PGPR) and endo-
phytes inhabiting internal plant tissues without caus-
ing them any harm (PGPE). PGPB protect plants and 
promote their growth mainly by producing antibiot-
ics, and phytohormones, and by inducing the Induced 
Systemic Resistance (ISR) system of the plant; they 
also support the dissolution of mineral nutrients, 
such as phosphorus or potassium, and support iron 
chelation (Olanrewaju et  al. 2017; Gamalero and 
Glick 2011). PGPB can also stimulate metal uptake 
and bacteria resistance by various mechanisms, such 
as metal sorption (Kloepper et  al. 1980), enzymatic 
reduction (Glick 2012), oxidation or extracellular 
precipitation via active efflux pumping (Alves et  al. 
2022; Bargaz et al. 2018; Kong and Glick 2017). The 
most commonly used PGPB species are Azospirillum, 
Azotobacter, Bacillus, Burkholderia, Pseudomonas or 
Rhizobium (Alves et al. 2022).

The use of PGPB to enhance phytoremediation 
may well be a common biotechnology in the near 
future. Various strains of PGPB have been tested. 

Wu et al. (2018) confirmed that the endophytic strain 
Buttiauxella sp. SaSR13 significantly enhanced 
cadmium accumulation in Sedum alfredii. Inocula-
tion with this bacterium resulted in root elongation 
and, stimulated the secretion of organic acids and 
increased Cd uptake by S. alfredii compared to con-
trols during a seven-day pot experiment.

Endophyte assisted phytoremediation has also 
been studied in Sedum alfredii by Zhang et al. (2013). 
The findings indicate that the tested Burkholderia sp., 
Sphingomonas sp., and Variovorax sp. strains signifi-
cantly promoted Zn and Cd-extraction and had plant 
growth promoting properties. The experiment was 
conducted in pots for 60 days (Zhang et  al. 2013). 
Similarly, Wang et  al. (2023) revealed that inocula-
tion of Miscanthus floridulus with an endophytic 
strain Bacillus cereus BL4 significantly strengthen Cd 
phytoremediation.

Nowadays, PGPB are commonly used in agricul-
ture as bioinoculants. However, it is important to note 
that such PGPB may enhance the spread of antibiotic 
resistance genes (ARGs) in soil and plants because 
they themselves very often harbour ARGs (Chen 
et  al. 2019; Zhang et  al. 2020; Mahdi et  al. 2022). 
Furthermore, ARGs can be located on mobile genetic 
elements (MGE) and they can be easily transferred 
among indigenous soil bacteria by horizontal gene 
transfer (HGT) (Arber 2014; Forsberg et  al. 2012). 
This can represent a potential threat to public health 
because agricultural soil and agricultural plants act 
as huge reservoir and propagation hotspot of ARGs 
(Cadena et al. 2018; Tan et al. 2018; Forsberg et al. 
2012; Zhang et al. 2015). Plants and their associated 
bacteria can absorb ARGs from soil and threaten 
human health (Zhang et  al. 2011; Buchholz et  al. 
2011). Despite this, little research has been performed 
of the ARGs present in PGPB used in agriculture, and 
no description yet exists of the ARGs in endophytes 
inhabiting green parts of metallophytes.

It has been proposed that a regulatory frame-
work is needed for new bacterial-based biofertiliz-
ers (Mahdi et  al. 2022). This should include inter 
alia better characterization of new biofertilizers 
(genome mining) regarding their antibiotic resist-
ance (AR) profile, ARG content and ARG transfer 
potential. Moreover, multidrug resistant strains or 
human pathogens should be excluded. It has also 
been suggested that standard criteria, regulations 
and quality control procedures for biofertilizer 



59Plant Soil (2024) 495:57–76 

1 3
Vol.: (0123456789)

candidates should be established, so as to guarantee 
environmental and public health protection (Mahdi 
et al. 2022).

The present study describes the isolation and 
characterization of Armeria maritima subsp. hal-
leri (Wallr.) Rothm. endophytes. It demonstrates that 
isolated Pseudomonas spp. endophytes were resist-
ant to antibiotics and metal ions, and they harboured 
potential resistance genes. It also explores the possi-
ble resistance mechanisms present in the bacteria and 
attempts to explain the origin of the ARGs present in 
the isolated endophytes.

Materials and methods

Study site, sampling and soil physicochemical 
analysis

The studied area was located near the ZGH 
“Bolesław” mining and metallurgical plant 
in Bukowno village, in the south of Poland 
(50°16’40.7"N 19°28’13.8"E). ZGH “Bolesław” S.A. 
is a Polish company that has been operating since 
1955 in Bukowno village, near Olkusz. Today, it is a 
modern mining and metallurgical complex, the main 
producer of zinc in Poland and a supplier of zinc to 
neighboring countries, mainly the Czech Republic, 
Slovakia, Austria and Hungary. In this plant zinc and 
lead ores are extracted and processed to produce elec-
trolytic zinc, zinc alloys, sulfuric acid and zinc and 
lead concentrates.

Samples were taken during May 2015, during 
the flowering stage of the plants. The plant species 
selected for investigations was Armeria maritima 
subsp. halleri (Wallr.) Rothm. All collected plants 
were placed in polyethylene bags and transported to 
the laboratory in an ice cooler at 4 °C; all testing was 
performed within two days.

The total organic carbon, pH, calcium, magne-
sium, and metal content (Cr, Cu, Cd, Ni, Pb, Zn, 
Hg) were determined. Hg content was determined as 
described in DIN ISO 16,772. The other metals were 
tested according to the following: (ICP-OES/ICP-
MS) – DIN EN ISO 11,885/DIN EN ISO 17294-2. 
pH was determined according to DIN EN ISO 10,390 
and Total Organic Carbon (TOC) according to DIN 
EN ISO 15,936.

Isolation and purification of metal-tolerant bacteria

Any metal-tolerant endophytic bacteria were iso-
lated using the Luria Bertani agar (LB) medium 
supplemented with filter-sterilized soluble salts of 
lead  (CH3COO)2Pb  (Pb2+) or zinc  ZnSO4  (Zn2+) 
at a concentration of 20  mg/dm3. To isolate endo-
phytic bacteria, the green parts of plants were sepa-
rated and subjected to surface sterilization in sterile 
conditions under a laminar chamber (Goryluk et  al. 
2009). Before starting the procedure, the ends of the 
stem sections were secured against the inflow of steri-
lization agents. The first stage of sterilization was to 
rinse the plant fragments in 70% ethanol for about 
60 s; these were then transferred to 2% mercury (II) 
chloride solution for 10  s and rinsed three times in 
distilled water. After surface sterilization, the plant 
material was homogenized. The obtained homogen-
ates were diluted 10-fold and 100-fold, and 0.1  cm3 
aliquots were plated on culture media. All plates were 
incubated at 30° C for 24–48 h. In order to determine 
the dry weight of the tested plants, each homogen-
ate was poured onto a filter paper and weighed after 
complete drying. Based on these results, the numbers 
of colony forming units were then calculated per one 
gram of dry plant matter.

Individual bacterial colonies with different mor-
phological characteristics were randomly selected 
and streaked on the LB agar medium supplemented 
with metal salts until pure cultures were obtained. A 
total of 100 bacterial isolates were selected for further 
studies and stored in 20% glycerol stock at -80 ºC.

Characterization of metal-tolerant bacteria

Identification

The morphological features of bacterial isolates 
(Gram staining) were recorded using light micros-
copy. Following this, biochemical analyses were per-
formed, involved to determined oxydase and catalase 
activity, gelatin hydrolysis, citrate utilization, glucose 
fermentation and urease and fluoresceine production. 
All tests were prepared according to Bergey’s Manual 
of Systematic Bacteriology and isolates were identi-
fied to genus level (Bergey 1994).

Five out of 100 Gram-negative bacterial isolates 
with different morphologies were selected for further 
analysis. To identify the species, isolates were plated 
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on LB agar and MALDI-TOF MS analysis was con-
ducted by a commercial service (ALAB laboratory, 
Warsaw Poland). The standard Bruker interpretative 
criteria were applied. A score > 2.300 was used for 
certain species identification (Suppl. Tab. S1).

The toxic metal MIC assay

The Minimum Inhibitory Concentration (MIC) val-
ues were determined by the plate dilution method as 
adopted by Malik and Jaiswal (2000) with modifica-
tions. Luria Bertani LB medium supplemented with 
filter-sterilized soluble salts of  (CH3COO)2Pb  (Pb2+) 
and  ZnSO4  (Zn2+) was used. The starting concentra-
tion for each metal was 10 mM. The inoculation was 
performed using 0.1 ml of bacterial suspension with 
a density of  106 CFU/ml. The MIC was taken as the 
lowest metal concentration that prevented the growth 
of the bacteria (Haroun et  al.  2017). In this experi-
ment E. coli 1655 strain was used as control (Spain 
and Alm 2003).

The antibiotic susceptibility test

Antibiotic susceptibility was determined by the disk 
diffusion method according to the European Commit-
tee on Antimicrobial Susceptibility Testing EUCAST 
version 11.0, valid from 2023-01-01. All 13 antibiot-
ics recommended for Pseudomonas spp. were tested. 
Two additional antibiotics not included in EUCAST 
breakpoints were tested, viz. fosfomycin (50  µg) 
and streptomycin (25  µg), based on the presence of 
resistance genes detected by genome sequencing (see 
below). The diameter of bacterial growth inhibition 
zone around each of the antibiotic discs was inter-
preted according to the EUCAST criteria for Pseu-
domonas spp. If the antibiotic was not included in the 
standard, then a lack of any inhibition zone was inter-
preted as no susceptibility to the given antibiotic.

Isolation of resistance genes

The genomic DNA of the selected bacterial isolates 
was extracted according to Kpoda et  al. (2018), and 
then stored at -20  °C for subsequent use. The genes 
coding for the efflux pump were identified using PCR 
amplification, while bla genes were isolated using 
multiplex PCR.

The efflux pump genes mexA and mex B of the 
Mex AB-OprM pump were amplified by PCR as 
described by Ugwuanyi et  al. (2021). MexD, mexF 
and mexY genes of the MexCD-OprJ, MexEF-OprN, 
MexXY-OprM efflux pumps were amplified accord-
ing to Poonsuk and Chuanchuen (2014). In addition, 
the czcA and czcR genes encoding components of 
the CzcCBA efflux pump were amplified using prim-
ers proposed by Perron et  al. (2004). The types of 
ß-lactamase coding genes present were determined 
by multiplex PCR (Colom et  al. 2003; Dallenne 
et  al. 2010; Piotrowska et  al. 2019). Four multiplex 
PCR assays were performed for the detection of bla 
genes: blaTEM, blaSHV and blaOXA genes (Multiplex 
I); blaCTXM genes (Multiplex II); blaVER, blaPES and 
blaGES genes (Multiplex III) and blaKPC, blaIMP and 
blaVIM genes (Multiplex IV).

All the PCR amplicons were gel-purified (Gel-Out 
kit, AA Biotechnology) and submitted for sequenc-
ing by a commercial service (Institute of Biochem-
istry and Biophysics, Polish Academy of Sciences) 
using ABI 3730 Genetic Analyzer, Applied Biosys-
tems (BigDye v3.1 sequencing chemistry). Sequences 
of obtained gene fragments were searched against 
the National Center of Biotechnology Information 
(NCBI) using a local BLASTX program. A gene was 
designated as a resistanc gene if it shared at least 98% 
identity with other resistance gene in the database.

The whole genome sequencing and bioinformatic 
analysis

Genomic DNA from five selected bacteria was 
extracted using a Genomic Mini® kit (A&A Bio-
technology) as described by the manufacturer. 
DNA concentration and quality were checked with 
the  QubitTMfluorometer (Invitrogen) and bacterial 
genomes were sequenced by a commercial service 
(Institute of Biochemistry and Biophysics, Polish 
Academy of Sciences).

The whole genome sequencing WGS was per-
formed on MiSeq platform (Illumina) with 300  bp 
paired-end reads (Supp. Tab. S4). Only high quality 
reads after filtering using fastp (https:// github. com/ 
OpenG ene/ fast) were taken for assembly step. The 
Unicycler version 0.4.8 assembly method was used. 
This Whole Genome Shotgun BioProject was depos-
ited at DDBJ/ENA/GenBank under the accession 
number PRJNA886618.

https://github.com/OpenGene/fast
https://github.com/OpenGene/fast
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Phylogenetic affiliation analysis

The genome sequences of each strain were uploaded 
to the Type Strain Genome Server (TYGS), i.e. a 
bioinformatic platform for digital, highly-reliable 
estimation of the relatedness of genomes based on 
DNA-DNA hybridization (DDH) (available at the 
website: http:// tygs. dsmz. de) (Meier-Kolthoff et  al. 
2013). Additionally, a phylogenetic tree was con-
structed based on the RNA polymerase sigma fac-
tor RpoD (rpoD) gene (Banasiewicz et  al. 2021; 
Girard et  al. 2020). Briefly, 37 environmental-type 
Pseudomonas spp. strain rpoD genes were uploaded 
from the NCBI database (accession numbers listed 
in Supp. Table  2). The rpoD sequences (650  bp) 
were aligned using Clustal W software. The mul-
tiple sequence alignments were then used to create 
phylogenetic trees by the Neighbor Joining method 
with complete deletion of gaps, implemented in 
MEGA7 software (Kumar et  al. 2016; Saitou and 
Nei 1987; Tamura et  al. 2004). The evolution-
ary distances between sequences were computed 
using the Maximum Composite Likelihood method 
(Tamura et al. 2004), represented as the units of the 
number of base substitutions per site. The tree itself 
was drawn to scale, with branch lengths given in the 
same units as those of the evolutionary distances 
used to infer the phylogenetic tree.

Resistance genes screening

Genomes were annotated in the Rapid Annotation 
using Subsystem Technology (RAST) server (avail-
able at the website: http:// rast. nmpdr. org) (Brettin 
et  al. 2015). The annotation process enables the 
prediction of protein-coding genes, like ARG and 
HMRG, as well as other important elements, like 
direct and inverted repeats, insertion sequences, 
transposons and plasmids. ARGs were predicted 
using the Resistance Gene Identifier (RGI) appli-
cation, available at the Comprehensive Antibiotic 
Resistance Database (CARD) (available at the web-
site: http:// card. mcmas ter. ca/ analy zer/ rgi). In addi-
tion, Antibacterial Biocide and Metal Resistance 
genes Database (BacMet) was used to find resist-
ance genes (Pal et al. 2014; available at the website: 
http:// bacmet. biome dicine. gu. se). Finally, manual 
annotation was performed.

BLASTX analysis

The obtained gene fragments were searched against 
the National Center of Biotechnology Information 
(NCBI) using a local BLASTX program. A gene 
was designated as an ARG or MRG if it shared at 
least 98% identity with the best hit in the database.

Results

Physico-chemical properties of soil

At the test site, the total concentrations of Pb and Zn 
were 1100 mg/kg soil and 3620 mg/kg soil, respec-
tively (Table  1). Hence, the tested soil was classi-
fied as highly contaminated (Trafas et al. 2006).

Biochemical characterization of metal tolerant 
bacteria

The mean total count of metal-tolerant bacteria 
isolated from A. maritima endosphere varied from 
5.73 log CFU/g of plant material on lead supple-
mented medium to 5.46 log CFU/g on the zinc sup-
plemented material. All 100 isolates selected for 
further studies were Gram-negative, catalase posi-
tive and glucose fermentation negative. Some dif-
ferences in urease and fluoresceine production were 
noted between selected isolates (Table  2). Accord-
ing to Bergey’s Manual of Determinative Bacteri-
ology, the isolates were identified as Pseudomonas 
spp. MALDI-TOF-MS analysis failed to identify the 
isolates down to the species level (Supp. Tab. S1).

The antibiotic susceptibility test, performed 
according to EUCAST, revealed different resistance 
profiles among selected isolates (Table  3, Supp. 
Tab. S3). All of the isolates were resistant to aztre-
onam (ATM), and meropenem (MEM) while four 
out of five isolates were resistant to ceftazidime 
(CAZ), cefepime (FEP) and streptomycin (S). Only 
two isolates showed resistance to imipenem (IPM). 
Regarding metal resistance, three isolates dem-
onstrated a maximum MIC of 60 mM for Pb (II) 
(AM4, AM8, AM14) and one isolate a maximum 
MIC of 220 mM for Zn (II) (AM14; Table 3). The 

http://tygs.dsmz.de
http://rast.nmpdr.org
http://card.mcmaster.ca/analyzer/rgi
http://bacmet.biomedicine.gu.se
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lowest MIC (30 mM) was observed for isolate Z18, 
for both metals tested.

Resistance determinants detection

The tested bacteria were screened for genes encod-
ing multidrug efflux pumps known to be common in 
various Pseudomonas strains, such as the Resistance 
Nodulation Cell Division family pump genes (RND). 
However, none of the Mex-type pumps genes were 
detected and only one of two tested CzcCBA system 
genes were detected in any tested strain. The PCR 
amplicons of the czcR gene were shorter (315  bp) 
than the expected czcR gene (880  bp) and sequence 
analysis did not confirm membership of any known 
resistance gene.

Regarding antibiotic resistance multiplex PCR 
amplify any selected variants of the bla genes.

Genome characterization of endophytic Pseudomonas 
sp. strains

Multidrug-resistant endophytic Pseudomonas 
sp. strains were sequenced on Illumina platform 
(AM4, AM8, AM14, Z13, Z18). The draft whole 
genome sequence length varied from 6.1  Mb to 
7.4  Mb (Table  4, Supp. Tab. S4). Mean G + C con-
tent ranged from 60 to 61%. Annotation performed 
using RAST server predicted between 5,700 and 
7,059 coding sequences. The analysis revealed the 
presence of between 374 subsystems with 65 RNA 
genes and 395 subsystems with 63 RNA genes. 
The entire Genome Shotgun project was depos-
ited at DDBJ/ENA/GenBank under the following 
accessions: SAMN31135831, SAMN31136163, 
SAMN31136268, SAMN31137609, SAMN31137624 
(Table 4). The version described in this paper is the 
first version of the WGS project.

A whole-genome based taxonomic analy-
sis based on DNA-DNA hybridization (in TYGS) 
found that isolate AM8 shared high homology 
with Pseudomonas marginalis species (dDDH 
above 80%; Supp. Tab.  S5). In addition, the spe-
cies demonstrating the greatest homology to the 
rest of the tested bacteria were, as follows: P. para-
carnis (strain AM4, dDDH = 78.6%); P. koreensis 
(AM14, dDDH = 78.7%) and P. yamanorum (Z13, 
dDDH = 72.2%; Z18, dDDH = 70.7%) (Supp. Tab. 
S5). The rpoD phylogeny confirmed the species Ta
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identification of three isolates, viz. AM4, Z13, and 
Z18; however, the species of AM8 and AM14 remain 
unclear (Fig. 1).

Prediction of metal resistance genes

The annotated draft genomes confirmed the presence 
of genes conferring resistance to arsenic, cadmium, 
chromium, cobalt, copper, lead, tellurium and zinc 
(Table  5). All tested endophytic bacteria genomes 
demonstrated different ars, cus and teh genes. 

Moreover, all the genomes carried copC, copD, copG 
and cueO. The Pseudomonas sp. AM8 genome lacked 
the cadA, cadR and czcD genes. The czcB, czcR and 
czcS genes were absent from the P. paracarnis AM4 
and Pseudomonas sp. AM14 genomes, while chrA 
and copB genes were not detected in P. yamanorum 
species (Z13, Z18).

The detected genes encode components of vari-
ous metal resistance mechanisms (Table  6). Gene 
arsB encodes an inner membrane polypeptide of 
the ArsAB efflux pump. ArsB confer resistance 

Table 2  Biochemical characteristics of endophytic metal-tolerant bacteria (positive result +, negative result -)

Isolate Biochemical characteristics

Gram-staining Oxidase Catalase Glucose fer-
mentation

Gelatin lique-
faciens

Citrate 
utilization

Urease Fluo-
resceine 
production

AM4 negative + + - + + + -
AM8 negative + + - + + + -
AM14 negative + + - + + + +
Z13 negative + + - + + + -
Z18 negative + + - + + - +

Table 3  Antibiotic 
resistance profile and 
metal minimum inhibitory 
concentration (MIC) of 
endophytic bacteria isolated 
from Armeria maritima (R- 
resistant, S- sensitive) 

Isolate Antibiotic resistance profile MIC
(mM of metal 
ions)

ATM CAZ FEP IPM MEM S Pb (II) Zn (II)

AM4 R R R R R R 60 160
AM8 R R R S R R 60 160
AM14 R R R R R S 60 220
Z13 R S S S R R 30 40
Z18 R R R S R R 30 30
E.coli 1655 5 1

Table 4  General features for Pseudomonas spp. strain draft genomes

Isolate GenBank accession no. Genome size (bp) No. of contigs No. of coding 
sequences

G + C con-
tent (%)

No. of sub-
systems

No. of 
RNAs 
genes

AM4 SAMN31135831 6,189,201 119 5,700 60.0 374 65
AM8 SAMN31136163 7,381,324 64 6,953 60.4 391 65
AM14 SAMN31136268 6,182,403 54 5,713 60.3 375 67
Z13 SAMN31137609 7,401,235 160 7,059 60.1 395 63
Z18 SAMN31137624 7,381,527 121 6,785 61.0 394 62
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to As(III) and it provides sufficient arsenic resist-
ance, even if the bacterium lacks ArsA (Bhattacha-
rjee and Rosen 2007). Gene arsC encodes arsenate 
reductase, which reduces As(V) to As(III), and gene 
arsR encodes transcriptional regulator of the ars 
operon. Moreover, the arsH gene encodes a prod-
uct that strengthens bacterial resistance to arsenate 

and arsenite; however, its function remains unclear 
(Rosen 2002).

Metal-translocating P-type ATPase genes, such 
as cadA, were present in the genomes of Armeria 
maritima endophytes. The CadA protein catalyzes 
the active efflux of zinc, cadmium and lead ions 
(Rossbach et  al. 2000). Additionally, genes coding 

Fig. 1  Neighbor-Joining 
phylogeny of rpoD partial 
gene sequences (650 bp), 
comprising type strains of 
30 Pseudomonas species 
and 5 unknown Pseu-
domonas spp. (AM4, AM8, 
AM14, Z13, Z18). Escheri-
chia coli ATCC11775 was 
used as an outgroup. The 
optimal tree with a sum of 
branch length = 1.73015111 
is shown. The analysis 
involved 43 nucleo-
tide sequences. Codon 
positions included were 
1st + 2nd + 3rd + Noncod-
ing. All positions contain-
ing gaps and missing data 
were eliminated. There 
were a total of 617 positions 
in the final dataset
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transcriptional regulators were detected in our stud-
ies, like cadC and cadR. Other P-type ATPase genes 
conferring resistance to copper were detected, such 
as copB, copC, copD and copG genes, which encode 
periplasmic proteins that bind and/or transport Cu 
ions. Genes confering other copper resistance mecha-
nisms were also observed, such as cueO encoding 
multicopper oxidase, and the cusR and cusS genes 
encoding regulatory proteins of the CusCFBA sys-
tem, involved in periplasmic copper detoxification. 
CusS is a sensor histidine kinase while CusR is a reg-
ulatory protein (Nies 1999).

Another resistance mechanism detected in bacteria 
was the chemiosmotic pump protein ChrA, a mem-
brane transporter protein responsible for the efflux 
of chromium out of the cell cytoplasm. It is encoded 
by the chromium resistance gene chrA (Branco et al. 
2008).

The CzcCBA system functions as a cation-proton 
antiporter by transferring  Cd2+,  Co2+ and  Zn2+ ions 
out from the bacterial cell (Wang et  al. 2017). The 
czcD gene encodes cation diffusion facilitator trans-
porter CzcD, while czcB encodes one of the Czc-
CBA efflux transporter system as genes czcR and czcS 
encode the two-component regulatory system CzcRS. 
Those genes form part of the Czc system, comprising 
the CzcCBA transporter lying across the inner and 
outer membrane, regulated by the CzcRS two-compo-
nent system, and the CzcD cation diffusion facilitator 
protein (CDF).

Additionally, the cusR and cusS genes encoding 
regulatory proteins of the CusCFBA system involved 
in periplasmic copper detoxification were detected. 
CusS is a sensor histidine kinase while CusR is a 
regulatory protein (Bondarczuk and Piotrowska-Seget 
2013). The proteins of the CusCFBA efflux pump, 

Table 5  Putative metal 
resistance genes detected 
in tested Pseudomonas sp. 
genomes (positive result +, 
negative result -)

Metal resist-
ance gene

Bacterial strains

P. paracarnis 
AM4

Pseudomonas 
sp. AM8

Pseudomonas sp. 
AM14

P. yamanorum 
Z13

P. 
yamano-
rum Z18

arsB + + + + +
arsC + + + + +
arsH + + + + +
arsR + + + + +
cadA + - + + +
cadC + + + + +
cadR + - + + +
chrA + + + - -
copB + + + - -
copC + + + + +
copD + + + + +
copG + + + + +
cueO + + + + +
cusA + + + + +
cusB + + + + +
cusR + + + + +
cusS + + + + +
czcB - + - + +
czcD + - + + +
czcR - + - + +
czcS - + - + +
tehA + + + + +
tehB + + + + +
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CusA and CusB, were also detected (Bondarczuk and 
Piotrowska-Seget 2013).

Finally, the tehA and tehB genes, which may con-
ferr resistance to tellurium, were detected. TehA 
encodes an internal membrane protein, while tehB 
encodes the membrane associated protein (Turner 
et al. 1995).

Prediction of antibiotic resistance genes

Tested Pseudomonas genomes carried genes con-
ferring different antibiotic resistance mechanisms 
(Table  7). All five tested genomes contained genes 

believed to encode components of efflux pumps, such 
as: acrA, acrB, macA, macB, mexT, pmpM, lysR, 
soxR, tolC. All sequenced genomes were found to 
contain genes encoding components of the antibi-
otic inactivation system, such as ampC, ampR, and 
those coding for MBL (metallo-ß-lactamase encoding 
gene) and the GNAT enzyme family. In addition, all 
tested genomes demonstrated point mutations in the 
gyrA and gyrB gene. The Pseudomonas yamanorum 
genomes lacked fosA and oprM genes, while those of 
the rest of the tested Pseudomonas spp. lacked oprN. 
The presence of genes believed to encode compo-
nents of various Mex pumps varied among the tested 

Table 6  Characterization of selected metal resistance genes

Detected gene Gene product Function Resistance mechanisms Toxic metal removed

arsB Membrane protein Metal efflux transport ArsAB RND-type efflux 
pump

As(III)
arsR Transcription factor Regulation of the ars operon 

expression
arsC Cytoplasm protein Arsenate reduction ArsC system As(V)
arsH Arsenical resistance protein Still not clear Still not clear As(III)
cadA Membrane protein Cation transport out of the 

cell
P-type ATPase Cd(II), Pb(II), Zn(II)

cadC Transcription factor Regulation of the cadA gene 
expressioncadR Transcription factor

chrA Membrane protein Metal efflux transport ChrA pump Cr(VI)
copB Membrane protein Cation transport out of the 

cell
P-type ATPase Cu(I)

copC Periplasmic protein Cu ions bind or transport
copD Periplasmic protein Cu ions bind or transport
copG Periplasmic protein Cu ions bind or transport
cueO Periplasmic protein Multicopper oxidase Cue system Cu(I)
cusA Membrane protein Cation transport CusCFBA RND-type efflux 

pump
Cu(I)

cusB Periplasmic protein Cation transport
cusR Cytoplasmic protein Regulation of the cusCFBA 

operon expression
cusS Membrane protein Regulation of the cusCFBA 

operon expression
czcB Membrane fusion protein Divalent ion transport across 

the inner and outer mem-
branes

CzcCBA RND-type efflux 
pump

Co(II)/Zn(II)/
Cd(II)

czcR Transcription factor Regulation of the czcCBA 
operon expression

czcS Transcription factor Regulation of the czcCBA 
operon expresion

czcD Cytoplasmic protein Cation diffusion facilitator 
transporter

CDF protein family trans-
porter

tehA Integral membrane protein Cation transport TehAB system Te(IV)
tehB Membrane-associated protein Cation transport
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Pseudomonas strains (Table 7). The following genes 
were detected: mexA, mexB, mexE, mexH, mexI and 
mexX.

Genes coding the components of three antibiotic 
resistance mechanism types, viz. antibiotic inac-
tivation, antibiotic target alteration and antibiotic 
efflux pumps, were identified in the tested genomes 
(Table 8). Five genes responsible for antibiotic inac-
tivation were found in the tested genomes. Metallo-
ß-lactamase genes (MBL), ampC and ampR genes 
confer resistance to ß-lactam antibiotics. Resistance 
to ß-lactams is largely mediated by enzymes called 
ß-lactamases encoded by bla genes. These enzymes 
are divided into four classes (A, B, C, D) and form 
two groups: metallo-ß-lactamases (MBL) and ser-
ine ß-lactamases. Metallo-ß-lactamases belong to 
Class B. Class B is divided in three subclasses: 

chromosomally-encoded genes of B2 or B3 sub-
classes, and MGE-encoded genes of the B1 subclass 
(Behzadi et al. 2020). In the present study, all tested 
genomes contained bla genes (Table  7). This result 
was consistent with the antibiotic resistance pro-
file, as the tested bacteria were resistant to ß-lactam 
antibiotics (Table 3). A comparison of the sequences 
of identified genes with some other bla genes in the 
NCBI database confirmed that they coded for met-
allo-ß-lactamases. There is therefore a high probabil-
ity that the bla genes belong to the chromosomally-
encoded B2 or B3 subclass ß-lactamases.

Another antibiotic inactivation gene detected in 
the tested genomes was fosA. FosA encodes the FosA 
protein, and is the most common fosfomycin resist-
ance mechanism in Gram-negative bacteria. FosA is 
a  Mn2+,  K+ dependent metalloenzyme that catalyzes 

Table 7  Putative antibiotic 
resistance genes detected 
in tested Pseudomonas sp. 
genomes (positive result +, 
negative result -)

Antibiotic resistance gene Bacterial strains

P. 
paracarnis 
AM4

Pseu-
domonas sp. 
AM8

Pseudomonas 
sp. AM14

P. yamano-
rum Z13

P. 
yamano-
rum Z18

acrA + + + + +
acrB + + + + +
ampC + + + + +
ampR + + + + +
fosA + + + - -
GNAT family gene + + + + +
gyrA + + + + +
gyrB + + + + +
lysR + + + + +
macA + + + + +
macB + + + + +
MBL + + + + +
mexA + - - - -
mexB + - - - -
mexE + + + - +
mexH - + - + +
mexI - + + - -
mexT + + + + +
mexX + + - + +
norM + + + + +
oprM + + + - -
oprN - - - + +
pmpM + + + + +
soxR + + + + +
tolC + + + + +
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Table 8  Characterization of selected antibiotic resistance genes

Detected gene Gene product Function Resistance mechanisms Antibiotics removed

acrA Periplasmic membrane 
fusion protein

Component of the 
AcrAB-TolC pump

RND family
efflux pump

Tetracyclines, rifamycin, 
fluoroquinolones, cephalo-
sporins, phenicols,penams, 
glycylcycline

acrB Membrane protein Component of the 
AcrAB-TolC pump

RND family
efflux pump

ampC ß-lactamases Hydrolysis of the ß-lac-
tam ring in antibiotic 
molecule

Antibiotic inactivation Cephalosporins, penams

ampR Transcription activator Positive regulation of 
ampC gene expression

Antibiotic inactivation

MBL Metallo-ß-lactamases Hydrolysis of the ß-lac-
tam ring in antibiotic 
molecule

Antibiotic inactivation β-lactams

fosA FosA protein that is glu-
tathione transferase

Addition of glutathione 
to antibiotic

Antibiotic inactivation Fosfomycins

gyrA Subunit A of the DNA 
gyrase

Point mutation in gyrA Antibiotic target altera-
tion

Fluoroquinolones

gyrB Subunit B of the DNA 
gyrase

Point mutation in gyrB Antibiotic target altera-
tion

GNAT family gene N-acetyltransferase Acetylation of aminogly-
coside antibiotic

Antibiotic inactivation Aminoglycosides

lysR Transcription regulator 
LysR

Positive regulation of 
efflux pump gene 
expression

RND family efflux pump Tetracyclines, fluoroquinolo-
nes

macA Periplasmic membrane 
fusion protein MacA

Component of the 
MacAB-TolC pump

ABC family
efflux pump

Macrolides

macB ATP-binding cassette 
transporter

Export of macrolides ABC family
efflux pump

Macrolides

pmpM Transmembrane protein H+ driven antiporter MATE family
efflux pump

Aminoglycosides,
Fluoroquinolones

soxR Redox-sensitive tran-
scriptional activator 
SoxR

Positive regulation of 
efflux pump gene 
expression

RND family
MFS family
ABC family
efflux pumps

Tetracyclines, rifamycin, 
fluoroquinolones, cephalo-
sporins, phenicols,penams, 
glycylcycline

tolC Type I secretion outer 
membrane protein 
TolC

Component of efflux 
pumps

RND family
MFS family
ABC family
efflux pumps

mexA Membrane fusion protein Component of the 
MexAB-OprM

efflux pumps

RND family efflux pump Peptide antibiot-
ics, sulfonamides, 
cephalosporins,cephamycins

monobactams, carbapenems, 
macrolides, penams, pheni-
cols, tetracyclines, penems, 
fluoroquinolones

mexB Inner membrane trans-
porter

Component of the 
MexAB-OprM

efflux pumps

RND family efflux pump

mexH Membrane fusion protein Component of the 
MexGHI-OmpM efflux 
pump

RND family efflux pump Fluoroquinolones, tetracy-
clines

mexI Inner membrane trans-
porter

Component of the 
MexGHI-OmpM efflux 
pump

RND family efflux pump
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the addition of glutathione to fosfomycin, thus result-
ing in antibiotic inactivation. In the tested genomes, 
the fosA gene was detected in Pseudomonas spp. 
AM4, AM8 and AM14 strains (Table  7). These 
results were in accordance with antibiotic resist-
ance profile, as these three strains demonstrated a 
much narrower inhibition zone around the antibiotic 
disk (< 22  mm) compared to the other two strains 
(> 40 mm) (Supp. Table 3).

Finally, the GNAT-family gene was detected in 
tested genomes The gene encodes GCN5-related 
N-acetyltransferase (GNAT) responsible for acetyla-
tion and inactivation of aminoglycoside antibiotics 
(Burckhardt and Escalante-Semerena 2019).

Two genes responsible for antibiotic target altera-
tion, gyrA and gyrB, were detected in all tested 
strains. Antibiotic target alteration is driven by single 
point mutations in gyrA and gyrB, which reduce the 
affinity between an antibiotic and its target. This is a 
very common mechanism of fluoroquinolone resist-
ance detected in Gram-negative bacteria. Mutations 
in quinolone-resistance determining regions, such 
as gyrA or gyrB in DNA gyrase, are chromosomally 
encoded. Research indicates that high-level resistance 
to fluoroquinolones requires mutations in at least two 
genes with quinolone-resistance determining regions 

(Zhang et  al. 2015). In the present study, all tested 
genomes contained single point mutations in the gyrA 
and gyrB genes. Our phenotypic antibiotic suscep-
tibility test found the inhibition zone around fluoro-
quinolones (CIP, LEV) to be narrower for all strains 
(< 30  mm) than the susceptibility zone defined by 
EUCAST (> 50 mm) (Supp. Tab. S3).

The tested Pseudomonas genomes were found to 
encode numerous efflux pump components and regu-
latory protein genes. They included all genes of three 
efflux pumps, viz. MacAB-TolC, AcrAB-TolC and 
MexAB-OprM. Moreover, genes encoding compo-
nents of other efflux pumps were detected: mexE and 
oprN of the MexEF-OprN pump, mexX and oprM 
of the MexXY-OprM pump, mexH and mexI of the 
MexGHI-OpmM pump.

The redox-sensitive protein SoxR is a global regu-
lator of various efflux pump genes. It belongs to the 
MerR-family transcriptional regulators and it is com-
mon among both Gram-negative and Gram-positive 
bacteria. In enteric bacteria, SoxR mediates resist-
ance to oxidative stress caused by nitric oxide or 
superoxide, and induces the expression of the soxS 
gene. SoxS activates the transcription of more than 
100 genes encoding products that repair cellular dam-
age. In nonenteric bacteria like Pseudomonas spp., 

Table 8  (continued)

Detected gene Gene product Function Resistance mechanisms Antibiotics removed

mexT LysR-type transcriptional 
activator

Positive regulation of 
MexEF-OprN, OprD, 
MexS pump genes 
expression

RND family efflux pump Fluoroquinolones,
phenicols

mexX Membrane fusion protein Component of the 
MexXY-OmpM efflux 
pump

RND family efflux pump Aminoglycosides, 
fluoroquinolones,phenicols, 
macrolides, carbapenems, 
tetracyclines, penams, cepha-
losporins, cephamycins

mexE Membrane fusion protein Component of the 
MexEF-OprN efflux 
pumps

RND family
Efflux pump

Fluoroquinolones,
phenicols

oprM Outer membrane protein Component of RND 
efflux pumps

RND family
Efflux pump

Aminoglycosides, peptide 
antibiotics, sulfonamides, 
cephalosporins,cephamycins

monobactams, carbapenems, 
macrolides, penams, pheni-
cols, tetracyclines, penems, 
fluoroquinolones

oprN Outer membrane protein Component of the 
MexEF-OprN pump

RND family
efflux pump

Phenicols, fluoroquinolones
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SoxR directly activates the transcription of several 
multidrug efflux pump genes known to confer resist-
ance to antibiotics (Park et al. 2006).

Discussion

Since the beginning of the XXI century, endophytes 
inhabiting metallophytic plants have gained increas-
ing attention (El-Deeb et  al. 2006; Idris et  al. 2004; 
Stepanauskas et  al. 2005; Ma et  al. 2015); indeed, 
by the end of 2022, about 25 metallophytic plants 
had been tested for bacterial endophytes (Alves et al. 
2022; Goryluk-Salmonowicz and Popowska 2019). 
All tested plants were found to harbor such endo-
phytes, and all bacteria were resistant to high metal 
concentrations (He et al. 2013; Idris et al. 2004; Ma 
et al. 2015). Therefore, it was proposed that all met-
allophytic plants harbor endophytes resistant to met-
als. Even so, the presence and origin of ARGs in the 
bacteria, and their antibiotic resistance mechanisms, 
remain unclear. Seeing that endophytes isolated from 
hyperaccumulators have recently been used as benefi-
cial biofertilizers, it is important to monitor the pres-
ence of ARGs in the genomes to prevent uncontrolled 
spread of ARGs in the environment.

Several studies have found endophytes inhabiting 
metallophytes to demonstrate antibiotic resistance. In 
2005, Pseudomonas fluorescens and Microbacterium 
sp. endophytes isolated from Brassica napus (Step-
anauskas et al. 2005) were found to be resistant to the 
antibiotics ampicilin, kanamycin and spectinomycin. 
In 2006, Enterobacter sp. endophytes resistant to 
ampicilin, kanamycin and tetracycline were isolated 
from Eichhornia crassipes (El-Deeb et  al. 2006), 
while in 2015, a Stenotrophomonas sp. strain inhab-
iting Sedum plumbizincicola resistant to ampicilin, 
kanamycin and chloramphenicol was detected (Ma 
et al. 2015). While all these bacteria were found to be 
resistant to lead, zinc and cadmium, their antibiotic 
resistance genes were not researched.

In the present study, Pseudomonas spp. endophytes 
were isolated from the green parts of the hyperaccu-
mulator plant Armeria maritima. The bacteria were 
resistant to ß-lactam antibiotics, fosfomycin, strep-
tomycin and toxic metals, and demonstrated genes 
conferring possible resistance to arsenic, cadmium, 
chromium, cobalt, copper, lead, tellurium and zinc 
(Tables 5 and 6). Additionally, genes responsible for 

antibiotic inactivation, antibiotic target alteration, and 
genes coding efflux pumps were identified (Tables 7 
and 8).

Bacteria are known to employ various mecha-
nisms to provide metal resistance (Bruins et al. 2000; 
Ji and Silver 1995; Niño-Martínez et al. 2019), some 
of which were observed in the present study; for 
instance, some strains were found to harbor genes 
of the CzcCBA system, which are believed to con-
fer resistance to cadmium, cobalt and zinc. Genes 
of the CzcCBA system can be detected in other 
Pseudomonas spp. endophytic genomes (Supp. Tab. 
S6). Previously, these genes were reported in the P. 
poae A2-S9 genome isolated from Panicum virga-
tum plant, the Pseudomonas sp.382 genome isolated 
from Paullinia cupana seeds (Xia et al. 2013, 2019; 
de Siqueira et al. 2018; Liotti et al. 2018) and the P. 
putida GM4FR genome isolated from the green parts 
of Festuca rubra L. (Wemheuer et  al. 2016, 2017) 
(Supp. Tab. S6).

Interestingly, it has been proposed that the CzcRS 
two-component regulatory system may also be 
responsible for carbapenem antibiotic resistance 
(Wang et  al. 2017). In the presence of Zn(II) ions, 
CzcS autophosphorylates and transmits a signal to 
the response regulator CzcR. CzcR up-regulates the 
expression of the CzcCBA efflux pump and represses 
the expression of the OprD porin responsible for the 
entry of carbapenem antibiotics (Perron et al. 2004). 
This is an example of a co-regulation system that act 
as a co-selection mechanism between the metal and 
antibiotic resistance mechanisms (Baker-Austin et al. 
2006; Goryluk-Salmonowicz and Popowska 2019). It 
is possible that a co-regulation system also operates 
in the endophytes tested in our present study, as these 
were found to be resistant to both zinc ions and car-
bapenem antibiotics (Table 3).

Further, possible chromium resistance genes were 
detected, one of which codes for ChrA, a membrane 
potential dependent transporter. The gene has previ-
ously been detected in a variety of bacterial genera, 
including Arthrobacter spp., Bacillus spp., Lysini-
bacillus spp. and Pseudomonas spp. (He et al. 2010, 
2011; Henne et al. 2009; Mondaca et al. 1998). The 
ChrA gene has also been found in environmental 
Pseudomonas genomes, like P. chlororaphis GP72 
isolated from green pepper rhizosphere, P. viridiflava 
CDRTc14 isolated from the roots of Lepidium draba 
and P. fluorescens UM270 isolated from the roots of 
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Medicago truncatula (Supp.  Tab. S6) (Hernández-
León et al. 2015; Samad et al. 2016; Liu et al. 2006; 
Shen et al. 2012). Interestingly, the chrA gene is com-
monly detected on plasmid or Tn DNA. In 1990, it 
was detected on the Pseudomonas aeruginosa plas-
mid pUM505, and on the Alcaligenes eutrophus 
pMOL28 (Cervantes et  al. 1990; Nies et  al. 1990). 
The ChrA protein was also found to be encoded by 
a gene detected on transposon TnOtChr from Ochro-
bactrum tritici (Branco et al. 2008). Similarly, genes 
encoding CzcCBA components can be located on 
mobile elements; these genes have been detected on 
the plasmid pMOL30 of C. metallidurans (Nies et al. 
1990).

Finally, we identified genes associated with three 
copper resistance mechanisms (CusCFBA efflux sys-
tem, P-type ATPases and multicopper oxidase CueO) 
and one zinc/cadmium/lead transporter (P-type 
ATPase CadA).Arsenic (ArsAB efflux pump), chro-
mium (ChrA transporter) and tellurium (TehAB 
transporter) metalloid resistance genes were detected 
in all tested bacterial genomes (Table 5). These genes 
were also detected in other genomes of environmental 
Pseudomonas strains (Supp. Tab. S6).

The broad spectrum of metal tolerance dem-
onstrated by the isolated endophytes makes them 
interesting candidates as bioremediation enhancing 
agents. However, this raises the important question of 
whether the presence of metal resistance genes pro-
motes antibiotic resistance. Numerous studies have 
confirmed that metal-resistant environmental bacte-
ria isolated from soil and water environments harbor 
antibiotic resistance genes (Barker-Reid et  al. 2010; 
Cycoń et  al. 2019; Forsberg et  al. 2014; Su et  al. 
2020). There is a growing concern that metal con-
tamination acts as selective agent in the spread of 
antibiotic resistance, especially when the metal resist-
ance genes are located on mobile elements (Goryluk-
Salmonowicz and Popowska 2019, 2022; Seiler and 
Berendonk 2012; Zhang et  al. 2020; Baker-Austin 
et al. 2006; Perron et al. 2004). Therefore, the present 
study examined the locations of any potential resist-
ance genes in the genomes of the tested bacteria.

The Pseudomonas spp. genomes were searched for 
genes encoding components of mobile genetic ele-
ments (MGE). Interestingly, numerous transposase 
genes were detected in the tested genomes. Trans-
posases are needed for efficient transposition of inser-
tion sequences (IS) or transposon DNA (Tn) (Beuzón 

et  al. 2004). Transposases encoding genes of differ-
ent Insertion Sequence (IS) families were detected, 
including IS5, IS66, IS110, IS200like, IS630, InsE, 
InsO and ISL3. However, it is unlikely that poten-
tial ARGs detected in the sequenced Pseudomonas 
genomes are a part of their mobilome, as the detected 
ARGs are commonly located on the chromosomes 
of other Pseudomonas spp. (CARD database). Fur-
ther research is needed to confirm the presence of 
the detected ARGs on bacterial chromosomes. If so, 
the isolated endophytes can be used in laboratory 
experiments to evaluate their potential to promote 
plant growth and increase metal pollution remedia-
tion capacity. An interesting question is whether all 
detected potential metal resistance genes encode 
functional metal resistance proteins.

Conclusion

The present study demonstrated that Armeria mar-
itima subsp. halleri (Wallr.) Rothm. is inhabited by 
Pseudomonas endophytes that are resistant to metals 
and antibiotics. Genome analysis confirmed the pres-
ence of genes conferring resistance to arsenic, cad-
mium, chromium, cobalt, copper, lead, tellurium and 
zinc. Genes encoding components of efflux pumps, 
extracellular sequestration proteins, P-type ATPases 
or metal detoxification proteins were detected. More-
over, the bacteria were resistant to antibiotics: strep-
tomycin, fosfomycin and ß-lactams. Genes that may 
confer resistance to macrolides (MacAB-TolC efflux 
pump) and multidrug efflux pumps genes (AcrAB-
TolC and MexAB-OprM) were identified, as well as 
some genes that may promote antibiotic inactivation 
and antibiotic target alteration.

The spread of antibiotic resistance genes (ARGs) 
in the environment is a global problem, and their 
main reservoir is considered to be soil. The bacteria 
inhabiting soil and plants are recipients of ARGs and 
hence form part of their transmission routes. There-
fore, while the bacterial endophytes inhabiting hyper-
accumulators may be beneficial for the host plant, 
they can also hasten the rise of antibiotic resistance.

In the available literature, little attention has been 
given to the problem of antibiotic resistance in bac-
teria used to promote plant growth in agriculture, 
and the resistance profiles of endophytes used in 
phytoremediation have not been addressed at al. 
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Noteworthily, such biological control agents and 
biofertilizers form important parts of new agricultural 
management systems. Such growth in the number of 
biopreparations available on the market, and the con-
sequent large-scale and long-term usage of bioprepa-
rations containing ARGs may further increase the dis-
semination of antibiotic resistance.
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