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Abstract 
Background  Alkaline-saline (AS) stress threats crop 
development and productivity. Understanding the 
genetic control of AS tolerance in wheat is important 
to produce wheat cultivars that outstand such a severe 
stress condition.
Methods  A set of 48 cultivars were tested under 
controlled and AS stress conditions at seedling and 
maturity stages. The effect of AS on seedlings and 
kernel traits was measured to select tolerant and high-
yielding genotypes. Single-marker-analysis (SMA) 
and gene enrichment were conducted to understand 
the genetic control of AS tolerance in both growth 
stages.

Results  AS stress decreased all kernel traits and 
most of the seedling traits. High correlations were 
found between the studied traits in each growth stage. 
The correlation between the traits related to both 
stages was non-significant. SMA identified a total of 
292 and 52 markers significantly associated with the 
studied traits under controlled and AS stress condi-
tions. Seven and 20 gene models were identified to 
control AS tolerance in each stage. Gene enrichment 
analysis identified one and six networks that control 
AS tolerance. Four genotypes were selected as supe-
rior genotypes.
Conclusion  The genetic control of the studied traits 
differs under control and AS conditions. Two genetic 
systems control AS tolerance in each growth stage. 
This study is the first one that unlocked the genetic 
control of AS tolerance in seedling and mature 
growth stages and identified the biological pro-
cess that lead to this tolerance. Four genotypes were 
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selected for crossing in future breeding programs to 
improve AS tolerance in spring wheat.

Keywords  Saline-alkaline soils · Gene enrichment · 
Gene network · Genetic control · Single marker 
analysis

Introduction

Across their life cycle, plants are exposed to a vari-
ety of abiotic stresses that threats plant development, 
growth, and productivity. Due to their sessile nature, 
plants can’t escape or avoid them completely. Soil 
salinity-alkalinity is among the most important fac-
tors limiting agricultural yield all over the world 
(Liu et  al. 2010; Qadir et  al. 2014). Globally, about 
80 million hectares of irrigated soil are damaged by 
salinity or alkalinity stress, representing about 40% 
of the total irrigated area, and over half of them are 
alkaline (Abdel Latef et al. 2019). With the continu-
ously growing human population, the degradation 
of the ecosystem increased, resulting in more areas 
affected by soil salinity-alkalinity. Numerous unwis-
dom cultivation practices in agriculture, coupled with 
the aggravation of environmental pollution, increase 
soil salinization–alkalization (De Pascale et al. 2012). 
It is expected that by 2050, soil salinization will 
damage up to 50% of agricultural land (Qadir et  al. 
2014). Both salinity and alkalinity negatively affect 
plant growth. Salinity mainly reduces plant growth 
owing to the osmotic inhibition of water absorption 
and ion toxicity (Munns and Tester 2008). Alkalin-
ity’s deleterious effects on plant growth are attributed 
to high pH, which exerts ion imbalance and reduces 
the availability of micronutrients in soils. Alkalinity 
reduces the solubility of nutrients like phosphorus 
(P), iron (Fe), zinc (Zn), and other micronutrients 
(FAO 2000). Salinity stress is primarily attributed 
to neutral salts such as NaCl and Na2SO4, whereas 
alkalinity stress is exerted by alkaline salts such as 
NaHCO3 and Na2CO3. When salinized soil contains 
high concentrations of alkaline salts, the soil pH 
increases, and the plants suffer from both saline and 
alkaline stresses. The combined effect of soil salinity-
alkalinity could be more severe than soil salinization 
alone (Yang et  al. 2008a). Several studies reported 
that saline-alkaline stress exerted significant changes 
in the growth of plants including ionic stress, osmotic 

stress, oxidative stress, and high pH stress (Guo et al. 
2009; Li et  al. 2010; Magistad, 1945; Zhang et  al. 
2020). Alkaline soils may be more stressful than 
saline soils (Tanji 2002; Wang et  al. 2008). Salinity 
stress research focused on NaCl (Munns and Tester 
2008) and less attention has been paid to alkaline 
stress (Zhang et al. 2020).

Wheat (Triticum aestivum L.) is one of the most 
important stable food crops. Wheat grain is being 
used to feed 40% of the world’s population (Han et al. 
2018). In terms of socio-economic importance, wheat 
dominates the remaining crops with 17% of the global 
crop area, feeding 40% of the world’s population and 
insuring 20% of the total diet calories. To meet this 
high demand, wheat production needs to be increased 
by 2% annually (Al-Ashkar et  al. 2020). Therefore, 
monitoring its planting areas is crucial to ensure 
food supply all over the world. Wheat was classified 
as moderately salt-tolerant relative to other crops, 
including cereals (Maas and Hoffman 1977). When 
soil salinization reaches 100 mM, both wheat devel-
opment and growth are drastically affected (Munns 
et al. 2006). Salinization–alkalization effect on seed-
ling stage and vegetative development-related param-
eters has been intensively investigated. Several traits 
such as root length, shoot length, seedling length, 
fresh biomass and dry biomass were measured in 
many plant species including sunflower (Helianthus 
annuus L.) (Liu et al. 2010), alfalfa (Medicago sativa 
L.) (Li et al. 2010; Liu et al. 2013), Lettuce (Lactuca 
sativa) (Roosta 2011), Indian mustard (Brassica jun‑
cea L.) (Javid et al. 2012), maize (Zea mays L.) (Xie 
et  al. 2015; Cao et  al. 2020; Fu et  al. 2017, 2021; 
Fatima et  al. 2021;), Sorghum (Sorghum bicolor L.) 
(Zhao et  al. 2014), rice (Oryza sativa L.) (Lv et  al. 
2013; Li et  al. 2019a, b; Li et  al. 2020; Liu et  al. 
2021), artichoke (Cynara scolymus L.) (Dawood et al. 
2021), tomato (Solanum lycopersicum L.) (Hu et  al. 
2012; Li et  al. 2015; Capula-Rodríguez et  al. 2016; 
Xu et  al. 2022), strawberry (Fragariaananasa L.) 
(Malekzadeh Shamsabad et  al. 2021; Roosta 2014), 
soybean (Glycine max L.) (Cao et al. 2021) and wheat 
(Triticum aestivum L.) (Guo et  al. 2010, 2015; Lin 
2012; Zhang et al. 2021a, b).

Except for the progress achieved in alkalinity 
stress studies, the effect of alkalinity-salinity stress on 
grain-related traits lags behind the study of its effect 
on germination, seedling, and vegetative stages. Some 
studies focused on the effect of alkalinity-salinity 
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stress on grain-related traits and yield-attributes 
in rice (Rao et  al. 2008, 2013), sunflower (Li et  al. 
2021), cotton (Gossypium barbadence L.) (Zein et al. 
2020), and wheat (Sharma et al. 2010b). In north-east 
China, soil salinization–alkalization decreased wheat 
productivity, reviewed by Zhang et  al. (2020). Nev-
ertheless, some saline-alkaline tolerant cultivars were 
found (Zhang et al. 2020).

A lot of drawbacks are coupled with the improve-
ment of abiotic stress. For example, washing saline-
alkaline soil artificially using excess fresh water 
decreases soil fertility by leaching fertilizers and 
minerals downwardly. Improvement of high saline-
alkaline soils needs more manpower, materials, and 
financial resources (Liu et  al. 2007). This artificial 
approach is expensive, environmentally unfriending, 
and unsustainable. The biological approach depends 
on selecting and developing more abiotic stress-
resilient varieties, which are more reasonable and 
sustainable.

In terms of the association between abiotic stress 
tolerance and the plant growth stage, it has been 
demonstrated that plant resistivity to certain abiotic 
stresses varies from one growth stage to another. 
Thus, the current study focused on elucidating the 
genotypic variation of wheat under two stages; the 
seedling stage and the mature stage, in order to get 
comprehensive insights into wheat tolerance to alka-
linity-salinity stress. As a result of the low number of 
studies that focused on the combined effect of alka-
linity-salinity stress relative to salinity-stress or alka-
linity-stress, as well as the low number of studies that 
dealt with the effect of such stress at different growth 
stages, the current study has been conducted to elu-
cidate the effect of alkaline-saline stress on wheat at 
two different growth stages: the seedling stage and 
the adult stage.

Only in the last ten years, few studies dealt with 
the genetic control of the alkalinity-salinity either in 
model plants such as Arabidopsis (Almira Casellas 
et  al. 2023) and alfalfa (An et  al. 2020), as well as 
in some crop species such as rice (Liang et al. 2015; 
Krishnamurthy et al. 2016; Qian et al. 2023), soybean 
(Zhang et  al. 2014), and maize (Zhang et  al. 2018). 
Likewise, in wheat, the genetic factors that control 
the alkalinity-salinity stress are unclear up to now.

The objectives of this study are to: 1) study the 
effect of alkalinity-salinity stress on wheat develop-
ment at seedling and maturity stages, 2) understand 

the genetic control of alkaline-saline tolerance in 
wheat plants in the two different growth stages, and 
3) select the best high yielding and genetically distant 
parents to be incorporated in the breeding programs 
to improve wheat yield under AS stress.

Materials and methods

Plant material

In this study, a set of 48 spring wheat genotypes were 
evaluated for alkaline-saline (AS) tolerance in seed-
ling and mature stages. This set consisted of 13 Egyp-
tian cultivars, four Egyptian breeding lines, and 31 
cultivars from additional eleven different countries 
(Table  S1). Non-Egyptian genotypes were evaluated 
for several growing seasons in Egyptian fields and 
were highly adapted to Egyptian conditions (Mourad 
et al. 2020). Seeds of the non-Egyptian tested geno-
types were obtained from the USDA-ARS, United 
States. The Egyptian genotypes were developed by 
the Egyptian governorate and Egyptian breeding lines 
were generated by Prof. Dr. Qadry Omara, Genet-
ics Department, Faculty of Agriculture, Assiut Uni-
versity. These genotypes were reported to be highly 
diverse in their response to the different abiotic 
stresses including salt tolerance (Ghazy et  al. 2021; 
Ahmed et  al. 2022; Mohamed et  al. 2023). Hence 
they could provide more information on saline-alka-
line tolerance in wheat.

Experimental design and treatment application

Seedling stage experiment

To study the effect of AS treatment on the early wheat 
growth stage, the seedling experiment was conducted 
in the Plant Genetics Lab, Genetics Department, Fac-
ulty of Agriculture, Assiut University, Egypt using 
small trays. The room temperature of the lab was 
between 23°C to 25 °C during the experiment. The 
size of each tray was 35 × 21 × 4.4 cm, and each con-
tains 60 holes. Each hole was filled with 50 gm of 
field soil (collected from Assiut research station). The 
soil type is 5 clay: 3 silt: 2 sand. Before seed sow-
ing, for the controlled treatment (C), 50 ml of tap 
water was added for each tray, and for Alkaline-saline 
treatment (AS), 50 ml of 150 mM NaCl: Na2SO4: 
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NaHCO4:Na2CO3 at a proportion of 1:9:9:1, respec-
tively was added for each hole (Dawood et al. 2021). 
In each hole, two seeds were sown from each geno-
type/replication. The experimental design was a ran-
domized complete block design (RCBD) using three 
replications for each treatment. Irrigation with 50 ml 
tab water was applied for all trays when required until 
the end of the experiment. After two weeks, the seed-
lings were gently removed from the soil and cleaned 
for further measurements.

Mature stage experiment

To study the effect of AS on yield attributes (kernel-
related-traits) and identify the most tolerant and high-
yielding genotypes, the 48 genotypes were evaluated at 
the Research Farm of Agronomy Department, Faculty 
of Agriculture, Assiut University, Egypt for one sea-
son (2019/2020). Under field conditions, a pot experi-
ment was conducted in a randomized complete block 
design (RCBD) with three replications per genotype. 
The size of the pots was 30 cm × 20 cm × 20 cm and 
each pot was filled with 7.5 kg of field-soil (collected 
from the research station, the same soil was used for 
the seedling stage experiment). Before seed sowing, 
for controlled treatment (C), 300 ml tap water was 
applied per pot, and for alkaline-saline treatment (AS) 
300 ml of 150mM NaCl: Na2SO4: NaHCO4:Na2CO3 
at a proportion of 1:9:9:1 was applied per pot. In each 
pot, eight seeds from each genotype/replication were 
sown. Until the end of the experiment, manual irriga-
tion was applied to all pots when required.

Three soil samples were collected from both trays 
(in the seedling experiment) and pots (mature experi-
ment) and three replications were prepared for each 
sample. The pH and electrical conductivity (EC) were 
measured by means of pH and conductivity meters. 
Sodium (Na+) and potassium (K+) were determined 
by flame photometers (Sujatha and Reddy 2003; Far-
ghly et al. 2020). Ca2

+ and Mg2
+ contents were deter-

mined by the Ethylene Diamine Tetra-acetic Acid 
(EDTA) titration method. The chlorine ion (Cl−) con-
tent was determined using the silver nitrate titration 
method (Adimalla and Taloor 2020; He et al. 2020). 
The saturation percentage (SP) equals the weight of 
water required to saturate the pore space divided by 
the weight of the dry soil (Aali et al. 2009). ‏Sodium 
absorption ratio (SAR) was calculated as described in 
the following formula:

Measurement and scoring of the phenotypic traits

Seedling traits

After two weeks each seedling was removed and care-
fully cleaned from the soil. The following phenotypic 
traits were measured for each individual plant in each 
replication; 1) biological weight (BW, gm), 2) root 
weight (RW, gm), 3) the ratio of root fresh weight to 
the shoot fresh weight (RW/SW), 4) the number of 
roots (NR), 5) shoot length (SL, cm), 6) root length 
(RL, cm), 7) leaf width (LW, cm), and 8) leaf area (LA, 
cm2). BW, SW, and RW were measured using a sensi-
tive digital balance. SL, RL, LW, and LA were meas-
ured using ImageJ software (Schneider et al. 2012).

Kernel traits

The kernel-related-traits, kernel length (KL, cm), 
kernel width (KW, mm), kernel diameter (KD, mm), 
and thousand kernel weight (TKW, gm) were meas-
ured at the end of the field experiment as described 
in (Mourad et  al. 2021). In brief, five random seeds 
were selected from each genotype in each replication 
and measured their KL, KW, and KD then an average 
value was used. TKW was measured for all kernels 
produced from each individual plant.

Changes in the studied seedling and kernel traits 
under the alkaline‑saline effect

Using the average of the three replications for 
each studied trait, percentage changes (increase or 
decrease) of the studied seedling and kernel traits due 
to AS effect were calculated according to the follow-
ing formula:

where CTH-trait is the changes in the studied trait, 
Xc and Xas are the mean performance of each studied 
genotype under control and AS stress, respectively. 
Based on this formula, an increase in the studied 
trait will produce a negative CTH-trait value, and a 

SAR =
Na

√

Ca+Mg

2

CTH − trait =
Xc − Xas

Xc
x100
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positive value will result on decreasing in the studied 
trait.

Statistical analysis of seedling and kernel traits
PLABSTAT software (Utz 2011) was used to calcu-
late the analysis of variance (ANOVA) for each stud-
ied trait following two different models as follows:

where Yij is an observation of genotype i in replica-
tion j, μ is the general mean; gi, rj are the main effects 
of genotypes and replications, respectively; eij is 
the error. Genotypes were considered as fixed effect 
while replications were considered as random effect. 
This model was used for each treatment separately to 
identify the differences between the tested genotypes 
under each condition.

where Yijk is an observation of genotype i in replica-
tion j under treatment k, μ is the general mean; gi, rj, 
tk are the main effects of genotypes, replications, and 
treatment, respectively; eijk is the error. Experiment 
was considered as fixed while the remaining factors 
were considered as random. This model was used to 
identify the differences between the two treatments, 
control and AS, on each of the studied traits.

In addition, broad-sense heritability was calculated 
for all traits using the following model

where �2

G
 and �2

R
 are the variance of the lines and the 

residuals, respectively. r is the number of replicates.
Phenotypic variation and phenotypic correlation 

under each treatment at both stages were calculated 
and visualized using SRPlot online database available 
at http://​www.​bioin​forma​tics.​com.​cn/​srplot.

Genotyping of the tested panel, single marker 
analysis for seedling and kernel traits under 
alkaline‑saline stress, and gene models controlling 
these traits

The tested panel was genotyped using 25K Infinium 
iSelect SNP array. This marker set was generated 
by SGS Institute Fresenius GmbH TraitGenetics 

(1)Yij = μ + rj + gi + grij + eij

(2)Yijk = μ + rj + tk + gi + tgik + tgrijk + eijk

H2 = �
2

G
∕(�2

G
+

�
2

R

r
)

Section (Gatersleben, Germany) (Esmail et  al. 
2023; Mourad et al. 2023a). In total, 21,093 mark-
ers were obtained after filtration to minor allele fre-
quency (MAF > 0.05) and maximum missing sites 
per genotype < 10%. This marker set covers all the 
wheat chromosomes.

To understand more about the genetic control of 
the studied traits under AS stress, a single marker 
analysis was conducted for each significant trait 
using the available marker data for all 48 genotypes. 
This was done using PowerMarker software v 3.25 
(Liu and Muse 2005) using the following model

Y is trait value, µ is population mean, and f 
(marker) is a function of the significant markers.

The marker-trait associations were tested against 
Bonferroni corrections at a significant level of 5% 
(Mourad et  al. 2018). The phenotypic variation 
explained by marker (R2) as well as the allele effect 
was estimated for each significant marker using TAS-
SEL 5.0 software (Bradbury et  al. 2007). Moreo-
ver, gene models harboring the identified significant 
markers were investigated by comparing gene models 
with the same position of the significant marker using 
EnsemblePlants (https://​plants.​ensem​bl.​org/​Triti​
cum_​aesti​vum/​Info/​Index). The functional annotation 
of these gene models was detected using International 
Wheat Genome Sequencing Consortium (IWGSC) 
V.1.0. The genetic base of these gene models con-
cerning abiotic stress tolerance was investigated and 
presented as a network using the KnetMiner database 
(Hassani-Pak et al. 2021).

Gene enrichment and biological process pathways of 
the identified gene models

To understand more about the genetic control of the 
studied seedling and kernel traits under alkaline-
saline stress, gene enrichment based on the biologi-
cal process pathways of the identified gene models 
was investigated using ShinyGo 0.76 database (Ge 
et  al. 2022). Furthermore, a cutoff value of false 
discovery rate (FDR) p-value < 0.05 was applied. 
The most significant pathways were visualized as an 
enrichment plot using the SRPLOT database availa-
ble at (https://​www.​bioin​forma​tics.​com.​cn/​en). The 

Y = μ + f (marker) + error, where

http://www.bioinformatics.com.cn/srplot
https://plants.ensembl.org/Triticum_aestivum/Info/Index
https://plants.ensembl.org/Triticum_aestivum/Info/Index
https://www.bioinformatics.com.cn/en
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biological process networks were visualized using 
NetwrokD3 v.4.0, R package (Allaire et al. 2017).

Selection of superior genotypes for alkaline‑saline 
stress tolerance

To select the superior genotypes, the stress toler-
ance index (STI) was calculated for thousand ker-
nel weight (TKW) as it is the most important yield 
trait. The best ten genotypes were detected based on 
the iPASTIC toolkit average of sum ranks (ASR) 
(Pour-Aboughadareh et  al. 2019). Furthermore, 
the genetic distance among the selected genotypes 
was calculated using ‘ade4’ R package (Dray and 
Dufour, 2007; R Core Team 2017). A phylogeny 
tree representing the genetic distance was per-
formed using iTOL database (Letunic and Bork 
2021).

Results

The analysis of soil before and after adding the 
AS solution is presented in Table 1. Based on soil 
analysis results, the pH of the AS treatment soils 
increased to 8.60 compared with 7.18 in the con-
trol soils. Furthermore, soil content of Na+, K+, 

Ca2
+, Mg2

+, and Cl− was increased as an effect 
of the alkaline-saline solution. The soil EC was 
almost duplicated while saturation capacity slightly 
decreased.

Genetic variation of seedling traits

The analysis of variance revealed highly significant 
differences among the tested genotypes for all the 
eight-studied-seedling traits under both controlled 
and AS conditions (Table S2 and S3). Moreover, sig-
nificant (p < 0.05) and highly significant differences 
(p < 0.01) between the two treatments (control and AS 
treatments) were found for all the studied traits except 
BW, NR, and SL (Table  2). However, high genetic 
variation was found among the tested genotypes for 
these three traits (BW, NR, and SL) under each con-
dition (Fig. S1). Furthermore, significant genotype x 
treatment interaction was found for SW, SL, RL, LW, 
and LA (Table 2). High values of broad-sense herit-
ability were observed for all the studied traits with 
values ranging from 0.63 for RW/SW to 0.95 for LA.

Compared to the controlled conditions, the alka-
linity-salinity stress reduced all seedling traits except 
RW and RW/SW, the variation and distribution for all 
seedling traits are represented in Fig. 1, Fig. S1 and 
Table S1. The roots of the tested genotypes under AS 
were found to be shorter than root length under con-
trolled conditions with an average of 10.06 cm and 
8.52 cm under controlled and AS conditions, respec-
tively (Fig. 1a). The average values of RW/SW ratio 
were 0.73 under controlled conditions while it was 
0.78 under AS (Fig. 1b). The average of RW was 0.11 
gm and 0.12 gm under controlled and AS conditions, 
respectively (Fig.  1c). Under controlled conditions, 
LW and LA average was 0.32 cm and 204.55 cm2 
for each trait, respectively. On the other hand, under 
AS conditions LW and LA average was 0.30 cm and 
164.10 cm2 for LW and LA, respectively (Fig. 1d and 
e).

Genetic variation of kernel traits

Based on the ANOVA results, highly significant dif-
ferences were found among the tested genotypes 
for all the four-studied-kernel-traits under both con-
trolled and AS conditions (Table S2 and S3). Moreo-
ver, highly significant differences and highly signifi-
cant G × T interactions were found between the two 

Table 1   The analysis of the experimental soils represents soil 
pH, electrical conductivity (EC), the content of important cati-
ons; Sodium (Na+), Potassium (K+), Calcium (Ca2+), Magne-
sium (Mg2+), and Chloride (Cl−), and sodium adsorption ratio 
(SAR) in the control and alkaline-saline treatment

Property Control soil Alkaline-
Saline 
soil

pH (1:5) 7.18 8.60
EC (dS/m) 2.51 5.08
Cation (mg/Kg soil)

  Na+ 937.5 2500
  K+ 1012 1128
  Ca2

+ 510 525
  Mg2

+ 315 550
Anion (mg/Kg soil)

  Cl− 710 11,094
  Saturation capacity (%) 54.4 53.6
  SAR 3.59 8.11
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studied treatments (control and AS) for all the studied 
kernel traits (Table  2). High values of broad-sense 
heritability (H2) were found for all the studied traits 
with values ranging from 0.89 for KL to 0.98 for 
TKW.

A great reduction was observed in all kernel traits 
under AS conditions compared with controlled condi-
tions. The average of KW was 3.22 mm under con-
trolled conditions, while it was 1.19 mm under AS 
conditions (Fig. 2a and Table S1). The average of KL 
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Fig. 1   Box plots and histograms representing the distribution of (a) root length (RL), (b) root weight/shoot weight (RW/SW), (c) 
root weight (RW), (d) leaf width (LW), and e) leaf area (LA) under control (blue) and alkaline-saline (light blue)
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Fig. 2   Box plots and histograms representing the distribution of (a) kernel width (KW), (b) kernel length (KL), (c) kernel diameter 
(KD), and (d) thousand kernel weight (TKW) under control (blue) and alkaline-saline (light blue)
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was 0.68 cm under controlled conditions, while it was 
0.60 cm under AS conditions (Fig.  2b). Under con-
trolled conditions, KD average was 3.24 mm while 
it was 1.06 mm under AS conditions (Fig.  2c). The 
average values of TKW under control conditions were 
46.89 gm, while it was 22.91 gm under AS conditions 
(Fig. 2d).

Changes in the seedling and kernel traits as an effect 
of AS treatment

To estimate the magnitude of AS stress on seed-
ling traits as well as the kernel traits, the percent-
age changes of all significant traits were computed 
(Fig. 3). For seedling traits, it was observed that AS 

reduced LW, RL, and LA with values of 5.18%, 9% 
and 19.04% for each trait, respectively. Contrarily, 
an increase in RW and RW/SW was observed with 
values of 16.71% and 22.48%, respectively. For the 
kernel traits, a reduction in all traits was found with a 
percentage ranging from 10.79 to 67.23% for KL and 
KD, respectively.

Phenotypic correlation analysis for seedling and 
kernel traits under both conditions

To further understand the relationship between 
the studied seedling and kernel traits, correlations 
between each pair of the studied traits were calculated 
under each condition separately. Under controlled 
conditions, significant and highly significant posi-
tive correlations were observed between each pair of 
the studied seedling traits. The highest positive and 
significant correlations were observed between BW 
and SW (r = 0.91**) (Fig.  4a). Oppositely, RW/SW 
showed the highest negative and significant correla-
tions with SL (r = -0.23**), SW (r = -0.34**), and LA 
with r = -0.37**. For the kernel traits, all correlations 
were positive and highly significant. The highest cor-
relation was between KD and KW with r = 0.73**. 
Interestingly, the correlation between the seedling 
and kernel traits varied from low to moderate values 
with many negative or nonsignificant correlations. 
The highest positive and significant correlation was 
between TKW and RL with r = 0.44**. The highest 
negative and significant correlation was between KD 
and LA with r = -0.53** (Fig. 4a).

Fig. 3   Average percentage changes in the studied seedling 
and kernel traits due to alkaline-saline (AS) stresses. Positive 
values indicate a reduction in the studied parameter compared 
with its value under controlled conditions while negative val-
ues indicate an increase in the values

Fig. 4   The correlation 
between each pair of the 
studied traits under (a) 
control conditions and 
(b) alkaline-saline stress 
conditions. Highlighted part 
is the correlation between 
studied traits in the different 
growth stages
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Similarly, under AS stress significant and highly 
significant correlations were observed between each 
pair of the studied seedling traits. BW showed the 
highest positive and significant correlations with SW 
and RW with r values of 0.89**and 0.92**, respec-
tively (Fig. 4b). RW/SW showed the highest negative 
and significant correlations with SL and LA with r 
values of -0.46** and -0.21**, respectively. For the 
kernel traits, all correlations were positive and highly 
significant with the highest r value of 0.71** between 
TKW and KW (Fig.  4b). Under AS condition, no 
highly significant correlations were found between 
TKW and any of the studied seedling traits. However, 
some significant correlations were found between 
TKW and some seedling traits such as RW, RL, and 
SW/SW with values of 0.24*, 0.25*, and 0.21*, 
respectively.

Genetic control of seedling and kernel traits under 
AS conditions

Markers‑traits association of seedling and kernel 
traits under controlled and AS stress conditions

The tested genotypes showed highly significant 
differences among the two studied conditions for 
seedling and kernel traits. Therefore, marker-trait 
association (MTA) analysis was done for each con-
dition separately. Single marker analysis (SMA) 
was used for MTA analysis and Bonferroni cor-
rection p-value < 0.05 was applied to identify the 
highly significant MTAs. Under controlled condi-
tions, a number of 292 markers were identified that 
could be classified into one and 291 markers were 
associated with seedling traits and kernel traits, 
respectively (Table S4). While under AS conditions, 
52 significant markers were identified that could be 
classified into 13 and 39 markers associated with 
seedling and kernel traits, respectively (Table 3 and 
Table S5). Out of the significant markers associated 
with the studied traits under each condition, only 
16 markers were common between the two condi-
tions (Fig. S2). However, we will focus on the sig-
nificant markers associated with AS conditions to 
understand more about the genetic control of AS 
tolerance. A summary of all the significant markers 
associated with AS tolerance is provided in Table 3, 
while the detailed results are presented in Table S5.
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Out of the 13 SNPs associated with the seed-
ling traits, eleven markers were associated with 
LA. They are distributed as seven SNPs on the A 
genome (on chromosomes 1A, 2A, 5A, 6A, and 7A) 
two SNPs on the B genome (on chromosomes 5B 
and 6B), and two SNPs were signed as unknown. 
The remaining two SNPs associated with RW and 
RW/SW were both located on 3B chromosome 
(Table  3 and Fig.  5a). Of the 39 SNPs associated 
with the kernel traits, 38 SNPs were associated with 
KL and one SNP associated with TKW (Table  3). 
The majority of the 38 SNPs associated with KL 
were located in genome B with a number of 25 
SNPs on chromosome 2B, five SNPs on chromo-
some 3B, and two SNPs on chromosome 7B (Fig. 5a 
and Table S5). The remaining five SNPs distributed 
as one SNP reside on the chromosome 2D and four 
SNPs were signed as unknown. The allele effects 
for all markers associated with all traits were posi-
tive except for RW/SW (Table 3, and Table S5). The 
phenotypic variation explained by these significant 
markers (R2) ranged from 40.67—48.42% for the 

seedling traits and ranged from 40.07 – 47.01% for 
the kernel traits.

Gene models harboring the significant markers 
associated with seedling and kernel traits 
under AS stress conditions, their functional 
annotation, and gene network

To provide more understanding of the genetic con-
trol of AS tolerance in each growth stage, gene mod-
els harboring the identified significant markers were 
investigated. A total of seven and twenty gene models 
were found to harbor the significant markers asso-
ciated with seedling and kernel traits, respectively 
(Table 3 and Fig. 5b). Out of the seven genes control-
ling the seedling traits, six are related to the LA, and 
one gene for the RW, meanwhile no candidate genes 
were identified for the RW/SW. All the 20 genes for 
the kernel traits are related to KL, and no genes were 
identified for the TKW (Table  3). No genes were 
found to tailor the variation of the measured traits at 
both stages at a time (Fig. 5b).

Fig. 5   Single marker analysis for alkaline-saline tolerance 
in the 48 diverse wheat genotypes evaluated in seedling and 
mature growth stages. a number of significant SNP mark-
ers associated with leaf area (black), kernel length (green), 

root weight (blue), root weight/shoot weight (red), and TKW 
(pink). b number of identified gene models harboring the sig-
nificant markers in each stage
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The functional annotation of the identified gene 
models and their network in relation to AS tolerance 
were investigated and presented in Table  S5, and 
Fig. S3, S4. Out of the seven gene models identified 
in the seedling growth stage, three genes were directly 
associated with AS tolerance (Fig. S3). The remain-
ing four genes were indirectly associated with AS 
tolerance as they were found to have a network asso-
ciated with the effect of AS stress such as response 
to oxidative stress, response to hypoxia, regulation of 
DNA, and production of cellulose-synthase-like pro-
tein (Table S5).

The majority of the 20 genes identified in the 
mature growth stage were functionally annotated to 
control salt stress tolerance, abiotic stress tolerance, 
the response to oxidative stress, and the response to 
osmotic stress in wheat (Table S5 and Fig. S4). For 
example, TraesCS2B02G276500 gene was annotated 
to produce F-box domain protein that controls the 
response to salt, response to osmotic stress, response 
to oxidative stress, and response to endoplasmic 
reticulum stress (Fig.  S4b). Moreover, two genes, 
TraesCS2B02G504900 and TraesCS2B02G276300, 
were functionally annotated to produce NBS-LRR 
disease resistance protein and tRNA dimethylallyl 
transferase (Table  S5). Their networks are associ-
ated with stem rust and stripe rust resistance in wheat 
(Fig.  S4c and S4m). Both of these genes harbored 
SNP markers associated with KL.

Gene enrichment analysis of the identified gene 
models

To understand more about the genetic control of AS 
tolerance in seedling and mature growth stages, gene 
enrichment of the identified seven and 20 genes in 
both stages was investigated. A cut-of-1% FDR was 
applied to detect the most important genes. A total of 
41 and 57 biological process pathways were identi-
fied in the seedling growth and mature growth stage, 
respectively (Table  S6). However, based on FDR 
1%, this number was reduced to 18 and 19 signifi-
cant pathways for seedling and mature growth stages, 
respectively (Fig. 6a). The 18 pathways identified in 
the seedling growth stage were found to be mainly 
controlled by two different genes that work in one 
network (Fig.  6b). This network mainly controls the 
production of beta-glucan, the cellular carbohydrate 

process, and some important plant alcohols such as 
glycerophospholipids, and inositol phosphate. The 
19 biological process pathways that control AS toler-
ance in the mature growth stage were found to form 
six different networks and were controlled mainly by 
eight gene models (Fig.  6c). Out of these networks, 
two were controlled by two different genes, while 
the remaining networks were controlled by only one 
gene. Network 1 was found to control the biosynthe-
sizing of glycoproteins and carbohydrates. Network 
2 was found to control the metabolic of tRNA, cyto-
kinin biosynthetic, and hormone biosynthetic. Net-
work 3 was found to mainly control the response of 
wheat plants to abiotic stresses such as drought recov-
ery and protein autophosphorylation. Network 4 and 
network 5 were found to control only one pathway/
network that is related to protein O-linked glycosyla-
tion and phenylpropanoid metabolism, respectively. 
The last network, network 6 was found to control the 
regulation of plant defense response.

Selection of superior genotypes for alkaline‑saline 
stress tolerance

The stress tolerance index (STI) of TKW was used to 
select the best ten genotypes from the studied mate-
rial (Table S7). Based on this STI, ten genotypes were 
selected to perform best (Table 4). Based on the ori-
gin of the selected genotypes, they could be classified 
into seven Egyptian genotypes, one Canadian geno-
type, one genotype from Afghanistan, and one with 
unknown.

To genetically confirm the superiority of the ten 
selected genotypes, the number of targeted alleles asso-
ciated with improving AS tolerance in the seedling and 
mature growth stage was investigated and presented 
in Fig.  7a. Genotype “QADRY 003” has the highest 
number of alleles related to kernel traits with a number 
of 39 alleles, followed by “Giza-156”, “Giza-36” and 
“Little club” with a number of 37, 33, and 25 alleles, 
respectively. Genotypes “93-11-14-2-2” and “SIDS12” 
have no target alleles associated with kernel traits. 
All the genotypes possess alleles for seedling-related 
traits, “Giza-156” has the highest number of target 
alleles with seven alleles out of 13 alleles. Based on 
the number of target alleles of the two growth stages, 
“Giza156”, “Giza36”, “Little club”, and “QADRY 
003” had the highest number of these alleles.
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To investigate the possibility of improving AS tol-
erance of wheat germplasm using the current studied 
materials, the genetic distance between each pair of 
the selected genotypes was calculated (Table S8). The 

phylogeny tree represented the genetic distance of the 
best ten genotypes is presented in Fig. 7b. These ten 
selected genotypes were found to be clustered in three 
different groups. Interestingly, the four genotypes 

Fig. 6   Gene enrichment of the identified gene models associ-
ated with Alkaline-Saline tolerance. a significant biological 
process pathways identified in the seedling stage and mature 

growth stages, b network of the identified biological process 
pathways in the seedling growth stage, c network of the iden-
tified biological process pathways in the mature growth stage
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with the highest number of target alleles were dis-
tributed among the three clusters. Cluster 1 contains 
two superior genotypes, “Little club” and “Giza36”. 
While the other two superior genotypes, “Qadry003” 
and “Giza156”, were located in cluster 2 and clus-
ter 3, respectively. High genetic distance was found 
between these four genotypes with values ranging 
from 0.3244 between “QADRY003” and “Giza 156” 
to 0.3844 between “QADRY003” and “Little club” 
(Table S8).

Discussion

Based on the soil analysis, the pH degree and 
soil content of the different cations and anions 
increased in the contaminated soils compared with 
the controlled ones. Based on Hayward and Wadle-
igh (1949), soils with pH < 8.5, EC > 4.0 dS/m, and 
high percentages of Ca2

+, Mg2
+, K+, and Cl− are 

defined as alkaline-saline soils. Therefore, we can 
conclude that the solution added to the tested soils 
was effective in converting them to alkaline-saline 
soils (Table 1).

Genetic variation and correlation of seedling and 
kernel traits under alkalinity‑salinity stress

AS stress was found to reduce most of the seedling 
traits except RW and RW/SW (Fig.  3). Increasing 
RW/SW ratio under AS suggests that the reduction 
occurred in SW was greater than the reduction of RW. 
Similar increasing in root/shoot ratio was reported 
previously in wheat (Zhang et al. 2020), Leymus chin‑
ensis (Liu et al. 2015), and maize (Cao et al. 2020). 
However, some studies reported an inhibition in both 
shoot and root growth in wheat seedlings (Guo et al. 
2010) and maize (Guo et  al. 2017) under AS stress. 
This reduction in both roots and shoots was explained 

Table 4   List of the best tolerant ten genotypes based on the 
ranking of all stress tolerance indices for thousand kernel 
weight, and their country

Genotype Country

Bahri Sirhosha Afghanistan
Giza-152 Egypt
Giza-156 Egypt
93-11-14-2-2 Canada
Giza-36 Egypt
MISR2 Egypt
Giza-148 Egypt
Little Club Unknown
SIDS12 Egypt
QADRY 003 Egypt

Fig. 7   The best selected 
ten genotypes based on the 
highest TKW under AS 
stress conditions. a number 
of target alleles associ-
ated with the tolerance in 
the seedling and maturity 
growth stages. b phylogeny 
tree represents the genetic 
distance among the 10 
selected genotypes
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due to the negative effect of AS on cell division, and 
nutrient uptake, leading to less biomass accumula-
tion and consequently shorter root and shoot. Fur-
thermore, in the current study the highest reduction 
in seedling traits was found in LA (Fig. 3). Previous 
studies reported a great reduction of wheat LA due to 
the high pH, osmotic stress, and ion toxicity exerted 
by both the salinity and alkalinity stress (Yang et al. 
2008a, b).

Moreover, all kernel traits were significantly 
reduced under AS stress. The highest reductions 
accounted for KD and KW (Figs. 2b, c and 3). Previ-
ous studies reported that the alkalinity-salinity stress 
greatly reduced yield-related traits which confirms 
our results (Sharma et  al. 2010a). High pH environ-
ments were reported to inhibit ion absorption as a 
result of loss of the physiochemical gradient inside 
the root and reduce the solubility of some macro and 
micronutrients thus resulting in ion imbalance and 
impaired plant growth (Shi and Zhao 1997; Yang 
et al. 2008a, b). Therefore, the reduction of all kernel 
traits and some seedling traits in the current study can 
be attributed to ion imbalance under the effect of both 
alkalinity and salinity.

In the current study, either at the seedling stage or 
at the maturity stage we applied both alkalinity and 
salinity stress together, meaning that the plants expe-
rienced very severe stress. All of the aforementioned 
studies reported that alkalinity stress is distinctive 
from salinity stress. The effect of AS is more severe 
than salinity stress alone as well as alkalinity stress 
alone (Paz et al. 2012). This indicates that the plants 
had developed independent mechanisms to adapt 
and keep growing under both stresses. Based on the 
ANOVA, significant and highly significant differences 
were found between treatments and among the tested 
genotypes. This significant variation with the high 
heritability values for most traits, suggests that this 
collection is suitable for selection to improve these 
traits under AS conditions. Furthermore, the highly 
significant differences between the control and AS 
experiments allow us to discriminate between tolerant 
and susceptible genotypes under both conditions.

Significant and highly significant correlations were 
observed for the seedling traits under both conditions 
(Fig.  4a, b). Previous studies reported the presence 
of highly positive correlations among seedling traits 
under salinity-alkalinity stress in rice (Lv et al. 2015). 
In line with the aforementioned studies, our findings 

suggested that the studied seedling traits could be val-
uable parameters for further assessing saline-alkaline 
stress tolerance in wheat. Out of the studied seedling 
traits, root weight had the highest correlation value 
with other seedling traits under both control and AS 
conditions confirming the role played by roots in 
improving AS tolerance. Moreover, highly positive 
correlations were detected among all kernel traits 
under both conditions (Fig.  4a, b). Previous stud-
ies reported a highly significant positive correlation 
between kernel traits (Li et al. 2007, 2019a; Mourad 
et  al. 2021; Huang et  al. 2006). These high correla-
tions among the kernel traits may indicate that they 
are under common genetic control. Therefore, we can 
conclude that the studied kernel traits are indirectly 
correlated to grain yield since they are correlated 
with TKW. Moreover, negative or nonsignificant cor-
relations were found between the seedling-related 
and kernel-related traits under AS. These results sug-
gested that the traits of both stages are under inde-
pendent genetic controls. Therefore, understanding 
the genetic control of AS tolerance in each growth 
stage is important and required to accelerate wheat 
breeding programs that target improving wheat toler-
ance to such severe stress.

Marker‑trait associations and the putative candidate 
genes

The recently studied population is a highly diverse 
one that has been collected from 12 different coun-
tries (Table  S1). Furthermore, it was reported as 
an effective population to detect marker-trait asso-
ciations with different stresses (Mourad et  al. 2020, 
2021; Abou-Zeid and Mourad 2021; Ahmed et  al. 
2022; Amro et  al. 2022; Mohamed et  al. 2023). In 
the current study, highly significant variations and 
high degrees of heritability were found for almost 
all the studied traits. Therefore, testing marker-trait 
associations of the studied traits using this popula-
tion would be highly informative. The number of 
studied genotypes (48-genotypes) was appropriate for 
single marker analysis (SMA). Due to the advances 
in sequencing methods, many marker data sets have 
been widely used in wheat genotyping. One of these 
marker sets is 25K-SNP array which was reported 
as an effective marker set (Aleksandrov et al. 2021). 
Moreover, this marker set was effective in detecting 
genomic regions controlling the resistance/tolerance 
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to different biotic/abiotic stresses in the same studied 
population (Esmail et al. 2023; Mourad et al. 2023a, 
b).

In the current study, SMA identified a total of 259 
and 52 SNP markers significantly associated with the 
studied seedling and kernel traits under controlled 
and AS conditions, respectively (Fig.  S2). Interest-
ingly, only 16 markers commonly control the stud-
ied traits under both conditions. This low number of 
common markers suggests the presence of different 
genetic systems controlling the studied traits under 
both conditions. Due to the severe effect of AS on the 
studied traits and the urgent need to improve wheat 
tolerance to such stress conditions, more concern was 
drawn to the genetic control of the studied traits under 
AS in the current study.

The 52 significant markers identified under AS 
conditions had a major effect on the traits they are 
controlling as they explained more than 10% of 
the phenotypic variations (Table  3 and Table  S5). 
The highest number of significant markers was 
identified for LA and KL in seedling and mature 
growth stages, respectively. These significant mark-
ers were distributed among eight and five chro-
mosomes for LA and KL, respectively (Fig.  5a). 
Therefore, a wide genetic system was suggested to 
control each trait. Such a wide genetic system was 
reported previously to control LA and kernel traits 
in wheat which confirms our results (Wang et  al. 
2002; Ramya et al. 2010; Okamoto et al. 2013; Cui 
et al. 2014; Marzougui 2019; Mourad et al. 2023a). 
A total number of seven and 20 gene models was 
found to harbor the significant markers associ-
ated with seedling and kernel traits, respectively 
(Table 3). Interestingly, none of the identified gene 
models were found to commonly control seedling 
and kernel traits suggesting the presence of two dif-
ferent genetic systems controlling AS tolerance in 
each growth stage (Fig. 5b.). The absence of com-
mon gene models in the two growth stages sup-
porting the nonsignificant or negative correlations 
found among the traits of both growth stages under 
AS conditions (Fig.  4b). Noteworthy to be men-
tioned that, in a previous study Hasseb et al. (2022) 
investigated the effect of salinity stress on seed ger-
mination and seedling development in a larger pop-
ulation (n = 177) encompassing the 48 genotypes 
harnessed in the current study. No common alleles/
markers were identified in the current study and in 

the previous one, indicating that the alleles/markers 
are novel and suggesting that AS is under independ-
ent genetic control relative to salinity.

Based on the functional annotation and gene net-
works of the identified gene models in each growth 
stage, most of the identified gene models were 
associated with AS tolerance which confirmed our 
SMA results (Fig. S3, S4, and Table S5). For exam-
ple, TraesCS3B02G212900, associated with RW in 
the seedling stage, was functionally annotated to 
encode respiratory burst oxidase homologs (RBOHs) 
(Fig.  S2). The distribution of the RBOHs impaired 
root development, and reduced superoxide produc-
tion in Arabidopsis (Esparza-Reynoso et  al. 2023). 
RBOHs were reported to modulate plant develop-
ment, especially root development under salinity 
and drought stresses by triggering the indigenous 
production of reactive oxygen species (ROS). They 
were found to be responsive to abiotic and biotic 
stresses including salinity stress in a range of crop 
and model plants (Wang et  al. 2018). Moreover, 
TraesCS2B02G276500 (associated with KL in the 
mature growth stage) was found to control the F-box 
domain. This gene family contains many genes that 
control plant response to different stresses in cere-
als. For example, the gene TaFBA-2A was reported 
to positively control salinity tolerance in transgenic 
plants of rice by increasing grain-related traits such 
as seed size and thousand kernel weight (Gao et  al. 
2022). Based on our results and the previous ones, we 
can conclude that our SMA results are accurate and 
could be used to provide more understanding about 
the genetic control of AS in wheat.

Gene enrichment analysis of the identified gene 
models

Due to the presence of two different genetic systems 
controlling AS tolerance in the two growth stages, it 
was worth detecting the biological processes that lead 
to the tolerance in each growth stage. Therefore, gene 
enrichment analysis was conducted for gene models 
identified in each growth stage (Fig. 6). Based on this 
analysis, a total of 18 and 19 highly significant path-
ways was found to control the tolerance in the seed-
ling and mature growth stages, respectively.

The 18 pathways identified in the seedling 
growth stage were found to work in one network 
(Fig.  6b). This network controls the production of 
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some biological components such as β-glucan, ino-
sitol polyphosphate enzyme, cellular carbohydrates, 
and sugar alcohols. β-glucan metabolic biosynthe-
sis includes some important proteins such as callose 
synthase-like proteins (GSLs). Callose is depos-
ited primarily at the cell plates and cell walls of the 
newly proliferated cells (Zhong et  al. 2023). It has 
been demonstrated that callose positively regulates 
plant tolerance to abiotic stress via prompt accumu-
lation of callose under biotic and abiotic stressors 
(Wang et  al. 2022). Inositol phosphate enzyme acti-
vates the sulphate transport to leave receptors. This 
enzyme is highly sensitive to high levels of sodium, 
thus characterized as a salt-tolerance enzyme (Gil-
Mascarell et al. 1999). In this study, the production of 
this enzyme was controlled by TraesCS6A02G373800 
gene that was associated with LA and functionally 
annotated to encode 3(2),5-bisphosphate nucleosidase 
HAL2 (Table S5). It was reported that the overexpres-
sion of HAL2 conferred salinity tolerance via regulat-
ing osmolyte synthesis and ion transport (Murguía 
et  al. 1995). The japonica rice cultivar HJ19 plants 
overexpressed the RiceHAL2-like (RHL) gene and 
showed healthier leaves under salinity stress at the 
seedling stage (Li et  al. 2002). In Arabidopsis, the 
Inositol phosphate enzyme is essential for leaf mor-
phogenesis and venation (Robles et  al. 2010). Fur-
thermore, polyols and sugar alcohols were reported 
to play a vital function in the osmotic adjustment 
and stabilization of proteins and membranes (Hasa-
nuzzaman et  al. 2017). Therefore, enhanced salt 
stress tolerance is observed in plants overexpressing 
metabolic, polyols, and sugar alcohol genes. Moreo-
ver, cellular carbohydrates were reported to play an 
important role in improving wheat tolerance to salin-
ity and abiotic stress (Naz et al. 2022). Based on our 
results and the previous studies, we can conclude that 
this network and its controlling genes are very impor-
tant in improving wheat tolerance to AS at the seed-
ling growth stage.

The 19 biological pathways identified in the 
mature growth stage were found to form six impor-
tant networks (Fig.  6c). The first network was con-
trolled by two different genes that are working 
together in improving the content of wheat kernels of 
different proteins such as glycoprotein (also known as 
gluten) and glycosylated proteins. Glycoproteins are 
essential in wheat flour. Glucosyltransferase enzymes 
and glycoproteins were reported to regulate kernel 

size and improve plant tolerance to abiotic stresses 
in cereal crops (Dong et al. 2020; Chang et al. 2021). 
Therefore, this network and its genetic control are 
very important in improving wheat content of protein 
under AS stress conditions. The same role was found 
for Network 4 which controlled the Protein-o-linked 
glycosylation biological process pathway. Network 
2 was found to control tRNA metabolism in wheat 
kernels. Some important enzymes are included in the 
tRNA metabolism such as tRNA dimethylallyltrans-
ferase (tRNA-IPT). The tRNA-IPT genes play a cru-
cial role in plant-abiotic stress responses (Ghosh et al. 
2018). In wheat, 24 IPT genes were identified includ-
ing the gene TraesCS2B02G276300 (encodes TaIPT4-
2B) that upregulated under drought stress (Wang et al. 
2023). In tomato, the tRNA dimethylallyltransferase 
coding genes were upregulated under salinity stress, 
and the high level of cytokinin enhanced salinity tol-
erance (Žižková et al. 2015). Accumulating cytokinin 
as a result of low expression of cytokinin oxidases 
enzymes positively affected grain yield in rice and 
wheat (Ashikari et  al. 2005; Yeh et  al. 2015; Zhang 
et  al. 2012; Li et  al. 2018). Network 3 controls the 
protein autophosphorylation pathway that leads to the 
recovery from abiotic stresses such as drought and 
salt. Moreover, TraesCS2B02G282500 gene that con-
trols this network was functionally annotated to pro-
duce a leucine-rich repeat kinase 2 (LRRK2) protein. 
Previous studies reported that knocking down the 
leucine-rich repeat in wheat resulted in a reduction in 
grain yield (Fang et  al. 2020). Furthermore, in rice, 
a leucine-rich repeat protein is implemented in grain 
development and quality (Luan et  al. 2022). Trans-
genic plants of rice showed drought and salt stress 
tolerance after overexpressing receptor-like kinase 
(OsSIK1) with extracellular leucine-rich repeat (Ouy-
ang et  al. 2010). This gene has an important role in 
controlling kernel quality and salt tolerance in wheat. 
Network 5 was found to mainly control phenylpropa-
noid metabolism. Phenylpropanoid metabolism pro-
duces flavonoids that are implemented in the scaveng-
ing of the excess ROS produced upon plant exposure 
to various abiotic stresses (Nakabayashi and Saito 
2015). Overexpression of the phenylpropanoid regu-
lating genes from wheat in tobacco increased osmotic 
stress tolerance as well as the chlorophyll content 
(Wei et  al. 2017). The treatment of wheat with 50 
mM NaCl enhanced the expression of the phenyl-
propanoid -related genes and increased the levels of 
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phenylpropanoid which in turn improved its nutri-
tional value (Ma et  al. 2019; Cuong et  al. 2020). In 
rice, overexpression of the gene Grain Size and Abi‑
otic stress tolerance 1 (GSA1) increase the grain size 
under abiotic stresses, via increasing the biosynthesis 
of flavonoids after switching on the phenylpropa-
noid pathway (Dong et al. 2020; Zhang et al. 2021b). 
Network 6 was found to negatively control the plant 
defense system. TraesCS2B02G279000 which con-
trols this network was functionally annotated to 
encode tetratricopeptide repeat protein (TTL1). TTL1 
was reported as a required protein for abscisic acid 
(ABA)-regulated responses (Rosado et al. 2006). The 
accumulation of ABA at later stages of grain growth 
was reported to prevent precocious germination and 
premature hydrolysis of starch (King 1976). Further-
more, ABA is known as a major phytohormone that 
plays an essential part in plant response toward varied 
range of abiotic stresses including high level of salin-
ity. Previous studies reported the negative regulation 
of ABA in the plant immunity system pathways (Kim 
et al. 2011). Based on previous studies, the negative 
regulation of plant defense system results in improv-
ing wheat tolerance to abiotic stresses including AS 
stress.

The identified gene models seem to be highly 
important in improving AS tolerance in seedling 
and kernel growth stages. Furthermore, gene mod-
els identified in the mature growth stage control AS 
tolerance combined with high levels of wheat qual-
ity traits. Pyramiding of genes controlling the tol-
erance in both growth stages will accelerate wheat 
tolerance to such an expected severe stress by pro-
ducing genotypes with high levels of tolerance in 
different growth stages.

Selection of the best candidate parents based on 
performance as well as genetic distance

Selection of the best genotypes that can be used as 
candidate parents in breeding programs is always 
challenging. One of the challenges that face plant 
breeders is the presence of many selection indices. It 
was reported that combining many selection indices 
provides more accurate results (Thiry et  al. 2016; 
Pour-Aboughadareh et  al. 2019). In the current 
study, the best ten genotypes were selected based on 
the average sum of ranks (ASR). ASR was reported 

to provide more understanding of the response of 
the evaluated genotypes and has been used widely 
in different breeding programs to select superior 
genotypes (Pour-Aboughadareh et  al. 2019; Belay 
et  al. 2021). Furthermore, the selection was done 
based on TKW as it is the most important yield trait 
in wheat. Out of the ten selected genotypes, seven 
were Egyptian. Salt tolerance was reported previ-
ously in Egyptian wheat germplasm (El-Hendawy 
et al. 2005; Gadallah et al. 2017). However, no pre-
vious studies evaluated Egyptian wheat to combine 
alkalinity and salinity stresses. Combining pheno-
typic selection with extensive genetic analyses such 
as population structure, genetic distance, and asso-
ciation mapping results were found to be an effec-
tive approach to identifying the best parents that 
could improve target traits (Eltaher et al. 2021a, b, 
2022). Therefore, the number of target alleles asso-
ciated with seedling and kernel traits was detected 
in the ten-selected genotypes. Based on this num-
ber, four genotypes were detected. These four 
genotypes were found to be located in three differ-
ent subpopulations and had a high genetic distance 
between them (Table  S8). It was reported that the 
best parents to be used in breeding programs are 
those with high genetic distance (Bertan et al. 2007; 
Abou-Zeid and Mourad 2021; Mourad et  al. 2022, 
2023a, b; Esmail et  al. 2023). Therefore, we can 
conclude that crossing the four genotypes in future 
breeding programs could accelerate wheat tolerance 
to AS and produce highly tolerant genotypes in dif-
ferent growth stages combined with highly qualified 
kernel yield.

Conclusion

Alkaline-salinity stress became a global problem that 
affects wheat yield. Based on the current study, a 
negative impact of AS on the seedling traits and the 
kernel traits, except RW and RW/SW, was observed. 
While the traits of each stage exhibited high posi-
tive correlations, the correlations among the traits of 
both stages were mostly negative or nonsignificant, 
indicating that they are under independent genetic 
controls. This is supported by the absence of com-
mon gene models controlling alkaline-saline toler-
ance in both growth stages. The recent study, for the 
first time, unlocked the genetic role of AS tolerance 
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in two different growth stages of the wheat life cycle 
and identified major genes controlling AS tolerance 
in each stage. Furthermore, tolerant and high-yielding 
genotypes were selected in this study based on the 
phenotypic and genotypic conceptions. These geno-
types seem to be a good source of AS tolerance in 
spring wheat.
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