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Abstract 
Background and aims  Root distribution over the 
soil profile is important for crop resource uptake. 
Using machine learning (ML), this study investi-
gated whether measured square root of planar root 
length density (Sqrt_pRLD) at different soil depths 
were related to uptake of isotope tracer (15N) and 
drought stress indicator (13C) in wheat, to reveal root 
function.
Methods  In the RadiMax semi-field root-screening 
facility 95 winter wheat genotypes were phenotyped 
for root growth in 2018 and 120 genotypes in 2019. 
Using the minirhizotron technique, root images were 

acquired across a depth range from 80 to 250  cm 
in May, June, and July and RL was extracted using 
a convolutional neural network. We developed ML 
models to explore whether the Sqrt_pRLD estimates 
at different soil depths were predictive of the uptake 
of deep soil nitrogen - using deep placement of 15N 
tracer as well as natural abundance of 13C isotope. 
We analyzed the correlations to tracer levels to both 
a parametrized root depth estimation and an ML 
approach. We further analyzed the genotypic effects 
on root function using mediation analysis.
Results  Both parametrized and ML models dem-
onstrated clear correlations between Sqrt_pRLD 
distribution and resource uptake. Further, both mod-
els demonstrated that deep roots at approx. 150 to 
170 cm depth were most important for explaining the 
plant content of 15N and 13C isotopes. The correla-
tions were higher in 2018.
Conclusions  The results demonstrated that, para-
metrized models and ML-based analysis provided 
complementary insight into the importance of deep 
rooting for water and nitrogen uptake.

Keywords  Machine learning · Deep rooting · Deep 
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D50	� 50% of the Sqrt_pRLD is accumulated
SI	� Sigmoid inflection
ML	� Machine learning
RF	� Random forest
GB	� Gradient boosting

Introduction

To achieve sustainable and climate resilient crop pro-
duction, we need crops to have deep and well-devel-
oped root systems, enabling efficient use of resources 
also from deeper soil layers. One way to improve crop 
root systems is through breeding, but to do this effi-
cient root phenotyping is required, allowing the meas-
urement of the genetic component of variability in the 
relevant root traits. Root measurements are notori-
ously difficult, as roots and their uptake activity are 
hidden in the soil and difficult to observe. Therefore, 
a range of facilities have been developed for root phe-
notyping (Cai et al. 2016; Eberbach et al. 2013; Svane 
et al. 2019b), but there is a need for further develop-
ment as well as for verification of the validity of the 
results obtained.

Water and nitrogen are important soil resources 
considered in crop production. Efficient crop water 
use is needed for productivity and resilience in dry 
periods. Efficient nitrogen use, particularly from 
deeper soil layers (Thorup-Kristensen and Kirkegaard 
2016), is needed to reduce the need for nitrogen ferti-
lizer input and to minimize nitrogen leaching loss to 
the environment. Water and nitrate are more mobile 
in the soil medium than most plant nutrients, meaning 
that in periods with surplus water supply, they tend 
to move downwards to deeper soil layers (Thorup-
Kristensen and Kirkegaard 2016). Thus, deeper root-
ing will likely increase the ability of crops to take up 
water and nitrogen when needed, and help to recover 
the part of these resources at maximum risk of loss.

This leads to a need to develop root phenotyping 
methods, but also to verify that deeper rooted phe-
notypes actually lead to increased water and nitrate 
uptake from the soil. The RadiMax root phenotyping 
facility (Svane et  al. 2019b) was developed specifi-
cally for such studies. Images of roots in the soil are 
obtained through minirhizotrons, and data for planar 
root length density (pRLD) on individual images 
are obtained using the AI based image analysis tool 
RootPainter (Smith et  al. 2022). The facility and 

experiments allow the use of isotope tracers as indica-
tors of root activity, where we used deep injection of 
a 15N labelled isotope solution to study deep nitro-
gen uptake (Wacker et  al. 2022). Natural abundance 
of 13C in grains was used to evaluate the genotypic 
potential for drought resilience. Due to natural iso-
tope discrimination processes (Zhang et  al. 2009), 
13C composition could be used as an indicator for 
water stress as 13C concentration increase under 
water stress, leading to a less negative delta value.

The semi-automated root imaging process and use 
of fully automated deep learning for image analysis 
enable us to collect large amounts of root data con-
taining information about root architecture. Using 
ML on these large datasets allows linking data from 
root images to root function and to maximize the 
information we can extract from the data.

Machine learning can be used to analyze hierar-
chical and non-linear relationships between predic-
tor variables and response variables and this is often 
more effective than traditional linear regression meth-
ods (Baker et al. 2018). The size and quality of exper-
imental multimodal data in agriculture are constantly 
growing. Thereby, ML offers potential for insight into 
complex agricultural relationships. Random Forests 
(RF) (Breiman 2001) is a widely used ML algorithm, 
that is known for allowing many variables with rela-
tively small numbers of observations and in addition 
providing an assessment of variable importance (Bre-
iman 2001; Ishwaran 2007; Strobl et al. 2007).

In soil science and hydrology, neural network 
models have been used extensively to estimate soil 
retention and hydraulic conductivity using a vari-
ety of easy-to-measure data (Pachepsky and Rawls 
1999; Schaap and Leij 1998). Even though neural 
nets have become more popular in deep learning for 
image segmentation, and pattern recognition, they are 
less interpretable (Toms et al. 2020) as their complex 
structure and large number of parameters make it dif-
ficult to understand how they make decisions. Neural 
networks work by learning patterns in the data, and 
these patterns are represented in the connections 
between neurons, which are adjusted during the train-
ing process (Kiranyaz et al. 2021). As a result, it can 
be difficult to understand how specific input data is 
being processed and what features the model is using 
to make its predictions. Awika et al. (2021) employed 
machine learning techniques to examine the pheno-
typic and genetic correlations between root traits and 
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shoot fresh weights of different baby spinach acces-
sions grown in small pots under low and high nitro-
gen concentrations.

While the root observations are dynamic and 
include data for different depth increments at differ-
ent time points, the tracer data typically give one end 
point measurement at crop harvest, showing an inte-
grated effect of roots at different depths over the crop 
growth period. Wacker et al. (2022) investigated deep 
root traits in winter wheat genotypes and their corre-
lation with deep nitrogen (N) uptake using minirhi-
zotron root imaging and 15N tracer uptake analysis 
over two years. They identified deep root traits that 
predicted a portion of the tracer uptake variation, 
indicating the potential for breeding genotypes with 
enhanced deep N uptake capabilities.

The root images from the RadiMax facility were 
previously investigated. It was demonstrated that 
roots could be identified in the images using a deep 
learning-based method (Smith et  al. 2020). This 
allowed estimation of Sqrt_pRLD for each individual 
image.

This study uses machine learning to investigate the 
following:

•	 Is estimated root depth related to water and nitro-
gen uptake?

•	 Does Sqrt_pRLD distribution across soil depths 
add additional understanding of root function?

•	 What is the genotypic contribution to the variation 
in root growth and function?

Materials and methods

Experimental systems

The RadiMax semi-field facility (Svane et al. 2019b) 
was designed for root phenotyping of crops grown 
in soil to maturity. In two experimental units, mod-
ern winter wheat cultivars and advanced breeding 
material were grown in two seasons, 2018 (95 winter 
wheat genotypes) and 2019 (120 winter wheat geno-
types) (Wacker et  al. 2022). The plants were sown 
at 300 plants m−2 density with 0.25 m row distance. 
Root imaging was performed with multi-spectral 
cameras (Svane et  al. 2019a) through a minirhizo-
tron system installed in the experimental units. The 
multispectral imaging technique has been used to 

distinguish differences in young, older, and dead 
roots, as well as for robust discrimination of rhizos-
phere components, all based on differences in reflec-
tance. Minirhizotron tubes (PMMA-Plastic) with 0.06 
mm inner diameter and total length of 5.5 m were 
installed 0.4 m above sloping (23.5° slope) bottom 
of experimental unit and were used for root observa-
tions. Root imaging was done by RadiMax cameras 
(5 Mpx CMOS) at 5 wavelengths (405, 450, 590, 
660, and 940 nm) in the visible-near-infrared region 
in 2448 × 204 × 5 pixels resolution. Each camera is 
positioned to focus on the upper surface of MR tube, 
and each image covers an area of 20 cm2. The range 
of imaging was from 80 to 250 cm soil depth and 
images were taken every 3.5 cm soil depth.

Drought experiment

The RadiMax facility has the possibility to exclude 
rainwater via large rain-out shelters (Svane et  al. 
2019b). The rain-out shelters where used in both 
years from late May to maturity in July, creating a 
drought condition. The facility is equipped with a 
sub-surface irrigation system, which can be used to 
irrigate the crop with increasing soil depths. In 2018, 
the subsurface irrigation system was used from May 
onwards, creating water supply with increasing soil 
depths and in the beginning of July soil water content 
decreased to 12% VWC at 1 m soil depth. In 2019, 
the subsurface irrigation system was not used. In this 
year, the total soil water availability increased with 
depth. Despite the fact that subirrigation was not used 
in 2019, the drying of the soil profile was delayed 
when compared to 2018 and at 1 m soil depth in July 
VWC was 14%. In both years, water extraction has 
been observed at 2 m soil depth, with 22% VWC. At 
2 m depth, soil temperature was higher (1 °C) in 2018 
than in 2019. More details on soil water supply in 
the experiment can be found in (Wacker et al. 2022, 
Fig. 4c-f).

Tracer injection and plant sampling

To study deep N uptake, an isotopic tracer of 15N 
(Ca(15NO3)2, 98% enriched) was injected into the 
soil at 180 cm depth (Wacker et al. 2022) to all repli-
cates at anthesis. Nitrogen isotope was injected using 
existing sub-irrigation dripline, perpendicular to the 
plant rows and MR tubes. At harvest, a sample (10 
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ears) corresponding to the aboveground area above 
the 15N injection was taken (0.3 m2 wide area), dried 
at 105 °C for 48 h, milled and grains were analyzed 
for 15N content via mass-spectroscopy (Wacker et al. 
2022) and to study the indirect effect of deep-water 
uptake, the same sample was also analyzed for 13C 
discrimination.

Root image analysis

Before image analysis, incomplete samples due to 
broken tubes or missing isotope data were identified 
and eliminated (16 tubes in 2018, 28 in 2019) from 
the dataset. The visible roots in each image were 
segmented using a convolutional neural network 
(Smith et al. 2020). For each image, the total length 
of segmented roots was extracted (Han et  al. 2021), 
giving the RL. We then define the pRLD as the total 
root length in an image (cm) divided by the area of 
the image (cm2). For robust statistical analysis and to 
avoid excessive influence from root-saturated images, 
we used the square root of the pRLD (Sqrt_pRLD) as 
our key quantification of root presence in each image. 
This is because water and N are relatively mobile 
resources in the soil, requiring a relatively low root 
density for efficient uptake. As root density increases, 
competition between the roots also increases, lead-
ing to a decrease in the uptake per unit root length. 
The unit of pRLD being cm−1, the unit of Sqrt_pRLD 
becomes cm−½.

Facility position correction

Planar root length density and isotope composi-
tion measurements showed strong position effects, 
mainly in one unit of the facility (Fig. 1) which may 

have been caused by differences in soil compaction 
caused during the construction of the facility. There-
fore, for all the analyses presented, the variables (iso-
topes measurements and Sqrt_pRLD) were linearly 
corrected for distance from the end of the facility. In 
other experiments (not reported), also piecewise lin-
ear corrections were used with very similar results.

Root distribution analysis

We investigated the influence of root distribution in 
two complementary ways. First, we defined para-
metrized models for estimation of the root depth, and 
analyzed their ability to predict isotope data.

Second, we defined a machine learning approach 
to investigate whether other aspects of the root distri-
bution could contribute to explaining the root func-
tion indicated by the uptake of the isotope tracer 15N 
enrichment and natural 13C discrimination.

Root depth estimates

From minirhizotron image-based Sqrt_pRLD data, 
we designed estimates of the root depth for each posi-
tion in the facility. In previous studies, root density 
has been modelled by an exponential model as a func-
tion of depth (Zuo et al. 2004) and we implemented 
that as a baseline comparison.

However, based on inspection of Sqrt_pRLD as a 
function of soil depth (example shown in Fig. 2), the 
sigmoid function appeared to fit the profiles better 
(Fig. 2, the goodness of fit R2

= 0.85 ) and therefore 
potentially give a better estimator for root depth.

We fitted these two mathematical models to the 
Sqrt_pRLD measurements for each replicate in the 
facility using nonlinear regression (implemented 

Fig. 1   The scatter diagram 
of log δ15N with regres-
sion line in one of the 
experimental units in 2018 
is presented to illustrate 
the potential confound-
ing effect. Log δ15N was 
strongly correlated with 
position ( R = 0.62 ). The 
shaded area represents the 
95% confidence interval for 
the regression line
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using the “curve_fit” function in the SciPy (Com-
munity 2019) optimization library). Specifically, with 
y being the Sqrt_pRLD at depth x , after fitting the 
exponential function

 we computed the depth (D50, corresponds to orange 
line in Fig.  2), at which 50% of the Sqrt_pRLD is 
accumulated (Fan et  al. 2016), as  D50 = log(2)∕b , 
where a, and b are the parameters of the model.

Similarly, we fitted to the sigmoid function

 and extracted the sigmoid inflection (SI) (green line 
in Fig. 2) point c as the estimate of the root depth.

These designed estimates (D50 and SI) were calcu-
lated of all the tubes and from all three months of root 
measurements in the datasets from the winter wheat 
experiments in the years 2018 and 2019.

Root distribution analysis across soil layers

We accumulated the Sqrt_pRLD in 10 intervals 
in the deeper soil layers between 119 and 220 cm 
to provide consistent depth data for all months of 
the two observation years for the machine learning 
models. The average Sqrt_pRLD across all facility 

(1)y = a e−bx,

(2)y =
a

1 + e−b(x−c)

tubes at different depths from 119 to 220 cm in the 
two years is illustrated in Fig. 3.

In total from the three observations months 
(May, June and July), this gives 30 input variables 
for predicting the outcomes in the form of the iso-
tope measurements (15N or 13C).

Machine learning algorithms

We evaluated alternative ensemble ML algorithms, 
random forest and gradient boosting, to model the 
relationship between the Sqrt_pRLD summed into 
intervals and the isotope tracer measurements. 
Ensemble learning methods are comprised of a set 
of classifiers that aggregate predictions to find the 
estimated results. Boosting and bagging are the two 
most used families of ensemble methods. The bag-
ging method (e.g. RF) was introduced by Breiman 
(1996); it is a method of selecting a random sample 
with replacement of data from a training. In gen-
eral, bagging is used with weak learners that exhibit 
high variance and low bias, whereas boosting (e.g. 
GB (Friedman 2001) is used when low variance and 
high bias are observed. We have used two alterna-
tive ML algorithms (RF and GB) for our analysis 
and computed also bias-variance of the models 
(Avati 2019), which are described below in result 
section.

Fig. 2   Square root of planar root length density (Sqrt_pRLD) 
in a single tube across soil depth in June 2018. The blue dots 
represent Sqrt_pRLD at every 3.5 cm soil depth. The distribu-
tion was modelled using an exponential decay model with D50 

at 138 cm (± 2.86 cm) (The SciPy Community 2019) and a 
sigmoid function with inflection point at 150 cm (± 0.01 cm). 
The shaded areas represent the 95% confidence region for the 
sigmoid function
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Random forest

The RF model, introduced by Breiman (2001), is an 
ensemble learning method aimed at reducing model 
variance. It is a collection of low correlated decision 
trees based on the bagging and feature randomness 
methods. These types of decision trees are also called 
regression tree if it is used for regression. Regression 
trees are constructed through the splitting of the data 
into smaller segments by nodes or branches. The trees 
in the RF forest model are trained independently, and 
their outcomes are then averaged. The prediction 
variance of the RF model is reduced by averaging the 
model predictions across the trees.

Gradient boosting

The GB model, introduced by Friedman (2001), is a 
boosting ensemble method. Essentially, the GB model 
aims at enhancing model accuracy and robustness by 
aggregating multiple weak learners. Gradient-boosted 
trees are constructed iteratively as other boosting 
methods, but they offer the advantage of optimizing 
an arbitrary differentiable loss function (Friedman 
2001), but it generalizes the other machine learning 
methods by allowing optimization of differentiable 
loss function.

Statistical analysis

We performed analyses utilizing the identical data-
set as the published study by Wacker et  al. (2022). 

Furthermore, we incorporated additional 13C data 
obtained from the same experiment to specifically 
investigate water uptake by deep roots.

The performance of the ML predictions was evalu-
ated using cross-validation. The performance metrics 
were correlation coefficient (R) and bias-variance in 
model prediction (Supplementary Table  S1) where 
model estimates were compared to measured 15N 
uptake and 13C discrimination.

For the RF and GB models, we combined the 
Sqrt_pRLD estimates for all three months into a sin-
gle model. The RF and GB models have a number of 
hyper parameters that may be optimized to the task at 
hand. For most hyper parameters, we used the default 
values in the SciKit-Learn (Pedregosa et  al. 2011) 
Python implementation. However, for hyper parame-
ters like number of trees, maximum depth of the trees, 
and maximum number of features included, we used 
nested cross-validation to optimize these parameters.

In all cases we tested using five-fold cross valida-
tion, the RF models performed slightly better than 
GB model and for simplicity we only investigated the 
RF model further for feature importance and media-
tion analysis. Similarly, we only performed mediation 
for the SI estimate (and not D50). We computed fea-
ture importance to investigate which segment of soil 
layers are most important for 15N uptake and 13C 
discrimination. This was quantified by the RF average 
impurity reduction (Breiman 2001).

Mediation analysis was carried out using the SI 
(May, June, and July) and RF models for predict-
ing log δ15N and δ13C as mediators to determine 

Fig. 3   Average square root of planar root length density (Sqrt_
pRLD) across all facility lines accumulated for 10 depth inter-
vals between 119 and 220 cm in 2018 (left) and 2019 (right). 

The colors represent the three different imaging time-points. 
Error bars representing the standard deviation



609Plant Soil (2023) 493:603–616	

1 3
Vol.: (0123456789)

the genotype effect (Fig.  4) of deep root traits on 
log δ15N , and δ13C using the approach used in 
Wacker et al. (2022). Using mediation analysis, we 
can determine how a genotype (ID) and a depend-
ent variable ( log δ15N or δ13C ) were related by 
using a mediator variable.

Result

Sigmoid inflections and Sqrt_pRLD for differ-
ent months in 2018 and 2019 are summarized in 
Table  1. There was an average Sqrt_pRLD of 16 
cm−1/2 per minihizotron in May, compared to 10 
cm−1/2 in June and 6 cm−1/2 in July 2018. June 
measurements showed a higher average rooting 
depth (SI) of 171 cm compared to 154 cm in May 
and 169 cm in July 2018, whereas July measure-
ments showed a higher average rooting depth of 
189 cm compared to 163 cm in May and 182 cm in 
June 2019.

Correlation between root models and isotopes

The correlation coefficients between parametrized 
models (D50 and SI) or ML models (RF and GB) 
and the isotope measurements ( log δ15N and δ13C ) 
are shown in Table  2. In general, SI had a higher 
correlation with log δ15N and δ13C than D50 show-
ing SI to be relevant estimator of rooting depth. 
The correlation between root-depth estimates and 
log δ15N was lower in 2019 than in 2018. However, 
there were no statistically significant correlations 
with δ13C  (p ≥ 0.05 ) in 2019. In the 2018 experi-
ment, the RF algorithm showed a higher correla-
tion ( R = 0.46 for log δ15N , and R = 0.41 for δ13C ) 
between predicted and observed corrected values 
of isotopes than the GB (R=0.42 for log δ15N , and 
R = 0.39 for δ13C ) but in 2019 correlations were 
not statistically significant ( p ≥ 0.05 ). The poten-
tial reasons for absence of significance in corre-
lation between deep roots and δ13C in 2019 are 
many. In 2018, transpiration demand and water 
stress were more prominent compared to 2019, 
due to higher average temperature during growth 
period (particularly in the late growing season) of 

Fig. 4   Path diagram (Hayes 2013) of mediation analysis of the genotypic effect of root traits on 15N uptake (left) and 13C discrimi-
nation (right)

Table 1   Summary of Sqrt_
pRLD per minihizotron and 
SI in the 2018 and 2019 
dataset, for May, June, and 
July

Descrip-
tive 
statistics

Sqrt_pRLD per minihizotron (cm-1/2) SI (cm)

May June July May June July

Year 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

mean 16 19 10 20 6 14 154 163 171 182 169 189
std 4 4 3 5 3 3 15 14 15 16 16 17
min 0 7 2 7 0 4 111 133 129 117 124 121
max 25 29 19 61 14 22 197 194 214 231 211 228
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winter wheat, which resulted in higher soil tem-
perature, higher evapotranspiration (ETo), less 
water available in the soil, earlier ripening and 
crops being water stressed. While the subsoil was 
irrigated in 2018, this did not succeed in alleviat-
ing the water stress on the topsoil. This phenom-
enon has been described before (Rasmussen et  al. 
2020) and the reasons behind it are still to be better 
understood. Additionally, in 2018 isotope samples 
were positioned, so plants (roots) were belonging 
to the dry part of the facility, while in 2019 due to 
reverse water stress isotope sample was taken from 
the part of the facility where plants/roots were less 
water stressed.

In terms of variance (Supplementary Table S1), 
the GB model exhibited higher variability in its 
predictions for log δ15N and δ13C in 2018, with 
a variance of 0.52, compared to the RF model 
which had a lower variance of 0.37 for predicting 
log δ15N. This suggests that the GB model’s pre-
dictions might have more fluctuation or dispersion. 
Moving on to 2019, both models showed slightly 
higher biases, with the RF model having a bias of 
-0.04 and the GB model with a slightly larger bias 
of -0.06. However, when considering variance, the 
RF model displayed lower variability (0.06) com-
pared to the GB model (0.15) for predicting log 
δ15N in the same year. This indicates that the pre-
dictions from the RF model were more robust and 
therefore exhibited less variability compared to the 
GB model.

Importance of deep roots for 15N uptake and 13C 
discrimination

The relationship between the root depth, as estimated 
by the SI model, and the isotopes allows a simple esti-
mation of the importance of deep root function. For 
instance, the correlation plot of δ13C and SI in June 
2018 is illustrated in Fig. 5 (top right). The parameters in 
the regression lines allows a simple interpretation of the 
impact of deep rooting. From the slopes for the correla-
tion plots against 15N (Fig. 5, top left, and Supplemen-
tary Table S2), we can see that if rooting depth increases 
by 1 cm, then we would expect log δ15N to be higher 
on average by 3% (± 0.5%) in June 2018 (dry year) and 
1% (± 0.4%) in June 2019. Deep roots play a critical 
role in the 13C discrimination process, offering valuable 
insights into our understanding of drought resilience. 
If the depth of rooting extends by 1 cm (as depicted in 
Fig.  5, top right and Supplementary Table  S2), there 
would be an average reduction of 1% (± 0.4%) in δ13C 
levels during June 2018, indicated by the negative slope 
of -0.01. However, during 2019 (as shown in Fig. 5, bot-
tom right), the R2 value stands at 0.0 due to the lack of 
statistically significant correlations between root depth 
and δ13C, as discussed earlier and presented in Table 2.

Importance of root distributions

The feature importance quantification for the RF 
model allows an interpretation of the importance 
of Sqrt_pRLD at different depths across the three 

Table 2   Correlation coefficient (R) with uncertainties (Haukoos and Lewis 2005) between the root-depths estimated by the SI, D50 
and the RF and GB model versus the isotope (log δ15N and δ13C) measurements

We trained RF and GB models on Sqrt_pRLD data from May, June, and July across 10 intervals using cross-validation. The correla-
tions which were not statistically significant in 2019 are marked with NS ( p ≥ 0.05 ), * represents p < 0.05 , **p < 0.01 , ***p < 0.001

R 2018 2019

logδ15N δ13C logδ15N δ13C

D50 May 0.26 (± 0.05 ) *** -0.17 (± 0.06 ) ** 0.17 (± 0.07)* -0.01 (± 0.08 ) NS
June 0.32 (± 0.05 ) *** -0.21 (± 0.05 ) *** 0.17 (± 0.08)* 0.13 (± 0.06 ) NS
July 0.31 (± 0.04 ) *** -0.18 (± 0.05 ) ** 0.18 (± 0.07)** 0.08 (± 0.06 ) NS

SI May 0.34 (± 0.05 ) *** -0.27 (± 0.05 ) *** 0.15 (± 0.07)* -0.02 (± 0.07 ) NS
June 0.37 (± 0.06 ) *** -0.30 (± 0.05 ) *** 0.17 (± 0.07)* 0.06 (± 0.07 ) NS
July 0.39 (± 0.05 ) *** -0.31 (± 0.04 ) *** 0.24 (± 0.07)*** 0.12 (± 0.07 ) NS

RF May + June + July 0.46 (± 0.04 ) *** 0.41 (± 0.04 ) *** 0.10 (± 0.06 ) NS 0.06 (± 0.07 ) NS
GB May + June + July 0.42 (± 0.04 ) *** 0.39 (± 0.05 ) *** -0.01 (± 0.07 ) NS 0.10 (± 0.06 ) NS
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observation months. Figure  6 illustrates this and 
demonstrates that throughout all three months, Sqrt_
pRLD found at depths 150–160 cm and 160–170 cm 
were the most important features for predicting both 
15N and 13C in 2018. Based on the figure, the soil 

depth between 150 and 160 cm had a significant 
impact on 13C discrimination in May 2018. May’s 
Sqrt_pRLD at 150–160 cm soil depth was most 
important for predicting δ13C followed by June and 
July’s. In contrast, at 160–170 cm depth Sqrt_pRLD 

Fig. 5   Deep root functioning analysis using root depth esti-
mated by SI and correlated against isotope measurements. The 
top row is 2018 and bottom row is 2019. Left is 15N and right 
is 13C. The Y labels are centred around zero. The shaded areas 

represent the 95% confidence intervals for the regression lines, 
which represent the uncertainty of the regression coefficients. 
The uncertainties (Lane et  al. 2003) of the regression coeffi-
cients are provided in Supplementary Table S2

Fig. 6   Random Forest feature importance for 15N uptake 
(left) and, 13C discrimination (right) in 2018. The feature 
importance of May, June, and July are plotted against at 10 

different soil depth intervals between 119–220 cm to visualize 
the important depths for 15N uptake and 13C discrimination, 
respectively
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from all months showed equally high importance for 
13C discrimination. For 15N, June data were the most 
important, and May data the least important.

The feature importance of RF model in 2019 is not 
shown in Fig. 6 as correlation between RF’s predic-
tion and log δ15N (or δ13C ) was not statistically sig-
nificant (Table 2).

Interplay between genotypes, models, and isotopes

The mediation analysis of both direct and indirect 
effects of genotype on log δ15N and δ13C is shown 
in Tables  3 and 4. In both years, the genotype sig-
nificantly influenced all deep root estimators and RF 
models. The genotype effect on individual root depths 

(SI) in May, June and July was statistically significant 
( p < 0.05 ) in the year 2018. The combined RF model 
explained 43.4% of the variation in log δ15N and 
47.4% of the variation in δ13C in 2018, and 56.4% of 
the variation in log δ15N and 79.4% of the variation 
in δ13C in 2019.

A significant effect of genotype on both 15N 
uptake and 13C discrimination was mediated by 
RF estimators in both years. The indirect effects of 
rooting depth determined as SI in May, June, and 
July explained 3.1%, 3.7%, and 3.2% of the vari-
ation in 2018, whereas the RF model explained 
5.1% of the variation of 15N uptake. Based on the 
indirect effects of SI in May, June, and July, 2.7%, 

Table 3   Mediation analysis of deep rooting on the genotype 
effect on 15N uptake. R2 of the total effect and decomposition 
of R2 for direct genotype (ID) and indirect effects (May SI, 
June SI, July SI, and RF model) predicting 15N uptake

Genotype effect on 
Individual deep root depth 
and RF model

Significance of param-
eters of the total effect 
model

Year Parameter p value Parameter p value
2018 May SI 5 × 10−6 ID 2 × 10−9

June SI 4 × 10−7 May SI 0.27
July SI 6 × 10−7 June SI 0.61
RF Model 6 × 10−4 July SI 0.52

RF Model 2 × 10−4

2019 May SI 1 × 10−5 ID 3 × 10−9

June SI 2 × 10−3 May SI 0.60
July SI 3 × 10−3 June SI 0.54
RF Model 2 × 10−7 July SI 0.16

RF Model 2 × 10−2

Year Parameter Total effect 
in percent-
age

Percentage 
due to 
direct effect

Percentage 
due to 
indirect 
effect

2018 ID 43.4 85.8
May SI 3.1
June SI 3.7
July SI 3.2
RF Model 5.1

2019 ID 56.4 94.9
May SI 1.5
June SI 1.0
July SI 3.3
RF Model -0.8

Table 4   Mediation analysis of deep root depths on the geno-
type effect of 13C discrimination

R2 of the total effect and decomposition of R2 for direct geno-
type (ID) and indirect effects (May SI, June SI, July SI, and RF 
model) predicting 13C discrimination

Genotype effect on 
Individual deep root depth 
and RF model

Significance of param-
eters of the total effect 
model

Year Parameter p value Parameter p value
2018 May SI 5 × 10−6 ID 8 × 10−15

June SI 4 × 10−7 May SI 0.35
July SI 6 × 10−7 June SI 0.31
RF Model 1 × 10−2 July SI 0.23

RF Model 7 × 10−4

2019 May SI 1 × 10−5 ID 2 × 10−16

June SI 2 × 10−3 May SI 5 × 10−2

July SI 2 × 10−3 June SI 0.37
RF Model 3 × 10−5 July SI 0.81

RF Model 0.64
Year Parameter Total effect 

in percent-
age

Percentage 
due to 
direct effect

Percentage 
due to 
indirect 
effect

2018 ID 47.4 89.1
May SI 2.7
June SI 2.5
July SI 3.4
RF Model 2.3

2019 ID 79.4 97.3
May SI 0.8
June SI 0.6
July SI 1.1
RF Model 0.1
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2.5%, and 3.4% of the variation of 13C discrimina-
tion was explained, respectively, while 2.3% was 
explained by the RF model. In 2019, according to 
the indirect effects of SI in May, June, and July, 
1.5%, 1%, and 3.3% of the variation of 15N could 
be explained by SI.

Discussion

The purpose of the study was to confirm the impor-
tance of deep rooting as observed before (Wacker et al. 
2022), but also to further investigate whether machine 
learning methods can reveal additional insight into the 
importance of root distribution across depths.

In particular, we used root images and 15N isotope 
data from both the 2018 and 2019 wheat experiments, 
similar to Wacker et  al. 2022. In addition, we utilized 
13C data in our analysis, and estimated root depth using 
a sigmoid inflection method. Our study also includes the 
application of machine learning models to predict iso-
topes and identify the soil regions that significantly con-
tribute to isotope uptake, specifically using the RF forest 
algorithm. Finally, we wished to investigate the interplay 
between wheat genotypes, root growth, and root function.

Is estimated root depth related to water and nitrogen 
uptake?

We proposed a novel model using the SI as the esti-
mate for deep rooting. This gives a more directly 
intuitive depth estimate compared to the D50 estimate 
in the previously proposed exponential decay model 
(Fan et al. 2016). In addition, the SI model fitted the 
Sqrt_pRLD distribution better (illustrated in Fig. 2). 
The results demonstrated that the SI root depth esti-
mate was also better at explaining the deep root func-
tion measured by 15N and 13C isotope measurements 
than the exponential model (Table  2). These results 
confirmed the importance of deep root growth.

The correlations for the SI versus log δ15N were 
positive, while correlations to δ13C were negative. This 
confirms that increased deep rooting allowed higher 
uptake of 15N applied deep in the soil, and indirectly, 
that it also allowed higher water uptake from deep soil 
layers. The negative correlations of SI with δ13C indi-
cates that there was a positive relationship between root 
depth estimated as SI and drought resilience (Simelton 
et al. 2009), as deep water uptake allows the plants to 

keep their stomata more open. According to the regres-
sion lines, if root depth increases by 1 cm, log δ15N 
will increase by 3% (± 0.5%) (Lindeman 1980; Kasza 
and Wolfe 2014) in June 2018, and if rooting depth 
increases by 1 cm, δ13C will be lower on average by 
1% (± 0.4%) (slope was − 0.01) in June 2018. How-
ever, in 2019, correlations between root depth and δ13C 
were not statistically significant (Table 2).

The SI root depth estimate may allow improved esti-
mates of root growth and ability for deep soil exploita-
tion (Burridge et al. 2017). Apart from the rooting depth 
achieved, also the timing of deep root growth may differ 
among winter wheat genotypes (Hodgkinson et al. 2017), 
and this can be significant for resource uptake. Differ-
ent timing of root growth can be computed by finding 
the inflection points in June, July, and August on Sqrt_
pRLD. Further development in root imaging and image 
analysis may also directly allow the observation of late 
root season root growth, which can be of special impor-
tance for water and nitrogen uptake during the yield 
forming growth stages of flowering and grain filling.

Does Sqrt_pRLD distribution across soil depths add 
additional understanding of root function?

To investigate whether machine learning could provide 
stronger models for explaining root function, we evalu-
ated the two ensemble models, RF and GB. Here, the 
RF model showed a higher correlation between root 
data and isotope tracer measurements (see Table 2), and 
this was in most cases also higher than analysis based 
on the SI root depth estimate. Thereby, the RF could 
potentially reveal additional insight into root func-
tion. The RF feature importance visualization (Fig. 6) 
showed that roots between 150 and 170 cm were most 
important for explaining isotope tracer measurements. 
We can see in Table  1 that this interval was actually 
very similar to the root depth as estimated by SI.

As 15N was injected specifically at 180 cm soil 
depth, it is encouraging but not surprising, to find that 
roots at the depth between 150 and 170 cm were the 
most important for predicting 15N uptake. However, 
the 13C results are based on general plant water stress 
response, not on tracers added to a specific depth. 
Finding that also 13C results are mainly predicted by 
root data from 150 to 170 cm depth, confirm a more 
general hypothesis that the deepest part of the root sys-
tem is crucial for genotype differences in water uptake 
(Thorup-Kristensen and Kirkegaard, 2016). Crops 
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primarily extract water from the upper soil layers, 
where root densities are high and water uptake occurs 
over an extended period. Therefore, the growth of roots 
typically does not pose a constraint on water uptake 
from these upper layers. However, in deep soil layers, 
there are fewer roots, and roots firstly appear there late 
in the growing season, providing the chance for using 
these water resources in the summer when there is not 
so much water available in the shallow soil layers. In 
a soil layer where root growth and duration limits the 
water use, genotypic differences become important for 
actual water use. This was also found by Kirkegaard 
(Kirkegaard et al. 2007), who established that the extra 
water assimilated from deep layers was of extra value 
for yield production, as it is taken up late during the 
grain filling phase (Lilley and Kirkegaard 2011).

The SI estimates (Table 2) and the RF feature impor-
tance analysis revealed additional effects (Fig. 6). The 
shift of soil depths important for 15N uptake in 2018, 
from 150 to 160 cm soil depth in Jun to 160–170 cm 
soil depth in July indicates continuous root growth post-
anthesis to be important for tracer uptake, which was 
injected at anthesis. During May 2018, soil depths of 
150–160 cm contributed significantly to 13C discrimi-
nation in grain, while root length at 160–170 cm depth 
in July, followed by June and May, was the most impor-
tant factor for 13C discrimination. This again implies a 
continuously developing root profile over time.

As 15N was not applied until anthesis, and 13C 
was also measured in grain, produced mainly by post 
anthesis photosynthesis, roots in May will have had 
little or no direct influence on the isotopic results. 
However, root observations in May may be predictive 
of later root presence and development. Young roots 
are more easily identified on root images than older 
roots, as can be seen by the declining root observa-
tions in many soil layers from May to June to July. 
Therefore, roots observed in May may give a rela-
tively good estimate of the roots which will be pre-
sent later in June and July, when the actual isotopic 
signatures are created by deep water and 15N uptake.

What is the genotypic contribution to the variation in 
root growth and function?

We investigated the interplay between genotype and 
the proposed root models in the mediation analy-
sis. The results (in Tables  3 and 4) showed that as 
expected the genotype was strongly related to the 

isotope tracer measurements. However, for both years 
and both isotopes, the mediation analysis also dem-
onstrated that both the SI root depth estimate, and the 
RF model contributed with additional, independent 
information. This supports that these root models can 
support plant breeding by explaining root function.

The meditation analysis provides insight into the 
deep root functions of crops. By establishing a causal 
chain from genotype to deep root traits to pheno-
type, mediation analysis provides explicit hypoth-
eses for further functional exploration (Yang et  al. 
2022). Moreover, the greater direct effect of geno-
type on 15N uptake, and 13C discrimination in 2018 
and 2019 than on the other mediator variables sug-
gests that additional genotypic traits besides the ones 
recorded by image-based root data influenced 15N 
uptake and 13C discrimination (Wacker et al. 2022).

Comparison of the model performances

In combination, these results demonstrate the impor-
tance of the deep roots, as opposed to, for instance, 
higher root density in upper soil layers, as the RF model 
confirmed the importance of root growth at more than 
150 cm depth. However, the RF did still achieve higher 
correlations for most outcomes in Table  2, indicating 
that some information was lost in the simple calcula-
tion of a root depth estimate by the SI model. It is pos-
sible that the RF model did in fact implicitly also just 
estimate the root depth, but became more robust by 
integrating Sqrt_pRLD measurements from all three 
months (May, June, and July) as opposed to the SI 
model that estimated these individually. To investigate 
this, we create models integrating the three SI estimates 
using either RF or GB for the combination. These 
models did not perform better than the individual SI 
estimates (results not shown). We interpret this to con-
clude that the RF model using all root data points, does 
indeed capture more than just root depth, and integrates 
relevant root characteristics across depths. Although all 
roots contribute to water uptake, but mainly the deep 
roots contribute to the variation in water and N uptake.

Conclusions

Our study proposed a novel estimate of root depth by 
the sigmoid fitted to Sqrt_pRLD measurements across 
depths. This SI root depth estimate improved the 
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prediction of root function as investigated by the sta-
ble isotopes 15N and 13C. The importance of the deep 
roots was further confirmed by the RF forest machine 
learning model that optimally integrated Sqrt_pRLD 
across depths into a single model. This RF model was 
slightly better than the SI estimator at explaining iso-
tope tracer measurements, and the RF feature impor-
tance analysis revealed that this was achieved with a 
strong focus on the deepest roots. Further, the media-
tion analysis showed that both the SI and RF models 
provided additional information on top of the geno-
type, showing a potential for applying these in plant 
breeding experiments. The results are not directly use-
ful for breeders. However, it demonstrates the impor-
tance of deep root growth and soil resource uptake and 
presents a method for phenotyping these traits. This 
information suggests that breeding programs can uti-
lize these traits to improve genotypes.
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