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Abstract 
Background Plants condition the biotic composition of 
their rhizosphere. In turn, this plant legacy on the soil biota 
may affect the performance of plants recruiting in their 
vicinity. Unravelling how plant-soil legacies drive plant 
recruitment is key to understand vegetation dynamics and 

plant community assembly. Studies on the topic usually 
focus on the effects of soil microbiota as a whole, while 
the relative role of different guilds of soil organisms in the 
plant recruitment processes is not usually dissected.
Aims Here, we used soils of Mediterranean woody 
plant species to test whether arbuscular mycorrhizal 
fungi (AMF) and small-size microbiota (< 50  µm) 
(MB) affect the germination success and growth of 
eight herbaceous plants.
Results We documented a significant increase in seed-
ling emergence probability when small-sized MB was 
present and no effect of AMF. In contrast, the above-
ground plant biomass decreased with the presence of 
MB and increased with that of AMF. Interestingly, those 
plants growing in the absence of MB and in soils from 
woody plants associated with higher AMF richness devel-
oped higher aboveground biomass.
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Conclusion This study brings new evidence on how 
soil microbial communities can determine the per-
formance of their associated herb community, and 
also, how the effects of different microbial guilds may 
change across the plant ontogeny. Given these results, 
the differential effect of soil microbial functional 
guilds should be considered to better understand plant 
soil legacies and feedbacks, potentially driving plant 
recruitment and community assembly.

Keywords Arbuscular mycorrhiza · Rhizosphere · 
Community assembly · Ontogeny · Plant-plant 
interactions

Introduction

Soil constitutes a key driver of vegetation dynam-
ics, affecting several processes related to the early life 
stages of plants and conditioning the relative abundance 
of species (Harper et al. 1965; Gómez-Aparicio 2008; 
Bever et al. 2010). Changes in soil properties may entail 
consequences for the performance of plants, strongly 
influencing plant diversity (Kulmatiski and Kardol 
2008; Bardgett and Wardle 2010; van der Putten et al. 
2013). For instance, a low soil water content can inhibit 
germination, while too waterlogged soils can impair 
plant performance and establishment (Dantas et  al. 
2020). However, the effects of soil properties are usu-
ally modulated by different factors, especially by the 
action of soil organisms (van de Voorde et al. 2011).

Plants modify the surrounding soil by producing 
and releasing chemical compounds, altering temper-
ature, and/or modifying soil moisture, which shapes 
the composition of soil communities, giving way to 
a plant-soil legacy (Garbeva et  al. 2008; Bardgett 
and Wardle 2010; van Dam et  al. 2010; Doornbos 
et al. 2012; Aleklett and Hart 2013). Through direct 
and indirect pathways, up to 40% of photosynthe-
sized fixed carbon is transferred from the plant to 
the rhizosphere, enabling higher microbial densities 
than in bulk soils (Berendsen et  al. 2012; Philippot 
et  al. 2013). Plant root exudates enhance or inhibit 
specific soil organisms inducing a selection that can 
impact their fitness (Garbeva et  al. 2004; Rudrappa 
et al. 2008; Doornbos et al. 2012). Mycorrhizal plant 
species secrete chemicals to establish symbioses 
with mycorrhizal fungi to improve nutrient uptake 
and water acquisition, whereas they avoid plant 

antagonists like pathogens or nematodes (Bucher 
2007; Sikes et al. 2009). The high specificity in plant-
microbial interactions makes plant species identity a 
main driver of soil microbial community composition 
(Miethling et al. 2000; Garbeva et al. 2008).

Experimental approaches studying the effect of 
plant-soil legacies on plant recruitment are embedded in 
the theory of plant-soil feedback and constitute a solid 
background to study the reciprocal effects between soil 
organisms and plants (McCarthy-Neumann and Kobe 
2010; van de Voorde et al. 2011). The soil community 
is composed of diverse microbial groups that can estab-
lish direct antagonistic or mutualistic relations with plant 
species. Microbial groups, such as decomposers, have a 
role in regulating soil nutrient availability for plants and 
hence can indirectly affect the balance between slow and 
fast-growing plant species (Zak et al. 2003; van der Hei-
jden et al. 2008). However, in plant-soil legacy studies, 
soil communities are generally considered as a whole, 
and few works have considered functional differentiation 
across soil guilds (but see Klironomos 2002; Wang et al. 
2019a, b; Martinović et al. 2021).

Analysing the relative effect of different soil micro-
bial functional groups on plant recruitment requires 
their isolation. Arbuscular mycorrhizal fungi (phylum 
Glomeromycota) (AMF, hereafter) constitute a key 
group for the success and performance of plants, espe-
cially in stressful environments (Nadeem et al. 2014). 
They establish one of the most common mutualistic 
symbiosis in natural systems, appearing in up to 70% 
of land plants (van der Heijden et al. 2015). Moreover, 
it can be easily separated from the rest of the members 
of the soil microbiota based on its size (see e.g. Wagg 
et al. 2014). Smaller soil microorganisms (ca. < 50 µm) 
(small-size MB, hereafter) comprise mainly bacte-
ria and other fungi (non-Glomeromycotan), including 
mutualistic, antagonistic (pathogenic), and decompos-
ers, but not AMF (Wagg et  al. 2014). Some authors 
have studied the role of soil microorganisms associ-
ated with plants on facilitation (Rodríguez-Echeverría 
et al. 2016), whereas others have considered the rela-
tive importance of AMF and different size-classes of 
microbiota on several ecological processes such as 
plant community assembly (Klironomos 2002), lit-
ter decomposition (Li et  al. 2020), or plant chemis-
try (Wang et al. 2019b). However, as far as we know, 
nobody has dissected the relative effect of AMF and 
small-sized MB on plant recruitment, from seedling 
emergence to vegetative growth.
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Another classical feature of plant-plant interaction 
is that studies dealing with soil organisms are often 
based on advanced plant stages (Hayman 1980; Kli-
ronomos 2002; Hamel and Strullu 2006; Noceto et al. 
2021). However, seeds and seedlings have reduced 
capacities to respond to antagonisms, so they encom-
pass the most critical survival stages, and they some-
times require the presence of third organisms to sur-
vive (Barton and Koricheva 2010; Hardoim 2019). 
Approaching early life stages in this field would 
improve the knowledge of how the rhizosphere affects 
plant recruitment dynamics (Alcántara and Rey 2012; 
Montesinos-Navarro et  al. 2019). This work aims to 
dissect the effect of different soil functional guilds 
during plant ontogeny, from seed emergence to veg-
etative growth. For that, we used the microbiota of 
natural soils modified by different arbuscular myc-
orrhizal long-lived woody plant species to test the 
establishment and growth of a set of fast-growing 
herbs (including non- and mycorrhizal species). This 
selection responds to difficulties of using woody plant 
species in this kind of experiments: they take longer 
times to develop and they have specific needs for 
space (Lekberg et  al. 2018). Besides, woody plant 
species are less sensitive to belowground organisms 
than herbaceous plants (Kulmatiski et al. 2008).

Specifically, we tested (i) whether the presence of 
AMF and/or small-size MB affects the emergence 
and performance of herbaceous plant species; and 
(ii) whether AMF richness, instead of their mere 
presence, may also affect the emergence and perfor-
mance of herbaceous plant species. We hypothesized 

that 1) plant performance should be higher in soils 
with small-sized MB due to the potential induction 
of germination caused by bacteria and the positive 
effects that have been reported in previous stud-
ies (Baskin and Baskin 2000; Rodríguez-Echeverría 
et  al. 2013). Also, 2) we expect that AMF should 
not affect seed germination since they establish once 
roots have grown. Finally, 3) an increasing AMF 
richness should benefit plant growth (Maherali and 
Klironomos 2007).

Materials and methods

Experimental design

We conducted a greenhouse experiment to test the 
effect of the presence of two soil microbial groups 
that harbour different functional guilds, AMF and 
small-size MB, on plant performance of different 
herbaceous species. Specifically, we measured seed-
ling emergence, plant growth (measured as above- 
and belowground biomass), and resource allocation 
(measured as the aboveground/belowground bio-
mass ratio). For this, we collected rhizosphere soils 
associated with nine woody plant species (canopy 
soils, hereafter) in which eight herbaceous species 
(response species, hereafter) were grown following 
a full factorial (AMF and small-size MB presence/
absence) design with four replicates (see scheme in 
Fig.  1). The experiment comprised a total of 1152 
pots: Canopy soil (9 species) × Response species 

Fig. 1  (A) The experimen-
tal design included nine 
canopy soils (a-i) from 
woody plant species; (B) 
four soil treatments with 
experimentally controlled 
soil communities (Arbus-
cular mycorrhizal fungi 
(AMF); small-sized micro-
biota (MB); AMF + MB; 
and Control (sterile soil); 
(C) eight response species 
(1–8) with four replicates 
per canopy soil and treat-
ment. This makes a total 
of 128 pots per type of soil 
and an experimental total of 
1152 pots
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(8 species) x AMF treatment (presence/absence) x 
small-sized MB treatment (presence/absence) × 4 
replicates.

Canopy species selection and soil collection

The canopy soils were sampled from nine woody 
plant species typical of mixed Mediterranean forests 
of the south-eastern Iberian Peninsula, specifically 
from the Sierra Sur mountain range in Jaén prov-
ince. The plant species identity is a major driver of 
the microbial community composition (López-García 
et  al. 2017) independently from the type of soil, as 
plant species differently impact on soil properties as 
they grow. Canopy species may imprint a “legacy 
effect” to soils as the result of the action of their 
rhizosphere-associated microbiota (i.e. soils may be 
modify depending on the canopy species). Thus, dif-
ferences in soil microbial community composition 
may be expected between species (Miethling et  al. 
2000; Garbeva et al. 2008). Hence, representing dif-
ferent soil sources, the selection of different plant 
species is an accurate way to get a wide representa-
tion of the microbial variability found in forest soils. 
Furthermore, the canopy species were selected based 
on their relevance for the assembly and stability of 
Mediterranean forest communities (Alcántara et  al. 
2019) and on the richness (number of virtual taxa 
sensu Öpik et al. 2010) of their root-associated AMF 
communities previously studied in the same sampled 
area (Garrido et al. under review).

The canopy species were: Juniperus phoenicea 
(average AMF richness per individual = 5.21), Cra-
taegus monogyna (5.53), Daphne gnidium (6.86), 
Genista cinerea (7.55), Ulex parviflorus (8.45), Juni-
perus oxycedrus (9.00), Phillyrea latifolia (9.33), 
Rosmarinus officinalis (11.20), and Ruscus aculeatus 
(13.58). Soils were collected in April 2019 beneath 
three individuals located at three different locations 
(minimum 2  km apart) to capture the spatial varia-
tion between different plant populations (37.646035° 
N, 3.711252° W; 37.669268° N, 3.729562° W; 
37.641203° N, 3.742311° W). Isolated individuals 
were selected, at least 5 m apart from another neigh-
bourhood vegetation. The soil was excavated and col-
lected discarding any potential soil affected by other 
plant roots, up to a volume of 5 L per individual (1.25 
L in each cardinal direction), between 0–50 cm from 
the trunk and between 5–25 cm depth. Soils from the 

three individual plants of each species were homog-
enized to get a composite sample of 15 L per species. 
Samples were stored at 4  °C until the experimental 
setup a week later (Fig.  1, soil characterization is 
showed in table SI. 1).

Response plant species selection

As response species, we selected a set of herbaceous 
plants that can be naturally found in the soil sam-
pling areas: Anagallis arvensis, Brachypodium retu-
sum, Festuca rubra, Lotus corniculatus, Plantago 
lanceolata, Sanguisorba minor, Silene vulgaris and 
Centaurium erythraea. These species were selected 
to represent a wide diversity of plant families, includ-
ing species that associate with AMF, non-mycorrhizal 
plant species and N-fixing plant species (see details in 
SI. 1). At the time of soil collection, these plant spe-
cies were not found below sampled canopy plants.

AMF inoculum extraction

The mycorrhizal fungal inoculum for the AMF treat-
ments was obtained through an independent wet-siev-
ing for each canopy soil (International Collection of 
Vesicular Arbuscular Mycorrhizal Fungi (INVAM) 
protocol). The extraction came from 300 ml soil vol-
ume, equivalent to 5.2% of the natural soil volume 
used for filling the pots containing the same canopy 
soil. This proportion is equivalent to that used in pre-
vious studies inoculating soil microorganisms (see 
e.g. Wagg et  al. 2014). Soils were suspended in tap 
water, shaken, and centrifuged at 2000 rpm for 2 min. 
The supernatant was decanted and discarded and the 
pellet was re-suspended in a 50% sucrose solution. 
The mix was centrifuged at 2000 rpm for 2 min. The 
supernatant was sieved through a mesh size of 50 µm 
to collect the AMF spores and hyphae of the mycor-
rhizal fungi present in the sample. The presence of 
AMF spores was checked visually by using a stere-
omicroscope (10x). The AMF inoculants were stored 
on falcon tubes at 4 °C for two days until inoculation. 
At the end of the experiment, a random subset of 
25% of the AMF and small size MB (See next para-
graph) treatments were stained and checked under 
microscope to verify the presence of AMF structures 
(Philips and Hayman 1970).
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Small-size MB extraction

The small-sized MB inoculum (containing mainly 
bacterial and fungal -non-AMF- microbes) was 
extracted from 300 ml of each canopy soil. The soil 
was suspended in 3 L of distilled water and gently 
shacked overnight at 60  rpm at 20  °C. On the basis 
that AMF is largely excluded by 50  µm pore-size 
mesh (Wagg et  al. 2014), the supernatant was then 
passed through a filter paper (30–50  µm pore size, 
according to manufacturer) that retained AMF prop-
agules but allowed the collection of the bacteria and 
non-mycorrhizal fungi in the filtrate. Filtrates were 
kept at 4 °C for two days until inoculation.

Experimental setup and growing conditions

The experiment was arranged in trays of 6 × 8 pots. 
Pots (180 ml) were filled with a mix of sterile sand 
(25%), vermiculite (25%), and sterilized canopy soil 
(50%). Sand and vermiculite were sterilized through 
autoclaving (1  h, 120 ºC) whereas the natural soils 
were steam-sterilized (1  h, 100 ºC for three con-
secutive days). Each row in trays contained a single 
combination of canopy soil and inoculum treatment 
and the eight response plant species (separately 
in each pot) (see SI. 2 for details in experimental 
randomization).

Before filling pots, AMF inoculum corresponding 
to each canopy soil was added to by dragging down 
the spores with a small amount of water to the ster-
ile canopy soil and then homogenized. An equivalent 
amount of water was added to non-AMF soils. Subse-
quently, the soils were mixed with sand and vermicu-
lite and used to fill the corresponding pots depending 
on the treatment.

The small-size MB filtrates were incorporated 
to corresponding previously filled pots by watering 
with 25  mL filtrate in a single application. No loss 
by leaching was recorded. Non-MB-treated pots were 
watered with an equivalent amount of distilled water.

Five seeds from each response species were sown 
in each pot, except in the case of the tiny seeds of 
Centaurium erythraea, of which an average of 57 
were sown. Seedling emergence was monitored three 
times a week throughout the 13 weeks the experiment 
lasted (April to mid-July 2019). At experiment com-
pletion, all plants present in the same pot were col-
lected together, as a unique sample and weighted to 

obtain fresh above and belowground biomass per pot. 
Note that we did not remove any plant during the time 
course to obtain the overall effect of the treatment in 
the studied parameters. This may include intraspecific 
competition between plants, but will similarly affect 
all the species. After that, the plant material was dried 
in an air stove at 70 °C for 48 h, whereupon the dry 
weight was obtained.

The greenhouse experiment was conducted at the 
Estación Experimental del Zaidín (EEZ, CSIC, Gra-
nada, Spain). The temperature at the greenhouse 
was set to 24–18  °C (day-night). The experiment 
was exposed to natural light conditions. Seeds were 
watered with 30  ml of distilled water three days a 
week to favour seed germination. Once germination 
started, watering was gradually decreased until stabi-
lized at 10 ml.

Data analyses

Seedling emergence was estimated as the proportion 
of seedlings emerged in each pot relative to the num-
ber of seeds sown, and treatment effects were tested 
through generalized linear mixed models (GLMMs), 
using beta-binomial family distribution. The models 
included AMF (presence/absence), small-sized MB 
(presence/absence), and their interaction as fixed fac-
tors, and canopy soil and response species indepen-
dently as random factors (see SI.3, preliminary analy-
ses for the effects of canopy and response species). 
The tray was also included as a random factor to 
control the spatial effect of tray location in the green-
house. To control for pots with no emergence, this 
factor was included as a zero-inflated term. Due to the 
low emergence rate shown by Centaurium erythraea, 
this species was excluded from the analyses.

Aboveground biomass was estimated as the dry 
shoot biomass per emerged seedling in a pot, and ana-
lysed by fitting a linear mixed model, including the 
same fixed and random factors as in the previous case. 
The model was weighted by the maximum number of 
co-occurring seedlings per pot (i.e. at the same time) 
to control for possible competitive effects in biomass. 
The same model was also applied for belowground 
biomass and above/belowground biomass ratio (bio-
mass allocation, hereafter).

To explore the potential effect of the AMF com-
munity associated with each canopy soil, we ran 
the same models, but using the AMF richness 
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associated to each canopy plant instead of their 
mere presence/absence.

All statistical analyses were conducted with the 
package glmmTMB v. 1.1.2.3 (Brooks et  al. 2017) 
from R statistical software v. 4.1.2 (R Core Team, 
2018) using the r-markdown v.2.16 (Allaire et  al. 
2018). Model fitting was checked by using the 
DHARMa R package (Hartig and Hartig 2017).

Results

From the 1152 pots, plants successfully established 
in 740. The success in establishment was variable 
across plant species. The two grasses (B. retusum 
and F. rubra), P. lanceolata and S. vulgaris reached 
in average ca. 3.6–3.8 individuals per pot (from five 
initial seeds), whereas S. minor (1.0 individuals per 
pot), L. corniculatus and A. arvensis (ca. 0.5) had 
much less success in establishing.

The effectiveness of the AMF treatment reached 
a 41% of pots with AMF structures, meanwhile 
less than 5% from non-AMF inoculated treatment 
showed signs of this symbiosis. These results sug-
gest that, a part of AMF may pass the used filter or 
that some cross-contamination may exist. Neverthe-
less, our treatments were overall effective despite 
this noise.

Effects of MB and AMF on plant performance

Emergence probability increased significantly with 
the presence of small-sized MB (ca. 9% over the inter-
cept estimate) (Table 1, Fig. 2), whereas the presence 
of AMF and the interaction AMF*small-sized MB 
did not have any effect. Regarding random effects, 
canopy soil and tray explained a low proportion of 
variance (0.2% and 1.5%, respectively), whereas most 
of the variance was explained by the identity of the 
response species (24.8%), i.e. the different response 
species showed contrasting emergence probability 
(SI. 3).

Regarding plant growth, MB affected negatively 
the aboveground biomass, whereas AMF presence 
had the opposite trend (Table 1, Fig. 3a and b, respec-
tively). In this case, random factors (response species, 
canopy soil, and tray) explained a low variance (2.1%, 
0.7%, and 0.1%, respectively). None of the fixed fac-
tors affected significantly the belowground biomass. 
Finally, the presence of AMF increased the biomass 
allocation towards aboveground (Fig. 4a, Table 1).

Effects of MB and AMF richness on plant 
performance

When including AMF richness instead of its pres-
ence/absence in the models, small-sized MB similarly 
affected the emergence and aboveground biomass 

Table 1  Results of generalized linear mixed models testing for 
the effect of presence of small-sized microbiota (MB), arbus-
cular mycorrhizal fungi (AMF), AMF richness, and their inter-
actions, on the success and performance of the response plant 
species. We show the Estimates, Z- and p-values obtained for 
each model tested. Emergence estimates shows a probability 

from 0 to 1, aboveground and belowground biomass show the 
estimates in mg, and biomass allocation estimate comprises the 
ratio between both biomass (aboveground/belowground). Sig-
nificance of p-values is indicated as: ns (p > 0.05), * (p < 0.05); 
**(p < 0.01); and *** (p < 0.001). The estimates for above and 
belowground biomass are expressed as miligrams

Emergence Aboveground biomass Belowground biomass Biomass
allocation

Fixed effects Est. Z value p Est. Z value p Est. Z value p Est. Z value p
  Intercept 0.43 -0.45 ns 50.38 -14.99 *** 69.83 6.72 *** 0.92 -4.29 ***
  MB 0.52 2.37 * 46.43 -2.81 ** 64.29 -1.78 ns 0.91 -1.65 ns
  AMF 0.45 0.54 ns 56.64 4.42 *** 74.55 1.55 ns 0.94 3.66 ***
  MB*AMF 0.41 -0.40 ns 49.87 -0.27 ns 72.85 0.70 ns 0.92 -0.43 ns

Fixed effects Est. Z value p Est. Z value p Est. Z value p Est. Z value p
  Intercept 0.44 -0.37 ns 57.44 4.16 *** 59.80 -10.71 *** 0.78 13.98 ***
  MB 0.53 2.41 * 58.51 -3.56 *** 60.24 1.78 ns 0.75 -1.43 ns
  AMF richness 0.44 -0.22 ns 47.00 4.65 *** 60.32 0.23 ns 0.78 4.43 ***
  MB*AMF richness 0.44 -0.32 ns 57.44 0.01 ns 59.73 -0.21 ns 0.77 -1.38 ns
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(Table  1). AMF richness positively affected the 
aboveground biomass and biomass allocation to the 
upper parts (Figs. 3c and 4b). The interaction between 
MB and AMF richness had no significant effects on 
any of the studied parameters (Table 1).

Discussion

This study has evaluated whether AMF versus small-
size MB condition the performance of recruiting 
plants. We showed that a part of the soil microbiota, 
represented by the small-sized MB, improved the 

emergence of plants but depressed their vegetative 
growth, as expected in hypothesis 1. On the other 
hand, AMF did not influence emergence but increased 
their aboveground biomass, neutralizing small-sized 
MB’s negative effects once plants were established 
(hypothesis 2). This pattern was consistent across 
the studied response plant species and for all canopy 
soils, but the variance explained by the response spe-
cies was larger, suggesting that canopy plant identity 
had little effect on herb recruitment. However, we 
found that soils from canopy species with richer AMF 
communities enhanced significantly the aboveground 
biomass of the response species, likely improving 

Fig. 2  Seedling emergence 
probability (y axis) in 
relation to the presence or 
absence of small-size MB 
(x-axis). Reported values 
are the fitted coefficient for 
the emergence probability 
model. The figure shows the 
community patterns (black 
circles) and the response 
species-level patterns 
(coloured circles). Signifi-
cance levels are showed by 
*, ** and ***, meaning 
p values < 0.05, < 0.01 
and < 0.001 respectively

Fig. 3  Aboveground biomass (g) of herbaceous plants (y axis) 
depending on the presence or absence of AMF (3a) and small-
size MB (3b), and on the AMF richness in the canopy soil 
(virtual taxa)(3c). Reported values are the fitted coefficient for 
the emergence probability model. All panels show the commu-

nity patterns (black circles and solid lines) and the herbaceous 
species-level patterns (coloured circles and dashed lines). Sig-
nificance levels are showed by *, ** and ***, meaning p val-
ues < 0.05, < 0.01 and < 0.001 respectively
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their establishment in these soils and suggesting the 
action of associated microorganisms (hypothesis 
3). The magnitude of the effect for the studied plant 
parameters was not as large as expected, likely due 
to the high stochasticity found in natural study sys-
tems. Nevertheless, our results bring new evidence of 
the important influence of the canopy plants on the 
recruiting community by dissecting the role of the 
small-sized MB and AMF communities.

Effects of the presence of AMF and small-sized MB

Seeds interact locally with a wide range of 
microbes, which potentially alter the germination, 
performance, and demography of plant species 
(Wagner and Mitschunas 2008; Chee-Sanford and 
Fu 2010; Nelson 2018). As expected, emergence 
was higher in soils with small-size MB. Out of 
all microbes present in soil, emergence probabil-
ity may be influenced by seed pathogens that can 
impede germination, by mutualistic organisms 
that protect seeds against pathogens, and by sapro-
trophs that can degrade the seed coat (Pérez et al. 
2016). We found a general trend evidencing that 
small-sized MB promote seedling emergence, and 
this effect was independent of the soil origin (i.e. 
canopy soil). This points out to generalist small-
size MB guilds that can digest the seed coat, thus 

enhancing water permeability, seed imbibition 
and, consequently, seeding emergence (Guttridge 
et  al. 1984; but see Baskin and Baskin 2000). As 
another option, fungi or bacteria may stimulate 
germination by releasing chemicals, or by prevent-
ing pathogenic attacks, as it has been reported in 
other systems (Gallery et  al. 2007; Dalling et  al. 
2011). As a counterpart, growing with small-size 
MB may entail negative consequences due to path-
ogenic activity or competition for nutrients (see 
e.g. Klironomos 2002).

As plant ontogeny advances, so does the net bal-
ance of the interaction between the plant and small-
size MB turning from positive to negative in certain 
aspects of plant development, in our case plant bio-
mass production (Rodríguez-Echeverría et  al. 2013; 
Chaparro et al. 2014). This aligns with other studies 
that proved that once plants emerge, MB composition 
changes (Hortal et al. 2013; Barret et al. 2015). The 
negative effect of small-size MB on seedling biomass 
could be attributed to the accumulation of plant path-
ogens and root antagonists that may alter the nutrient 
uptake (Jonhson and Riegler 2013; Liang et al. 2021). 
Contrary to our expectations, the presence of small-
size MB did not stimulate plant performance. This 
contrasts with results found by Rodríguez-Echeverría 
et  al. (2013), however, in this study different micro-
bial guilds were not considered.

Fig. 4  Biomass allocation of herbaceous plants (y axis) in 
relation to the presence or absence of AMF (4a), and on the 
AMF richness in the canopy soil (virtual taxa) (3c). Reported 
values are the fitted coefficient for the emergence probability 
model. The panel 4a contains the results for both herbaceous 
species (coloured circles) and community levels (black cir-
cles), which additionally shows the predicted confidence inter-
vals at 95%. The panel 4b shows this relationship for both 
species (coloured-dashed lines) and community (black-solid 

lines). Shaded areas around the black line indicate the pre-
dicted confidence intervals by the biomass allocation model for 
the community, whereas coloured shaded areas indicate the SE 
for the species. Both panels also show a pointed line in value 
(y) = 1. Values upper exceeding this line indicate that plants 
allocate more resources aboveground. Significance levels 
are shown by *, ** and ***, meaning p values < 0.05, < 0.01 
and < 0.001 respectively
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AMF presence did not affect seedling emergence, 
as expected because these organisms need plant 
roots to interact. By contrast, AMF enhanced the 
aboveground biomass, providing more evidence to 
the increasing literature dealing with the beneficial 
effects of AMF on plant performance (e.g. Varga 
2015; Bowles et al. 2018; Montesinos-Navarro et al. 
2019). Nevertheless, this trend was not found at the 
belowground biomass level, pointing towards the fact 
that AMF colonized plants tend to increase the ratio 
aboveground/belowground biomass (Veresoglou et al. 
2012). This effect must be a consequence of increased 
nutrient availability provided by the fungi that is pri-
marily invest in aboveground biomass. In agreement, 
O’Brien et al. (2018) evidenced that plants grown in a 
medium with high nutrient availability, invest straight 
to the aboveground biomass.

Effects of AMF richness

Dealing exclusively with the absence or presence of 
AMF provided a significant result, but a partial view. 
Including AMF richness complemented the found 
pattern. Our study revealed that plants grown in soils 
of canopy plants associated with higher AMF rich-
ness produced more aboveground biomass than plants 
grown in soils of canopies with low AMF richness. 
Likely, woody plants with a higher range of associ-
ated AMF species provide recruiting plants with more 
chances to find their best symbiotic fungal partners. In 
this context, Van der Heijden et al. (2006) pointed out 
that plants respond to inoculation with AMF depend-
ing on the identity of both partners. Moreover, high 
AMF richness encompasses more functional diversity 
(attributed to different families by Powell et al. 2009), 
providing a large variety of services to the plants: 
from different nutrient absorption capacities to dif-
ferent protection abilities against stresses that should 
enhance plant performance (van der Heijden et  al. 
1998; Maherali and Klironomos 2007). Therefore, the 
AMF richness associated to the different woody spe-
cies may help to predict which plant species perform 
better underneath different canopy plants.

Conclusion

From a purely ecological perspective, this study 
suggests that the facilitative service provided by the 

canopy plants is related to their associated organ-
isms, and that it is important to consider the soil 
legacies left by woody species, since they condi-
tion the soil microbial communities (Aleklett and 
Hart 2013; Sasse et  al. 2018). Whereas small-size 
MB enhance the emergence, richer AMF communi-
ties make the plants perform better and counteract 
the negative effects of the former on later life-cycle 
stages. The successive and counteracting action of 
both guilds, suggests ontogenetic shifts in the net 
balance of plant-soil interactions. This may have 
relevant implications for plant recruitment and 
facilitation processes, as has been suggested by sev-
eral studies (Navarro-Cano et al. 2015; Dayrell et al. 
2018; Perea et al. 2022).

There is abundant literature dealing with the 
effect of soil microorganisms on plant-plant interac-
tions. However, most of these studies have consid-
ered these microorganisms as a black box, ignoring 
the relative role of species and functional guilds. 
The present study has dissected how different func-
tional groups of soil microorganisms influence plant 
recruitment. Our results bring new evidence to the 
understanding of how plant soil legacies condition 
the response of herbaceous plants. Moreover, we 
have revealed an ontogenetic change in the relation-
ships between plants and small-sized MB. These 
microorganisms promoted seedling emergence but 
depressed vegetative growth, suggesting a shift 
from mutualistic to antagonistic overall effect. On 
the other hand, AMF improved plant vegetative 
growth and could potentially counteract the nega-
tive effect of antagonistic small-sized MB. Finally, 
the influence of AMF richness should be studied 
further to better account for the effect of microbial 
diversity on plant-soil legacy and the processes gov-
erning plant recruitment.
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