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Abstract 
Background and aims  Hyperaccumulation is gen-
erally defined as plants exhibiting concentrations of 
metal(loid)s  in their shoots at least an order of magni-
tude higher than that found in ‘normal’ plants, but this 
notional threshold appears to have limited statistical 
underpinning. The advent of massive (handheld) X-ray 
fluorescence datasets of herbarium specimens makes it 
increasingly important to accurately define threshold cri-
teria for recognising hyperaccumulation of metal(loid)

s such as manganese, cobalt, nickel, zinc, arsenic, sele-
nium, and rare earth elements.
Methods  We use an extensive dataset of X-ray fluo-
rescence elemental data of ~ 27,000 herbarium speci-
mens  together with Inductively Coupled Plasma 
Atomic Emission Spectroscopy (ICP-AES) elemental 
data of 1710 specimens to corroborate threshold val-
ues for hyperaccumulator plants.  The distribution of 
elemental data was treated as a Gaussian mixture model 
due to subpopulations within the dataset and sub-popu-
lations were clustered in ‘normal’ and ‘hyperaccumula-
tor’ classes. The historical hyperaccumulator thresholds 
were compared to the concentrations corresponding to 
the value for which the cumulative distribution function 
of the Gaussian model of the hyperaccumulator class 
reaches a probability of 99%.
Results  Our analysis of X-ray fluorescence data 
indicates that the historical thresholds for manganese 
(10,000 µg g−1), cobalt (300 µg g−1), nickel (1000 µg 
g−1), zinc (3000  µg g−1), arsenic (1000  µg g−1), and 
selenium (100 µg g−1) are substantially higher than then 
the concentrations required to have a 99% probability of 
falling in the hyperaccumulator class at 1210 µg g−1 for 
manganese, 32 µg g−1 for cobalt, 280 µg g−1 for nickel, 
181 µg g−1 for zinc, 8 µg g−1 for arsenic, and 10 µg g−1 
for selenium. All of the historical  hyperaccumulation 
thresholds exceed the mean concentration of the hyper-
accumulator populations and fall in the far-right tail of 
the models.
Conclusions  The historical thresholds for manga-
nese, cobalt, nickel, zinc, arsenic, and selenium are 
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considerably higher than necessary to identify hyper-
accumulators. Our findings provide a more precise 
understanding of the statistical underpinnings of the 
phenomenon of hyperaccumulation, which will ensure 
consistency in reporting on these plants.

Keywords  Bimodality · Hyperaccumulator · 
Ultramafic · Threshold · XRF

Introduction

Plant communities in the landscape directly relate to 
underlaying environmental conditions, such as the 
chemical features of the soil (Küchler 1988). Plants 
take up both essential nutrients from the soil, but also 
potentially non-essential toxic elements (Page et  al. 
2006). The concentrations of these elements can vary 
significantly, with high concentrations of non-essen-
tial elements requiring plant species to evolve specific 
adaptations to survive or even thrive in toxic soils such 
as metalliferous soils  including those derived from 
ultramafic bedrock (Baker and  Brooks  1989; Baker 
et  al. 2010). Plants exhibit three distinct modes  based 
on their  shoot metal(loid) accumulation in response 
to soil  metal(loid)s bioavailability, namely excluders, 
bioindicators, and (hyper)accumulators (Pollard  2002; 
Krämer 2010; van der Ent et al. 2013). The most com-
mon adaptation to deal with toxic soils is the excluder 
response, in which plants exhibit restricted uptake of 
metal(loid)s, but once physiological mechanisms can-
not cope unregulated uptake leads to death of the plant 
(Baker 1981). The less common adaption is the indica-
tor type, and compared to excluders, indicators have lim-
ited or controlled uptake until phytotoxicity occurs. The 
last and rarest type of adaptation is (hyper)accumulation, 
a response in which metal(loids) are actively taken up 
and concentrated in the above-ground shoot without any 
symptoms of toxicity (Baker 1981, 1988).

Hyperaccumulators are of special interest because 
these plants can be used to remediate contaminated 
soils (Chaney et al. 1997). In the 1970s, soil contamina-
tion had become an important problem across Europe 
and the USA (Chaney et al. 2018), and hyperaccumula-
tors were developed as a tool to remediate soils in the 
process of phytoextraction (Chaney et al. 1997). Since 
then, hyperaccumulators, especially those for   (Ni), 
have been put to use as “metal crops” in phytomining, 
and field trials have been conducted in Albania (van der 

Ent et  al. 2016) and Malaysia (Nkrumah et  al. 2019). 
Hyperaccumulators can also be used to indicate metal-
rich soils, as illustrated by a recent study in which the 
locations of herbarium specimens with high yttrium 
(Y) correlated with known geology with anomalous 
Y occurrences (van der Ent et  al. 2023). Given the 
potential uses of hyperaccumulator plants, extensive 
attempts, from field surveys to systematic herbarium 
X-ray Fluorescence (XRF) scanning, have been per-
formed to discover more suitable species for phytoex-
traction and phytomining (Chaney et al. 2018).

The term ‘hyperaccumulator’ was first coined for the 
tree Pycnandra acuminata from New Caledonia which 
has extraordinarily high Ni in its latex (Jaffré et al. 1976). 
The term was then used to define Ni hyperaccumulators 
(1000 µg g−1 dry weight) and subsequently extended to 
other elements with threshold values set to 10,000 µg g−1 
for manganese (Mn), 300 µg g−1 dry weight for cobalt 
(Co) and copper (Cu), 3000 µg g−1 for zinc (Zn), 1000 µg 
g−1 dry weight for the sum of rare earth elements (REEs) 
and arsenic (As), and > 100 µg g−1 dry weight for sele-
nium (Se), cadmium (Cd) and thallium (Tl) (Baker and 
Brooks, 1989; Reeves 2003; van der Ent et  al. 2013). 
Tentative hyperaccumulation thresholds have also been 
proposed for other elements such as barium (Ba) at 
1000 µg g−1 dry weight, strontium (Sr) at 3000 µg g−1 
dry weight, tin (Sn) at 300 µg g−1 dry weight, boron (B) 
at 3000 µg g−1 dry weight, and antimony (Sb) at 1000 
µg g−1 dry weight (van der Ent et al. 2021). Typically, 
these values are not derived from statistical analysis, 
but are rather proposed as approximate values 2–3 orders 
of magnitude higher than in leaves from “normal” plants 
on “normal” soils or at least one order of magnitude 
greater than in leaves from other plants growing on the 
same type of metalliferous soils (van der Ent et al. 2013). 
Given the difficulty in defining a truly “normal” speci-
men for either plants or soils, a more rigorous assessment 
of these thresholds is timely and needed.

Historically, such statistical analyses have been dif-
ficult to perform due to the sheer rarity of specimens 
displaying hyperaccumulation, which has led to differ-
ent interpretations of the phenomenon and overly strict 
adherence to precise thresholds for recognition of hyper-
accumulation (van der Ent et al. 2021). For example, the 
criterion for Ni hyperaccumulation was historically set 
at 10–1000-fold average Ni concentration in plant leaves 
on the basis of a bimodal distribution observed in previ-
ous studies (Brooks and Radford 1978). However, such 
bimodal distributions have been found in phylogenetically 
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restricted or edaphically limited datasets, such as in the 
genus Alyssum in the Brassicaceae, or in plants from 
ultramafic soils, but a lognormal distribution has also 
been observed in a tropical ultramafic dataset (Brooks and 
Radford 1978; Reeves 1992; Pollard et al. 2002; Reeves 
et al. 2017). A study that analysed a wide range of differ-
ent elements in plants from Sabah (Malaysia) found that 
Ni concentrations in plants occurring on ultramafic soils 
follow a distinct bimodal frequency distribution, and the 
two groups are centred at 250–850 µg g−1 Ni (van der Ent 
et al. 2020). This bimodal frequency suggests two groups 
of plants with the group centred at 250–850 µg g−1 Ni 
having evolved adapations in their uptake and transloca-
tion pathways (Merlot et  al. 2014). Specimens falling 
under the first group centred at 250 µg g−1 Ni are ‘nor-
mal’ plants (i.e., non-hyperaccumulators) in which Ni 
concentrations are typically < 100  µg g−1 Ni (Dalcorso 
et  al. 2014). Meanwhile, hyperaccumulators fall within 
the right tail of the second group centred at 850 µg g−1 Ni 
(van der Ent et al. 2020).

This distinction has broader implications. Bimodal 
frequency distributions are suggestive of a qualita-
tively and quantitatively different group of plants with 
a distinct physiology (Pollard et al. 2002), and the tail 
of a continuous distribution would suggest that hyper-
accumulation is an extension of normal physiological 
processes. By comparison, the frequency distributions 
of essential elements typically have log-normal distri-
butions, with concentrations of micronutrients (e.g., 
Cu, Ni, Zn) controlled over a narrow optimum range, 
although Mn has a comparatively wide range in many 
plants (van der Ent et al. 2020).

The use of handheld XRF instrumentation to obtain 
elemental concentration  data from herbarium speci-
mens, combined with the development of a universal 
data analysis pipeline to process herbarium XRF data 
(Purwadi et  al. 2022), is enabling the acquisition and 
processing of enormous datasets, increasingly suffi-
cient to approach fundamental questions regarding the 
incidence of trace element hyperaccumulation (McCa-
rtha et  al. 2019; van der Ent et  al. 2019a; Do et  al. 
2020; Gei et  al. 2020; Abubakari et  al. 2021a, b, c; 
Belloeil et al. 2021). Standardisation in setting hyper-
accumulation threshold values is essential to avert 
ambiguity in scientific reporting and identify genu-
ine hyperaccumulator plants (van der Ent et al. 2013). 
Here, we use a large dataset of XRF elemental data of 
~ 27,000 herbarium specimens, complemented with 
smaller dataset of Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES) data to re-evaluate 
threshold values for recognising hyperaccumulation.

Materials and methods

Handheld XRF data acquired during previous studies, 
as well as unpublished data, were combined to obtain 
a large dataset for statistical analysis (van der Ent et al. 
2019b; Gei et  al. 2020; Abubakari et  al. 2021a, b, c). 
This led to a total of 26,942 measurements consisting of 
the following: 5981 measurements covering five fami-
lies, 21 genera, and 1245 species from Malaysia (van 
der Ent et al. 2019b, 10,062 measurements covering 96 
families, 281 genera, and 1484 species from New Cal-
edonia (Gei et al. 2020), 2779 measurements covering 7 
families, 449 genera, and 559 species from Papua New 
Guinea (Do et  al. 2020, 6970 measurements covering 
seven families, 73 genera, and 266 species from Aus-
tralia (Abubakari et al. 2021a, b, c), and 1150 measure-
ments covering 38 families, 135 genera, and 251 spe-
cies from Australia (unpublished). All the data were 
acquired with the same handheld XRF instrument 
(Thermo Niton Xl3t 950) and measurement protocol 
(30 s measurement time per specimen in ‘Soils Mode’ 
on top of the same titanium backing plate).

The data were processed using a universal pipeline in 
the GeoPIXE analysis package (CSIRO), which utilises a 
Dynamic Analysis (DA) algorithm developed for nuclear 
microprobe techniques and synchrotron-based XRF 
(Ryan et al. 1990, 2005, 2015). The algorithm deconvo-
lutes a spectrum into fluorescence components for each 
element based on an iterative process that involves non-
linear least-squares and linear fit (Ryan et al. 2015). The 
fundamental parameters model developed for the instru-
ment has been described elsewhere (Purwadi et al. 2022). 
The density and thickness of herbarium specimens 
were predicted and coupled with instrument-related 
parameters, and the resulting spectra were processed in 
GeoPIXE (Purwadi et  al. 2023) giving more accurate 
results than the empirical calibrations used by previous 
studies (van der Ent et al. 2019b; Gei et al. 2020; Abuba-
kari et  al. 2021a, b, c). An additional dataset derived 
from 1710 leaves measured via Inductively Coupled 
Plasma Atomic Emission Spectroscopy (ICP-AES) (van 
der Ent et al. 2020) was also subjected to the same mix-
ture-model fitting procedure as a comparison.

In general, plants can be classified into normal and 
hyperaccumulators classes (Baker 1981; van der Ent 
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et al. 2013). Two gaussian models were fitted into each 
ICP-AES and XRF concentration group to represent 
these assumed classes. Using the R package ‘mixR’ 
(Yu 2022), a gaussian mixture model was fitted into the 
elemental distribution obtained from processing XRF 
spectra. To address the effect of the limit of detection 
(LOD) in both groups, samples below LOD for each ele-
ment were assigned new values produced by regression 
on order statistics (Cohn and Helsel 1988; Helsel 1990; 
Harter 2006) using the R package ‘NADA’. The regres-
sion on order statistics requires two columns as an input. 
One column is for elemental concentration, and another 
column has a value ‘true’ indicating the concentration 
above LOD or ‘false’ indicating the concentration value 
below LOD. Any row indicated to be below LOD was 
set to have a concentration of 1, and then regression 
on order statistics was used to estimate and replace the 
concentrations below LOD by using a linear regression 
based on the positions of the ‘true’ concentrations and 
their normal quantile. The modelled data were trans-
formed to log normal before two gaussian models were 
fitted. Only Mn, Co, Ni, and Zn concentrations were 
available from ICP-AES datasets, whilst the XRF data 
additionally had Y, Se, and As data.

Results

In total, ~ 27,000 XRF data points (i.e., herbarium spec-
imens) and ~ 1700 ICP-AES data points were collated 
and processed in this study. The handheld XRF instru-
ment was found to have a detection limit of 50–100 µg 
g-1 for most transition elements (Purwadi et al. 2022). 
Approximately 50% of the total XRF measured speci-
mens were found to have at least one element above the 
detection limit (14,425 specimens for Mn, 426 speci-
mens for Co, 2258 specimens for Ni, 3596 specimens 
for Zn, 77 specimens for As, 81 specimens for Se, and 
105 specimens for yttrium (Y) as shown in Figs.  1 
and 2). Conversely, the previous ICP-AES measure-
ments found at least one of Mn, Co, Ni, and Zn above 
the detection limit in > 80% of specimens. Since many 
specimens had metal(loid) concentrations below the 
detection limits, a regression on order statistics was 
employed to estimate values for those samples falling 
below the detection limits. The F-statistics results indi-
cated that the regression was significant, as shown in 
Figs.  S1–S3. Two gaussian models, representing nor-
mal (green) and hyperaccumulator (red) plants, were 

fitted to the ICP-AES Mn histogram (Fig.  1). To be 
classified as an Mn hyperaccumulator plant with at least 
a 99% probability, the XRF and ICP-AES datasets sug-
gest 1210 µg g−1 and 2850 µg g−1, respectively. These 
numbers are less than a third of the historical thresh-
old for Mn hyperaccumulators (black dashed vertical 
lines) at 10,000 µg g−1, which fell on the far-right side 
of the hyperaccumulator (red) gaussian model or histo-
gram for both datasets. The historical threshold for Co 
hyperaccumulators was 300  µg g−1, which lies in the 
far right of hyperaccumulator gaussian models at 9-fold 
and 60-fold than the concentration required to have a 
99% probability of being Co hyperaccumulators based 
on the XRF and ICP-AES datasets, respectively. The Ni 
historical threshold at 1000 µg g−1 was found below the 
mean of the hyperaccumulator gaussian model in ICP-
AES datasets (Fig.  2). Nevertheless, it still exceeds a 
99% probability of being Ni hyperaccumulators deter-
mined using both datasets. Regarding Zn, the histori-
cal hyperaccumulator threshold is 3000 µg g−1, which 
is at least 16 times greater than  the Zn concentration 
to attain a 99% probability of a sample  being a Zn 
hyperaccumulator. The XRF datasets also reported on 
As, Se, and Y concentrations (Fig. 3). Similar to other 
elements, the historical hyperaccumulator thresholds 
at 1000 µg g−1 for As and 100 µg g−1 for Se were 125 
times and 10 times greater than the concentration at a 
99% probability of being hyperaccumulators. Yttrium 
is part of REE groups and the historical REE hyperac-
cumulator threshold is the total REE concentration at 
1000 µg g−1. This threshold is more than 90-fold of the 
concentration required for a 99% probability of being a 
hyperaccumulator, based on Y alone (with Y typically 
making up 10–20% of total REEs).

Discussion

Hyperaccumulators have historically been classified by 
longstanding empirical thresholds (Baker and Brooks 
1989). These thresholds were established based on ele-
mental concentrations several magnitudes of magnitude 
higher than in other plants growing on the same soils 
(Reeves 2017; van der Ent et al. 2021). We have mod-
elled this as a two-populations model tested against a 
large dataset with a high fraction of hyperaccumulators, 
in order to establish a statistical basis for these thresh-
olds. By fitting two gaussian models representing nor-
mal and hyperaccumulator plants into Mn, Co, Ni, Zn, 
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As, Se, and Y concentrations, the historical hyperaccu-
mulator thresholds were assessed to determine whether 
they are sufficient to distinguish hyperaccumulators 
from normal plants based on elemental concentrations. 
It is self-evident that these thresholds are an abstraction 

imposed on a complex biological process, and the true 
distributions will vary via a host of complex underlying 
factors. A simple two-component model was chosen to 
avoid over-fitting, and to maximise consistency with the 
longstanding threshold-model in the literature.

Fig. 1   The histograms of manganese (Mn) and cobalt (Co) 
concentrations. A histogram comparison between the regres-
sion on order statistics and a constant value replacement is 
shown in Fig.  S1, and Tables  S1–S2 provide statistical sum-
mary of the original and ROS concentration. A gaussian mix-
ture model is fitted into the histograms resulting in two models 

representing the non-hyperaccumulator population (green area) 
and the hyperaccumulator population (red area). Black dashed 
vertical lines indicate the historical hyperaccumulation thresh-
old, and blue dashed vertical lines indicate the intersection 
between 99% probability (red lines) and concentration
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The results show that no historical thresholds 
occur in the gaussian models of normal plants. In 
general, all historical hyperaccumulator thresholds 
are more than the mean concentration of the hyper-
accumulator gaussian models and 1.5 to 125 fold of 
the minimum concentration required to fall under 

hyperaccumulator gaussian models with a 99% prob-
ability. The frequency distributions of both Mn and 
Zn exhibit long tail distributions, possibly because 
both elements are essential to plant growth (Dalcorso 
et al. 2014). Manganese is more abundant in soil than 
Zn (600 µg g−1 vs. 71 µg g−1) (Taylor and McLennan 

Fig. 2   The histograms of nickel and zinc concentrations. A 
histogram comparison between the regression on order sta-
tistics and a constant value replacement is shown in Fig.  S2, 
and Tables S1–S2 provide statistical summary of the original 
and ROS concentration. A gaussian mixture model is fitted 
into the histograms resulting in two models representing the 

non-hyperaccumulator population (green area) and the hyper-
accumulator population (red area). Black dashed vertical lines 
indicate the historical hyperaccumulation threshold, and blue 
dashed vertical lines indicate the intersection between 99% 
probability (red lines) and concentration
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1995), and plants thus may have adapted to absorb 
more Mn. Strongly Zn-enriched soils are very scarce 
globally, which may explain the paucity of Zn hyper-
accumulators compared to those for Mn and Ni 
(Reeves et  al. 2017). Both Mn and Zn play crucial 
roles in the activation of many enzymes (Broadley 
et al. 2007; Schmidt and Husted 2019). Manganese is 
a constituent of the plant enzyme called the Mn-clus-
ter which is responsible for water oxidation to release 
oxygen during photosynthesis (Schmidt and Husted 
2019), whilst Zn is found in all six enzyme classes 
(hydrolases, oxidoreductases, lyases, transferases, 
ligases, and isomerases) (Gupta et al. 2016).

The histograms of Co and Ni for both XRF and 
ICP-AES datasets showed a bimodal distribution. 
These distinct features of Co and Ni hyperaccumula-
tor plants may be attributed to the availability of the 
two elements in the soil, as most Co and Ni hyper-
accumulator plant species occur on ultramafic soils, 
which are simultaneously enriched in both elements 
(van der Ent et al. 2015a; Ent et al. 2016; Echevarria 
2018). The more distinct bimodal pattern in ICP-AES 
datasets than in XRF datasets may be because the 
XRF instrument detection limit is significantly higher 
than that of ICP-AES  method. Therefore, the ICP-
AES results have more specimens at intermediate 
concentrations. The histogram of ICP-AES Ni con-
centrations depicts ideal gaussian models in which 
one peak belongs to the normal and hyperaccumula-
tor plants.

Compared to other Mn, Co, Ni, and Zn, the num-
ber of samples above detection limits for As, Se, and 
Y are fewer, which is understandable since these ele-
ments are present at much lower concentrations in 
the environment. The minimum concentrations to 
be clustered with the As, Se, and Y hyperaccumula-
tor population at a 99% probability are also signifi-
cantly lower at 8 µg g−1, 10 µg g−1, and 11 µg g−1, 
respectively. Any samples with detectable As, Se, and 
Y with the XRF instrument are already extraordinary 
due to the relatively high detection limits of the XRF 
instrument used in this study.

The XRF instrumentation used in this study is 
the  most sensitive to elements Z 25–35 (Mn–Br), 
which includes hyperaccumulating transition met-
als such as Ni and Zn. The limit of detection for 
these elements is in the range of 50–100 µg g-1 and 
increases sharply for elements both below (Z < 13 
e.g., Al) and above (Z 40 e.g., Zr). Copper is highly 
regulated in most plants, typically present at around 
10  µg g-1  in leaves, which is below the instrumen-
tal LOD (94  µg g-1), so only cases of exceptional 
accumulation would be present in this dataset. 
Moreover, Cu (hyper)accumulation in plants is 
exceedingly rare outside of the Copperhills of Cen-
tral Africa (Lange et al. 2017). Similarly, Ni is typi-
cally < 10 µg g-1 in plants (albeit somewhat higher, 
20–50 µg g-1, in plants growing on ultramafic soils), 
and consequently, only 8% (2258 measurements out 
of 26,942) are > LOD of 97 µg g-1. This compares 

Fig. 3   The histograms of arsenic, selenium, and yttrium con-
centrations. A histogram comparison between the regression 
on order statistics and a constant value replacement is shown 
in Fig.  S3, and Table  S1 provides statistical summary of the 

original and ROS concentration. Black dashed vertical lines 
indicate the historical hyperaccumulation threshold, and blue 
dashed vertical lines indicate the intersection between 99% 
probability (red lines) and concentration
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to 14,425 or 54% of Mn > LOD and 3596 or 12% 
of Zn > LOD. Hence, there is one very impor-
tant caveat with XRF data: the dataset is strongly 
affected by the LODs for the XRF method. Due to 
high number of specimens below LOD, the majority 
of XRF results are not usable, rendering it difficult 
to model the distribution of elemental concentra-
tions below LOD. In this case, the ICP-AES data-
sets afford an opportunity to examine this effect due 
to the improved sensitivity of this method.

In conclusion, the results of this study show that 
the historical hyperaccumulator thresholds are to the 
right side of the hyperaccumulator gaussian model 
tail. So, the historical hyperaccumulator thresholds 
are acceptably conservative. The use of notional 
threshold values remains a crude way to detect hyper-
accumulation. It is, however, practical and, when 
used sensibly, can guide the identification of extreme 
physiological behaviour in the absence of physiologi-
cal definition of hyperaccumulation (van der Ent et al. 
2015b). These updated values, now underpinned by 
rigorous statistical analysis of a large population of 
hyperaccumulators, will help to distinguish genuine 
hyperaccumulators and ensure consistency in report-
ing on these plants.
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