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through a competitive iron acquisition strategy, which 
includes intricate interactions with the consortium 
of associated microorganisms in, on, and around the 
roots. This versatile, reciprocal plant-microbiome 
interplay affects iron mobilisation directly, but also 
collaterally by impacting growth, fitness, and health 
of the host. Here, we review the mechanisms and the 
multifaceted regulation of iron acquisition in plants, 
taking into consideration the specific constraints asso-
ciated with the uptake of iron from alkaline soils. 
Knowledge on how plants extract iron from such soils 
sets the stage for a better understanding of essential 
ecological processes and for combatting iron malnu-
trition in humans.
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Introduction

Iron (Fe) is a crucial component of electron trans-
port chains and a cofactor of a myriad of enzymes 
involved in numerous vital functions. In plants, 
insufficient Fe supply leads to chlorosis of young 
leaves and, upon prolonged exposure to inad-
equate Fe concentrations, severely decreased fit-
ness. Despite the generally high abundance of Fe 
in soils, uptake of sufficient Fe is a challenging 
task for plants. In most soils, the presence of oxy-
gen decreases the availability of Fe to levels that 

Abstract  In concert with oxygen, soil alkalinity 
strongly restricts the availability of iron, an essential 
nutrient with a multitude of functions in living organ-
isms. In addition to its role in mitochondrial energy 
metabolism and as a cofactor for enzymes, in plants 
iron also plays key roles in photosynthesis and is 
required for chlorophyll biosynthesis. The ability 
to thrive in calcareous soils, referred to as calcicole 
behaviour, is the readout of an amalgam of traits of 
which efficient foraging of iron is a decisive factor. 
Recently, the well-established concept of two dis-
tinct iron uptake strategies, phylogenetically separat-
ing grasses from other land plants, was expanded by 
the discovery of auxiliary mechanisms that extend 
the range of edaphic conditions to which a species 
can adapt. Secretion of a tailor-made cocktail of iron-
mobilising metabolites into the rhizosphere, the com-
position of which is responsive to a suite of edaphic 
and internal cues, allows survival in calcareous soils 
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are insufficient to support the pivotal functions Fe 
is playing in plant metabolism. Besides the redox 
potential (Eh), free hydrogen ion concentration 
(pH) of the soil is a decisive factor for the phyto-
availability of Fe, causing an approximately one-
thousand-fold decrease of Fe activity (pFe) for each 
one-digit increase in pH between pH 3 and pH 8 
(Schwertmann 1991). The dramatic decrease in 
Fe solubility, caused by rising oxygenation of the 
atmosphere through photosynthesis starting about 
2.4 billion years ago (Kroh and Pilon 2020), forced 
plants that thrive under these conditions to evolve 
mechanisms that mobilize Fe from the pool of recal-
citrant Fe oxyhydroxides in the soil. Only in the 
absence of oxygen, for example in waterlogged soils 
and at strongly acidic pH, Fe is available for plants 

at levels that may even exceed the demand, overrun-
ning exclusion mechanisms and causing Fe toxicity 
through the formation of reactive oxygen species.

Governed by the parent material, weathering, and 
climate, soil pH strongly affects germination and ‘fil-
ters’ plant establishment (Fig. 1) (Wala et  al. 2022). 
Moreover, soil pH dictates the availability of mineral 
nutrients and plant assemblage composition, leading 
to floristically distinct communities typical of alka-
line or acid soils (Tansley 1917). In both natural and 
agricultural ecosystems, soil pH can vary widely, 
ranging from pH values between 3.5 (ultra-acidic 
soils) to 9.0 (strongly alkaline soils). While acid soils 
are characterized by leaching and are often associ-
ated with high levels of Al3+, Fe2+, and Mn2+ as well 
as limited availability of N, alkaline soils are formed 

Fig. 1   Effects of soil pH on plant growth. The pH of the soil 
affects the availability of essential mineral nutrients, defines 
the composition of root exudates and the microbiome, and con-
trols the concentration of potentially toxic ions such as Al3+. 
Alkaline pH severely restricts the availability of Fe, P, Mn, and 

Zn, reduces seed germination and water capacity. Many alka-
line soils are characterized by high Ca and bicarbonate concen-
trations. The number of the element symbols reflect the availa-
bility of the respective ion. Figure was created with BioRender.
com 
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when evaporation exceeds precipitation and are asso-
ciated with high concentrations of Ca2+ and low 
available water capacity (Fig.  1) (Tsai and Schmidt 
2021). Besides Fe, the availability of Zn2+ and Mn2+ 
is strongly restricted in soils with neutral or alkaline 
pH (Tyler 2003). High nitrification rates, leading to 
nitrate as the prevalent form of N, and an alkaline 
N uptake pattern where nitrate-proton co-transport 
causes alkalization of the apoplast, are further char-
acteristics associated with soil alkalinity. Both acid 
and alkaline soils are characterised by deficiencies in 
plant-available phosphate.

The pronounced influence of soil pH on the com-
position of plant communities is a well-established 
ecological phenomenon (Ellenberg 1958; Chytrý 
et  al. 2010). The factors that define calcicole-calci-
fuge plant strategies are the subject of a long-lasting 
debate over generations of plant biologists (Link 
1789; Unger 1836; Grime and Hodgson 1968). Cal-
cicole (‘chalk-loving’) behaviour is a conglomerate 

of traits composed of the ability to mobilize sparingly 
soluble mineral nutrients at high pH and to tolerate 
high Ca2+ and bicarbonate (HCO3

−) concentrations in 
soils, while lack of these competences excludes calci-
fuge (‘chalk-fleeing’) species from habitats featuring 
alkaline soils. Calcifuge plants, on the contrary, are 
characterised by the ability to tolerate high levels of 
Al3+ and high free H+ activity.

For several prokaryotic and eukaryotic systems, 
the sensing and signalling pathways that adapt cells 
to the prevailing hydrogen concentration have been 
elucidated in detail. Sensing systems particularly for 
alkaline pH have been described for bacteria and yeast 
(Tsai and Schmidt 2021). In Saccharomyces cerevi-
siae, external alkalinization is perceived via the sens-
ing protein Rim21, which forms a plasma membrane-
localised complex with the chaperone Rim9 and the 
α-arrestin Rim8 (Fig. 2a) (Obara et al. 2012). A shift 
towards alkaline pH leads to a conformational change 
of Rim21 that allows its cytoplasmic tail to interact 

Fig. 2   External pH sensing in yeast and plants. a Sensing of 
alkalinity in the yeast Saccharomyces cerevisiae. Elevated 
external pH is perceived by a membrane-bound sensor com-
plex and signalled into the nucleus to steer the expression of 
genes that adapt the cells to alkaline pH. b pH sensing in the 
root apoplast of A. thaliana. Low pH is sensed by protonation 
of a sulfotyrosine in the peptide RGF, which supports binding 

to its receptor RGFR and the co-receptor SERK, promoting 
growth of the root apical meristem. At high pH, deprotonation 
of aspartic and glutamic acid residues of the receptor PEPR 
allows binding of Pep and formation of a complex with the co-
receptor BAK that activates defense responses. Based on Liu 
et al. (2022). Figure was created with BioRender.com
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with Rim8, initiating recruitment of non-endosomal 
ESCRT (endosomal sorting complex required for 
transport) components to the plasma membrane com-
plex (Xu et al. 2004; Peñalva et al. 2014). Assembly 
of ESCRTs set the stage for the formation of a pro-
teolytic complex comprising Rim23, Rim20, and the 
protease Rim13, which cleaves the zinc finger tran-
scription factor Rim101. Proteolytic processing of 
Rim101 triggers its migration to the nucleus, where it 
activates the expression of genes required for adapta-
tion to alkaline pH (Hayashi et al. 2005).

In plants, sensors for the perception of the pH in 
the apoplast were recently identified in A. thaliana 
roots (Fig. 2b) (Liu et al. 2022). At acidic pH, a sul-
fotyrosine of the endogenous peptide root growth fac-
tor (RGF) is protonated and forms a complex with 
its receptor RGFR and the co-receptor SERK, which 
promotes root apical meristem growth (Liu et  al. 
2022). The target of RGF is PLETHORA, a master 
regulator of root development (Aida et al. 2004; Gal-
inha et  al. 2007). At alkaline pH, the sulfotyrosine 
in RGF is deprotonated and the complex is destabi-
lized. Thus, RGF acts as a bona fide pH sensor. An 
increase in external pH, as for example induced by 
pathogenic bacteria, allows the plant elicitor peptide 
Pep to bind its receptor PEPR and to induce pattern-
triggered immunity, an interaction that is suspended 
at low pH due to protonation of pH-sensing aspartic 
and glutamic acid residues of PEPR (Liu et al. 2022). 
Depending on the external hydrogen ion concentra-
tion, this interlaced pH-sensing system prioritizes 
either growth (at acidic pH) or defense (under alka-
line conditions), decisions that strongly affect the 
performance and fitness of the plant. Whether this 
system is engaged to trigger adaptive gene expres-
sion in response to alkaline conditions analogous to 
the Rim pathway of yeast remains, however, to be 
corroborated.

An estimated 25–30% of the world’s land area fea-
tures soils with calcareous surface horizons. Calcare-
ous soils are characterised by high abundance of cal-
cium carbonate (CaCO3) in the parent material, and 
typically display pH values between 7.0 and 8.5. Ele-
vated concentrations of plant-available Ca represent a 
crucial factor for survival in calcareous soils. The role 
played by Ca in ionic balance and the mechanisms by 
which deleterious effects of an overabundance of this 
nutrient are avoided vary among species. Generally, 
two distinct strategies are employed to cope with high 

soil Ca levels: 1) development of apoplastic barriers 
to restrict Ca uptake and translocation, or 2) toler-
ance to high Ca concentrations by sequestering Ca in 
specific cell types (Kotula et al. 2021). In some cases, 
elevated Ca levels can be beneficial and serve a more 
specific purpose. In certain calcicole species, high 
Ca concentrations are required to balance Fe levels. 
When grown on Ca-poor soils, Callisthene fascicu-
lata Mart. (Vochysiaceae) develops necrotic spots 
on the leaves due to the accumulation of excess Fe 
(De Souza et al. 2020). Plants grown on Ca-rich soil 
accumulate less Fe and Zn, suggesting that Fe toxic-
ity is restricting C. fasciculata from Ca-poor, acidic 
soils. On the other hand, high Ca levels can induce 
phosphate deficiency due to immobilisation of phos-
phate and precipitation of Ca phosphate (Zohlen and 
Tyler 2004). Efficient Ca exclusion was found to be a 
characteristic trait of A. thaliana demes native to cal-
careous soils compared to demes that are absent from 
such soils (Terés et al. 2019), suggesting that manag-
ing high Ca concentrations constitutes a central com-
ponent in the adaptation to calcareous soils.

The elevated levels of bicarbonate (HCO3
−) typi-

cal of calcareous soils pose adverse effects on growth, 
photosynthesis, and on the uptake of essential mineral 
nutrients, including Fe. The question as to whether 
bicarbonate has effects on the plant that are independ-
ent of the pH associated with its presence is subject 
of a long-standing debate. Typically, the amount of 
HCO3

− in soils ranges from 0.4 to 3  mM, and both 
increases and buffers the pH of the soil. While bicar-
bonate appears to have a more negative impact on Fe 
nutrition than high pH as such, relevant results seem 
to be everything but equivocal across studies and spe-
cies. The most common observation is a bicarbonate-
induced decrease in the uptake and translocation 
of Fe to the leaves (Lucena et  al. 2007; Alhendawi 
et al. 1997; Martínez-Cuenca et al. 2013; Hsieh and 
Waters 2016; Ding et  al. 2020; Pérez-Martín et  al. 
2021). Translocation of Fe is possibly restricted by 
bicarbonate-induced alkalisation of the xylem (Weg-
ner and Zimmermann 2004). In the moderately cal-
cifuge species Arabidopsis thaliana, transcriptional 
profiling revealed that bicarbonate, but not high pH, 
induces a pronounced Fe deficiency response (Chen 
et al. 2021). It might be stated that elevated pH, bicar-
bonate, and Fe deficiency are inducing partly, but not 
always, coinciding stress responses in plants.
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The corroboration of the importance of Fe-mobi-
lising compounds, and investigations into the com-
plex interaction of these exudates with soil compo-
nents and the root microbiome, provided molecular 
insights into the mechanisms conferring the ability 
to thrive in calcareous soils, and rekindled research 
into the role of Fe acquisition strategies in the calci-
cole/calcifuge question. Here, we review recent pro-
gress on Fe uptake in general and in particular from 
substrate with circumneutral or alkaline pH, con-
ditions in which the basic Fe uptake machinery is 
challenged or compromised, and plants are forced to 
employ additional mechanisms to recalibrate cellular 
Fe homeostasis. The elucidation of these mechanisms 
is not only paramount for solving persistent ecologi-
cal questions; knowledge about these plant strate-
gies is also immensely relevant from a more applied 
viewpoint. Yield losses and low nutritional quality 
of crop plants grown on calcareous soils caused by 
low Fe uptake efficiency makes the elucidation of the 
processes, players, and regulation of the mechanisms 
governing Fe uptake a pivotal target of research. 
Approximately two billion people suffer from Fe defi-
ciency anaemia caused by insufficient diary Fe intake, 
often exacerbated by a mainly or entirely plant-based 
diet (Viteri 1998). Counteracting ‘hidden hunger’ 
inflicted by deficiencies of Fe and other micronutri-
ents is one of the most urgent and challenging tasks 
for the community of plant biologists.

The oxymoron of Fe in soils: superabundant, 
but short in supply

Iron is the fourth most abundant element in soil, 
but, due to its low mobility in aerobic environ-
ments, the third most limiting nutrient for plants (de 
Mello Gabriel et al. 2021; Zuo and Zhang 2011). In 
soils, Fe-containing primary minerals (i.e., minerals 
derived from cooling magma and unaltered since) 
are transformed through weathering into secondary 
Fe minerals such as goethite, hematite, lepidocrocite, 
ferrihydrite, and maghemite. Under aerobic condi-
tions, Fe2+ and Fe3+ ions released from Fe minerals 
are rapidly hydrolysed and precipitate either as sec-
ondary minerals, Fe hydroxides, or ferrihydrite (Cor-
nell and Schwertmann 2003). The activity of Fe3+ 
(pFe3+) is dependent on soil pH and is extremely 
low at alkaline pH (e.g., 1024 M at pH 8.5 for Fe3+) 

(Lindsay and Schwab 1982), levels that are well 
below the requirement of plants for optimal growth. 
Therefore, the dissolution rate of Fe(III) oxides gov-
erns Fe supply in most soils. Besides Fe-containing 
minerals, organic Fe complexes, such as Fe chelated 
by humates and root exudates secreted by plants and 
microorganisms, constitute the most important pool 
of plant available Fe in aerobic soils. Iron-mobilizing 
compounds secreted by plant roots can be reducing, 
ligating, or acidifying and may act in an additive or 
synergistic manner with other soil constituents to effi-
ciently mobilize Fe oxides in soils (Schenkeveld et al. 
2016). Dynamic mobilisation of Fe by this mixture 
of compounds opens ‘Fe uptake windows’ that are 
assessable to plants for a certain period of time under 
a certain set of conditions. It should be stated that 
a realistic picture of Fe mobilization in calcareous 
soils can only be obtained when factoring in the pres-
ence and dynamics of Fe-binding ligands secreted 
by both plant roots and microorganisms. In addi-
tion, the presence of other nutrients and compounds 
which may dominate in alkaline soils such as Ca and 
HCO3

− needs to be considered.

Iron acquisition from calcareous soils: mission 
impossible?

Uptake of Fe from calcareous soils requires an 
increase in Fe solubility by several orders of mag-
nitude. To accomplish this seemingly impossible 
endeavour, plants have developed elaborate strate-
gies that aid in the acquisition of Fe and in its trans-
port to the sites of demand. Iron mobilization is 
governed by protonation, reduction, and chelation of 
Fe oxides with varying, species-dependent empha-
sis on particular processes (Fig. 3). Two basic, phy-
logenetically separated strategies to acquire Fe from 
the soil have been described for land plants (Röm-
held and Marschner 1986). In so-called strategy 
I plants (all spermatophytes with the exception of 
gramineous species), the central component of Fe 
acquisition is the reduction of Fe(III) chelates by an 
inducible plasma-membrane bound oxidoreductase, 
followed by uptake of the released ferrous ions. 
Reduction of Fe(III) is an obligatory step in species 
that adopted this strategy (Chaney et  al. 1972). In 
most, but not all, strategy I species, Fe reduction is 
accompanied by ATPase-mediated proton extrusion, 
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which weakens the Fe–O bond of Fe(III) oxides and 
leads to metal detachment (Schwertmann 1991). 
Secretion of Fe-mobilising compounds, such as cat-
echol-type coumarins, is a further component of the 
strategy I-type Fe acquisition strategy.

Grasses (Poaceae) rely on the secretion of so-
called phytosiderophores of the mugineic acid 
family that form 1:1 hexadentate complexes with 
Fe(III), a concept that has been referred to as strat-
egy II (Römheld and Marschner 1986; Takagi et al. 
1984). The loaded Fe(III)-phytosiderophore com-
plex is then taken up as such, without prior reduc-
tion of ferric Fe. In grasses, biosynthesis, secretion, 

and uptake of phytosiderophores are increased upon 
Fe starvation (Takagi et  al. 1984; Kobayashi and 
Nishizawa 2012).

In the model species A. thaliana and rice (Oryza 
sativum), the proteins involved in Fe uptake have 
been identified and functionally characterized 
(Fig. 3). In A. thaliana, FERRIC REDUCTASE OXI-
DASE 2 (FRO2) is the predominant driver of ferric 
reduction (Robinson et al. 1999), although coumarins 
(and other, less well-defined root exudates; see 
below) are participating in this response to a degree 
defined by the compound, the media pH, and the Fe 
status of the plant. Uptake of Fe2+ ions released from 

Fig. 3   Iron uptake strategies of land plants as affected by pH. 
In strategy I plants, Fe is taken up as Fe2+after external reduc-
tion of Fe(III) chelates. Mobilisation of Fe is facilitated by pro-
ton extrusion and the secretion of Fe-mobilising compounds 
such as coumarins. Presumably, Fe(III)-coumarin complexes 
can be taken up as such without prior reduction of Fe via a yet 
to be identified coumarin importer (CI). Some species may 
also be capable of taking up phytosiderophores (PS) secreted 
by grasses via YELLOW STRIPE-LIKE (YSL) transporters. 
Grasses (strategy II) take up Fe after secretion of PS, which are 
taken up after loading with Fe3+. Mugineic acid family phyto-
siderophores  (MAs) such as deoxymugineic acid are synthe-
sized from nicotianamine (NA) derived from three molecules 

of S-adenosylmethionine (SAM) through NICOTIANAMINE 
SYNTHASE (NAS) via an intermediate formed by NICO-
TIANAMINE AMINOTRANSFERASE (NAAT) and reduc-
tion of the 3’ carbon of the intermediate via DEOXYMUGI-
NEIC ACID SYNTHASE (DMAS). Processes that secure Fe 
uptake under acidic conditions and are compromised at alka-
line pH are depicted on a  yellow background; processes that 
are less affected by soil pH and operate also at alkaline pH are 
shown in the lower part of the figure on a blue background. 
Gene nomenclature refers to A. thaliana (left) and rice (Oryza 
sativum) (right). Broken arrow indicates a partly hypothetical 
mechanism. Figure was created with BioRender.com 
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the chelator is mediated by IRON-REGULATED 
TRANSPORTER 1 (IRT1) (Eide et  al. 1996; Vert 
et  al. 2002). IRT1-mediated Fe uptake is accompa-
nied by the influx of secondary substrates, in particu-
lar Mn2+ and Zn2+, which are sequestered into the 
vacuole by a suite of transporters such as MTPa2, 
ZIP9, and MTPc3. In addition, IRT1 supports the 
uptake of harmful metals travelling as stowaways 
such as Co2+ and Cd2+ (Arrivault et  al. 2006). It 
was suggested that IRT1 acts as a transceptor, sens-
ing the cytoplasmatic concentration of non-Fe metals 
that bind to a histidine-rich stretch of the protein, and 
trigger its degradation via CIPK23-mediated phos-
phorylation and IDF1-mediated lysine-63 polyubiq-
uitination (Dubeaux et al. 2018). Proton extrusion in 
response to Fe starvation is mediated by the P-type 
ATPase AHA2 (Santi and Schmidt 2009). FRO2, 
IRT1, and AHA2 co-localize to the plasma mem-
brane, organised in a tripartite Fe uptake complex 
(Martín-Barranco et al. 2020).

A magic potion for calcicole plants

Conspicuously, the Fe(II)- and 2-oxoglutarate-
dependent dioxygenase F6′H1 was identified as 
putative component of the IRT1 interactome in a 
co-immunoprecipitation approach using a functional 
IRT1-mCitrine fusion protein as bait (Martín-Bar-
ranco et al. 2020). F6’H1 catalyses the first commit-
ted step in the biosynthesis of coumarins, the conver-
sion of feruloyl-CoA to 6′-hydroxyferuloyl-CoA. In 
A. thaliana roots, F6’H1 massively accumulates upon 
Fe starvation, together with proteins involved in the 
general phenylpropanoid pathway (Lan et  al. 2011). 
Similarly, transcriptomic surveys of Fe-deficient roots 
found genes involved in the coumarin biosynthetic 
pathway strongly induced, including the ABC-type 
transporter PDR9/ABCG37, which was later shown 
to be critical for the secretion of coumarins (Fourcroy 
et al. 2014; Yang et al., 2010; Rodríguez-Celma et al. 
2013a, b; Ziegler et al. 2017; Kim et al. 2019). Muta-
tions in F6’H1 are detrimental for growth on alkaline 
substrates (Rodríguez-Celma et  al.  2013b;  Schmid 
et  al. 2014). While these observations circumstanti-
ate that coumarin production is increased in roots 
of Fe-deficient plants, it remained unclear which of 
the compounds are critical for the mobilisation of 
Fe. The phytoalexin scopoletin was found to accu-
mulate in Fe-deficient A. thaliana roots (Lan et  al. 

2011; Rosenkranz et  al. 2021). However, scopole-
tin is not – or to a limited extent—able to mobilise 
Fe (Schmid et  al. 2014; Rajniak et  al. 2018), albeit 
there is some debate as to whether this holds true in 
soil (Baune et  al. 2020). The formation of scopole-
tin from 6-hydroxyferuloyl-CoA can occur spon-
taneously aided by light, but in roots, in particular 
under Fe-deficient conditions, the reaction is medi-
ated by a member of the BAHD-acyltransferase fam-
ily, COUMARIN SYNTHASE (COSY) (Vanholme 
et  al. 2019). SCOPOLETIN 8-HYDROXYLASE 
(S8H) converts scopoletin into the catechol fraxetin 
(7,8-dihydroxy-6-methoxycoumarin), which appears 
to be the dominant Fe-mobilising coumarin at neu-
tral and alkaline pH (Siwinska et al. 2018; Tsai et al. 
2018). Resembling bacterial catechol-type sidero-
phores (Hider and Kong 2010), fraxetin features two 
adjacent hydroxyl groups that efficiently bind and 
mobilize Fe from Fe(III)-oxides by chelation and 
reduction (Sisó-Terraza et al. 2016a; Tsai et al. 2018). 
Recently, Rajniak et  al. (2018) identified sideretin 
(5-hydroxyfraxetin) as a further catecholic coumarin 
produced by Fe-deficient plants, synthesized through 
hydroxylation of fraxetin via the cytochrome P450 
enzyme CYP82C4. Fraxetin, sideretin, and esculetin 
(6,7-dihydroxycoumarin) are the major players that 
enable A. thaliana (and very likely other species) 
to extract Fe from calcareous soils. Coumarins are 
stored as glucosides in the vacuole and are deglyco-
sylated by β-glucosidases such as BGLU42 before 
secretion (Stringlis et al. 2018).

Coumarins: is that all there is?

Besides coumarins, Fe-deficient plants release vari-
ous kinds of low-molecular-weight compounds into 
the rhizosphere, including organic acids, amino acids, 
sugars, flavins, and flavonoids, which can act as nutri-
ent sources for microbes, growth promoters, chemoat-
tractants, phytoalexins, chelators, acidifiers, detoxi-
fiers, or growth inhibitors (Susín et  al. 1993; 1994; 
Schmidt 1999; Jin et  al. 2007; Cesco et  al. 2010; 
Dakora and Phillips 2002; Mimmo et al. 2014; Astolfi 
et  al. 2020). Some species, such as Beta vulgaris or 
Medicago truncatula, secrete flavins when subjected 
to Fe deficiency (Susín et  al. 1993), a response that 
was thought to be mutually exclusive to the exuda-
tion of coumarins (Rodríguez-Celma et  al. 2013a, 
b), although this does not always seem to be the case 
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(Lefèvre et al. 2018). Notably, flavins and coumarins 
appear to be functionally analogous in promoting the 
reductive dissolution of scarcely soluble Fe(III) com-
pounds (Rodríguez-Celma et al. 2013b;  Sisó-Terraza 
et al. 2016b). At present, it is unclear why some plant 
species prioritize flavin secretion while others rely 
on the exudation of coumarins. Crucially, secretion 
of riboflavin is favoured by low pH, whereas fraxetin 
is more abundant in exudates from plants grown on 
alkaline media (Susín et  al. 1993; Sisó-Teraza et  al. 
2016a). This difference is related to the secretion but 
not to the dissolution of Fe; both fraxetin and ribofla-
vin can mobilize Fe at pH values prevailing in calcar-
eous soils (Shi et al. 2013; Tsai et al. 2018). Of note, 
in contrast to B. vulgaris and M. truncatula, Med-
icago scutellata secretes flavins under both acidic and 
alkaline conditions (Gheshlaghi et al. 2021), possibly 
indicating a specific adaptation of Medicago scutel-
lata to alkaline soils.

As a word of caution, it should be mentioned 
that the secretion of Fe-mobilising compounds 
determined under controlled conditions may not 
adequately reflect the exudation rates in natural sub-
strates. Only limited information is available regard-
ing the concentration of exudates in the rhizosphere, 
but a recent study suggests that coumarin levels in 
soil may be lower than those assayed in sterile agar-
based media or hydroponics (Sarashgi et  al. 2021). 
Moreover, under more natural conditions, scopoletin 
was found to dominate over catecholic coumarins 
(Rosenkranz et al. 2021). These observations are rais-
ing the question as to whether coumarins are in fact 
the magic potion conferring calcicole traits. How-
ever, coumarin-deficient f6’h1 mutants are unable to 
grow in calcareous soils (Schmid et al. 2014; Rosen-
kranz et  al. 2021), an observation that corroborates 
the importance of Fe-mobilising root exudates for 
survival in such soils. High reactivity with soil com-
ponents, which restricts the action of catecholic cou-
marins to the proximity of the roots, could provide 
an alternative explanation for their reduced detection 
in the soil solution. We will discuss other roles and 
peculiarities of coumarins later on in this review.

Phytosiderophores: evolution’s best offer?

The chelation-based Fe uptake strategy of grasses is 
less affected by media pH than reduction-based Fe 
acquisition and works efficiently in calcareous soils 

(Fig.  3). Secretion of phytosiderophores is mediated 
by TRANSPORTER OF MUGINEIC ACID FAM-
ILY PHYTOSIDEROPHORES 1 (TOM1), first iden-
tified in rice and barley (Nozoye et al. 2011). Uptake 
of the Fe(III)-phytosiderophore complex into root 
cells is mediated by the high-affinity plasma mem-
brane transporter YELLOW STRIPE 1 (YS1) (Curie 
et al. 2001) and YELLOW STRIPE 1-LIKE proteins, 
i.e., OsYSL15 in rice (Fig. 1) (Lee et al. 2009). Phy-
tosiderophores are also critically involved in the long-
distance transport of Fe. In rice phloem, the primary 
form of Fe is Fe(III)-deoxy-mugineic acid (Nishiy-
ama et al. 2012); xylem saps of barley, maize, and rice 
were shown to contain mugineic acid and 2-deoxy-
mugineic acid (Alam et al. 2001; Kawai et al. 2001; 
Ariga et  al. 2014). Mugineic acid biosynthesis is 
initiated by the formation of nicotianamine (NA) via 
trimerization of S-adenosyl methionine catalysed by 
NICOTIANAMINE SYNTHASE (NAS), followed 
by an amino group transfer to form a 3-keto interme-
diate, a step that is mediated by NICOTIANAMINE 
AMINOTRANSFERASE (NAAT) (Higuchi et  al. 
1999; Kanazawa et  al. 1995). Reduction of the 3’ 
carbon of the intermediate via DEOXYMUGINEIC 
ACID SYNTHASE (DMAS) yields deoxymugineic 
acid (Bashir et al. 2006). The various mugineic acid 
family phytosiderophores are then formed by subse-
quent steps in a species- and cultivar-dependent man-
ner (Ma et al. 1995).

The ability to thrive in calcareous soils appears to 
be tightly correlated with the amount of secreted MA. 
Rice plants transformed with barley genes encoding 
enzymes of the MA biosynthetic pathway showed 
higher tolerance to low Fe availability in calcareous 
soils than untransformed plants (Suzuki et  al. 2008; 
Gómez-Galera et al. 2012; Banakar et al. 2017). Sim-
ilarly, in wild grasses, phytosiderophore secretion was 
higher in calcicole than in calcifuge species, suggest-
ing that grasses of the latter group are excluded from 
calcareous soil due to their low Fe acquisition effi-
ciency (Gries and Runge 1992; 1995). Notably, cal-
cicoles not only secreted more siderophores, they also 
had lower metabolic requirements for Fe. Factoring in 
the latter trait, an up to 50 times higher Fe efficiency 
of calcicole compared to calcifuge grass taxa was 
estimated (Gries and Runge 1995). Thus, this dual 
adaptation of high MA secretion and low Fe demand 
seems to be decisive for the ability to colonize cal-
careous soils in grass species. It should be noted, 
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however, that—similar to coumarins secreted by 
strategy I species—the complex interaction between 
soil characteristics, nutrient status of the plant, and 
phytosiderophore secretion may lead to an overes-
timation of the concentration of phytosiderophores 
under experimental conditions relative to concentra-
tions determined in situ (Oburger et al. 2014).

In rice, IRT-type transporters are induced upon 
Fe starvation in addition to phytosiderophore-medi-
ated Fe uptake (Ishimaru et al. 2006), a process that 
was thought to have evolved as a consequence of 
the cultivation of rice plants in paddy fields, where 
high concentrations of Fe2+ are readily available for 
IRT1-mediated Fe uptake. OsIRT orthologs are, how-
ever, also responsive to Fe deficiency in wild Oryza 
species, suggesting species-dependent evolution of 
this strategy preceding rice domestication (Wairich 
et  al. 2019). Notably, as a further strategy I compo-
nent, rice plants secrete phenolic compounds such 
protocatechuic acid and caffeic acid  through a trans-
porter designated PEZ2 (Bashir et al. 2011).

Inter‑organ signalling orchestrates root Fe uptake

The tomato (Solanum lycopersicum) mutant T3238fer 
harbours a recessive mutation that renders it incapable 
to mount any of the typical Fe deficiency responses 
(Brown et  al. 1971; Ling et  al. 1996). The mutation 
was later mapped to the transcription factor SlFER/
SlbHLH85  (Ling et  al. 2002). SlFER was the first 
identified constituent of a surprisingly complex sig-
nalling cascade, comprising a suite of bHLH proteins 
that keep the cellular concentration of Fe balanced by 
positively and negatively regulating proteins involved 
in Fe uptake from the soil (reviewed in Liang 2022; 
Gao et al. 2019; Gao and Dubos 2021; Riaz and Gueri-
not 2021). The A. thaliana homolog of SlFER is FIT 
(FER-LIKE IRON DEFICIENCY-INDUCED TRAN-
SCRIPTION FACTOR; bHLH29) (Jakoby et al. 2004; 
Colangelo and Guerinot 2004; Yuan et al. 2005). FIT 
forms heterodimers with the clade Ib bHLH proteins 
bHLH38, bHLH39, bHLH100, and bHLH101 to regu-
late genes mediating key processes of the strategy I Fe 
uptake system, i.e., FRO2, IRT1, AHA2, F6ʹH1, S8H, 
and CYP82C4 (Fig. 3) (Yuan et al. 2008; Wang et al. 
2013). Within these heterodimers, clade Ib proteins 
confer DNA binding, while FIT possess transcription 

activation activity to interdependently regulate Fe 
uptake (Cai et al. 2022).

FIT and its homologs are exclusively expressed 
in root cells, necessitating information from above-
ground to adequately adjust Fe uptake rates. The 
photosystems in chloroplasts are the strongest sink 
for Fe and are, most probably, the sites from which 
the demand for Fe is communicated to regulate its 
uptake by roots. Iron deficiency appears to be first 
sensed in the phloem of leaf cells, supporting this 
concept (Khan et  al. 2018). Shoot-to-root commu-
nication that steers Fe uptake was demonstrated by 
various experimental setups. Altering the demand for 
and the supply with Fe by cooling the root zone while 
exposing the shoots to warmer air triggers an increase 
in root Fe uptake to compensate for the decreased 
transport of Fe to the leaves (Schmidt and Stein-
bach 2000). Similar observations were made with 
split-root plants, where one half of the root system 
is exposed to Fe while the other half is grown in Fe-
deplete media (Schmidt et al. 1996; Vert et al. 2003; 
Tabata et al. 2022). In this set-up, the Fe demand of 
the shoots must be provided by the Fe-replete half of 
the root system, tuning uptake rates to compensate 
for the lack of Fe supply by the other half of the root 
system. Conspicuously, the response to Fe starvation 
is more pronounced in the Fe-supplied root portion, 
a pattern that seems to be advantageous for efficient 
mining of Fe. These results are indicative of an intri-
cate interplay between local and systemic signals and 
unambiguously suggest one or—more likely—a suite 
of positive and negative signals that migrate between 
different plant parts to orchestrate root Fe uptake.

The nature of the long-distance signal(s) remains 
largely enigmatic. Iron, loaded into the phloem of leaf 
cells by oligopeptide transporters (OPTs), and IRON-
MAN (IMA) peptides have been suggested as respec-
tive negative and positive regulators, but the observed 
pattern appears to be more complex. AtOPT3 and 
its rice homolog OsOPT7 play critical roles in Fe 
homeostasis (Stacey et  al. 2008; Mendoza-Cózatl 
et al. 2014; Bashir et al. 2015). AtOPT3 is preferen-
tially expressed on the plasma membrane of phloem 
cells in the leaf vasculature and required for shoot-
to-root transport of Fe. Similar to what was observed 
for transgenic A. thaliana lines overexpressing IMA, 
mutations in OPT3 lead to a constitutive upregula-
tion of the root Fe deficiency responses, while shoot 
cells show the transcriptional signature of Fe toxicity 
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(Grillet et al. 2018; Hirayama et al. 2018; Khan et al. 
2018). In A. thaliana, shoot-specific expression of 
OPT3 rescued the opt3 phenotype (Mendoza-Cózatl 
et al. 2014). Supplying opt3 roots with Fe, however, 
did not decrease the constitutively elevated root 
reductase activity of the mutant, supporting a concept 
in which the perception of phloem Fe by root cells is 
critical for proper Fe sensing.

In an attempt to further clarify this matter, Tabata 
et al. (2022) undertook a transcriptomic analysis of split-
root halves of A. thaliana plants exposed to either Fe-
free or Fe-replete media. Besides FRO2 and IRT1, this 
survey found in particular genes involved in coumarin 
secretion to be up-regulated in the Fe-exposed half of 
the root system, a response that was absent in septuple 
ima7x mutants with minimal IMA activity. Reciprocal 
grafting experiments with wild-type plants and IMA3 
overexpressing lines showed that IMA3 is required for 
systemic signalling, a route which includes the tran-
scription factor MYB72 (Tabata et  al. 2022). MYB72 
and its homolog MYB10 were previously shown to be 
critical for the survival in alkaline soil (Palmer et  al. 
2013). Notably, the expression of IMA3 (≈80-fold), 
MYB72 (> 400-fold), and S8H (≈190-fold) is dramati-
cally induced by bicarbonate treatment (Chen et  al. 
2021), indicative of a massive increase in the produc-
tion and—most likely—secretion of coumarins in the 
presence of bicarbonate. In line with the upregulation 
of Fe uptake genes in the Fe-supplied split-root half, 
local resupply of Fe to cucumber roots caused a boost 
of Fe uptake in the Fe-resupplied portion of the roots, 
followed by rapid translocation to leaves and the other, 
Fe-free grown part of the root system (Valentinuzzi et al. 
2020). Together, these observations are rather consistent 
with a root-shoot–root communication route than with 
simple shoot-to-root signalling. Employment of such 
a circuit is supported by the observation that separated 
roots can perceive biotic stimuli such as the local coloni-
alization of microbial communities, and drive systemic 
exudation of metabolites by unshared areas of the root 
system (Korenblum et al. 2020).

The transcription factor ELONGATED HYPOC-
OTYL 5 (HY5) was recently introduced as novel 
actor in Fe-related long-distance communication. In 
tomato plants, phyB-dependent accumulation and 
subsequent binding of shoot-derived SlHY5 to SlFER 
orchestrate downstream Fe deficiency responses 
(Guo et  al. 2021). HY5 is phloem mobile and able 
to migrate from shoots to roots (Chen et  al. 2016), 

making this protein well-suited for conveying infor-
mation between plant parts. In A. thaliana, HY5 was 
found to bind to the promotor of the putative Fe sen-
sor BRUTUS (BTS) to regulate Fe-responsive genes, 
supporting a role of HY5 in long-distance Fe signal-
ling (Mankotia et al. 2022). The expression of genes 
involved in Fe uptake, in particular those encoding 
proteins mediating the production of coumarins (i.e., 
F6’H1, S8H, CYP82C4, PDR9,  and  BGLU42) was 
compromised in hy5 mutants. When grown in calcar-
eous soil, homozygous hy5 mutants are more chlo-
rotic than wild-type plants, underlining the impor-
tance of HY5 for coumarin-mediated Fe acquisition 
(Mankotia et al. 2022). It is still unclear though as to 
how specificity of HY5 action is achieved, since HY5 
is also involved in the regulation of the uptake of N, 
P, and Cu (Chen et  al. 2016; Sakuraba et  al. 2018; 
Zhang et al. 2014).

Transcripts of the cation/H+ exchanger (CAX) 
family member MdCAX3 were recently shown to 
represent further means of inter-organ communica-
tion (Hao et  al. 2022). In apple (Malus domestica), 
MdCAX3 mRNA migrates from shoots to the roots, 
where it is translated and activated by the molecu-
lar chaperone MdCXIP1. MdCAX3 pumps Zn2+ 
ions into the vacuole and prevents MdIRT1 from 
being degraded by the elevated Zn2+ levels typically 
observed in roots of Fe-deficient plants. Degradation 
of AtIRT1 by secondary substrates such as Zn2+, pos-
sibly to prevent the accumulation of toxic levels of 
secondary non-Fe metal substrates, was reported for 
A. thaliana roots (Dubeaux et al. 2018). In addition, 
MdCAX3 aids in Fe acquisition by activating plasma 
membrane ATPases to acidify the apoplast.

Consistent with Fe being sensed in the vascula-
ture, communication of the shoot Fe status to the 
roots is impaired in A. thaliana mutants defective in 
the plasma membrane-bound NA-metal transporters 
YSL1 and YSL2, which are predominantly expressed 
in the leaf vasculature (Kumar et  al. 2017). In con-
trast to the constitutively upregulated Fe deficiency 
responses of opt3 roots, the ysl1 ysl2 mutant does 
not—or to a lesser extent—mount such responses 
when subjected to Fe-deficient conditions (Kumar 
et  al. 2017). Homozygous ysl1 ysl2 double mutant 
plants are able to induce a partial Fe-deficiency 
response in their leaves, suggesting that it is not the 
sensing of Fe that is compromised. It appears that in 
ysl1 ysl2 plants Fe is not efficiently removed from the 
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veins, resulting in elevated Fe levels in the vascula-
ture. A probable scenario explaining the phenotype of 
ysl1 ysl2 involves OPT3, which may transport enough 
Fe from the vasculature to the roots to signal Fe suf-
ficiency despite compromised lateral transport of, 
which in turn triggers a partial Fe deficiency response 
in the leaves (Kumar et al. 2017).

Crucially, the expression of both AtIMA1 and AtYSL1 
in shoots is affected by compromised trimethylation of 
lysine 27 of histone 3 (H3K27me3)  (Park et  al. 2020), 
suggesting that post-translational histone modifica-
tions add a further layer to the complexity of inter-organ 
Fe signalling. Differential expression and differential 
H3K27me3 deposits were observed for AtIMA1 and Atb-
HLH39 in response to phosphate starvation, which, indi-
rectly, alters the Fe status of the plants (Yen et al. 2017). 
Histone methylation may be more globally changed (but 
less well-explored) in response to alterations of the Fe 
status (Yen et al. 2017; Singh et al. 2020). The picture 
that emerges from these examples implies a rather com-
plex interplay between different signals involved in inter-
organ communication, an elaborate network which has 
only begun to be explored.

Peculiarities of Fe acquisition contribute 
to calcicole behaviour

Elevated root reductase activity, introduced by 
transgenic approaches or caused by natural varia-
tion, appears to confer chlorosis resistance to plants 
growing in calcareous soils. Reduction of ferric Fe 
is the rate-limiting step in Fe uptake (Grusak et  al. 
1990), making strategies to improve Fe efficiency 
through elevated root reductase activity a promis-
ing approach. Several studies appear to support this 
concept. For example, heterologous expression of the 
A. thaliana FRO2 gene ameliorated chlorosis symp-
toms in soybean (Vasconcelos et  al. 2006). Further-
more, non-coding allelic variation in the FRO2 gene 
among natural A. thaliana accessions was found to 
be associated with root length, FRO2 expression, and 
root reduction activity, with accessions having higher 
reductase activity performing better in calcareous 
substrate (Satbhai et  al. 2017). However, chlorosis-
resistant species, cultivars, or demes are not gener-
ally characterized by high ferric chelate activity (see 

below and de la Guardia and Alcántara 2002; Terés 
et al. 2019; Wang et al. 2022).

A major constraint for strategy I plants inhabiting cal-
careous soils is the pronounced inhibition of root-medi-
ated ferric chelate reduction at neutral or alkaline pH 
(Susín et  al. 1996). Repression of FRO2 activity under 
such conditions is caused by decreased gene expression 
(Santi and Schmidt 2009; Tsai and Schmidt 2021) and—
more importantly—decreased reduction rates in  vivo, 
possibly caused by repulsion of (negatively charged) 
Fe(III) chelates by (also negatively charged) pectic 
polysaccharides in the cell wall. The slightly acidic pH 
optimum of root Fe reduction is maintained by net pro-
ton efflux supported by P-type ATPases, a process that 
is efficiently buffered in calcareous soils and renders 
this component of the strategy I-type Fe acquisition sys-
tem rather inefficient. Moreover, expression of AtAHA2 
(but not that of the housekeeping AtAHA1) is reduced 
at elevated pH (Santi and Schmidt 2009). Engineer-
ing a Fe(III) chelate reductase for better performance at 
high pH revealed that an amino acid substitution at posi-
tion 312 is critical for the activity of the yeast reductase 
FRE1 under alkaline conditions (Ishimaru et  al. 2006; 
Oki et al. 2004). When expressed in rice under control 
of the OsIRT1 promoter, the transgene—referred to as 
reconstructed FRE1 (refre1)—conferred higher Fe che-
late reduction rates, increased Fe uptake, elevated grain 
yield, and improved tolerance to low Fe availability in 
calcareous soils (Ishimaru et al. 2007). The positive out-
come of this approach raises the question as to why no 
such pH-insensitive reductase has been evolved in calci-
cole plant species. The answer may lie in an energetically 
unfavourable outcome of such an endeavour; since high 
redox activity may come with the penalty of low affin-
ity (Km) for the substrate. In a comparison of Plantago 
species differing in their ecological distribution pattern, 
maximal velocity (Vmax) of the Fe chelate reductase was 
found to be an insufficient proxy for the efficiency of Fe 
uptake among the species under study. Iron uptake effi-
ciency was rather associated with the Km of the reaction 
(Schmidt and Fühner 1998), suggesting that substrate 
availability is a decisive factor for the tolerance to low 
Fe availability. Notably, olive trees, adapted to Mediter-
ranean calcareous soils and highly tolerant to low avail-
able Fe, do not increase their ferric reductase activity 
upon Fe starvation (de la Guardia and Alcántara 2002). 
Thus, another possible explanation for the absence of a 
pH-insensitive reductase in calcicole species may lie in 
the fact that other solutions are simply more efficient.
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Iron chelating ligands extend the pH range for 
efficient Fe uptake

While the elucidation of the signalling cascades lead-
ing to adaptive changes in gene expression in plants 
is still pending, it has been observed that short-term 
shifts in media pH caused remarkably rapid and 
pronounced changes in the transcriptome of plants 
(Lager et  al. 2010; Payá-Milans et  al. 2017; Pérez-
Martín et  al. 2021). Similarly, transferring Fe-defi-
cient A. thaliana plants from slightly acidic pH to 
media with circumneutral pH and restricted Fe availa-
bility altered the expression of a large subset of genes 
(Tsai and Schmidt 2020). Most of the genes that were 
differentially expressed in response to the change in 
pH are not generally responsive to the Fe regime, 
suggesting that pH- and Fe-signalling run largely 
separate courses. However, in some remarkable cases, 
pH- and Fe-signalling circuits appear to merge to 

prioritise specific phenotypic readouts. An example 
of such intertwining of signalling pathways emerged 
from the above-mentioned survey, which revealed 
a pronounced repression of the gene encoding the 
sideretin-producing enzyme CYP82C4 at elevated 
pH, a response that was later confirmed in other stud-
ies (Fig. 4) (Gautam et al. 2021). By contrast, expres-
sion of S8H, mediating the preceding formation of 
fraxetin, was robustly increased by high pH (Tsai and 
Schmidt 2020; Gautam et al. 2021; Chen et al. 2021). 
This pH-dependent control of gene activity results 
in the production of different coumarins at different 
external hydrogen concentrations: while acidic pH 
supports the biosynthesis of sideretin, elevated pH 
favours the formation of its less oxidised homolog 
fraxetin (Fig.  4). The oppositional regulation of the 
two genes seems, at first sight, to be counterintui-
tive, given the fact that both genes are controlled by 
the transcription factor FIT and are highly induced (at 

Fig. 4   pH-dependent 
production of coumarins 
in response to external pH. 
Acidic media pH sup-
ports the biosynthesis of 
sideretin via CYP82C4. At 
circumneutral or alkaline 
pH, a putative pH signal 
interferes with the default 
gene expression pattern, 
supporting the expression 
of S8H while repressing 
CYP82C4. This differential 
regulation of the last and 
penultimate steps of the 
coumarin pathway supports 
the production of fraxetin, 
which is more efficient in 
mobilizing Fe under such 
conditions.  Adapted from 
Tsai and Schmidt (2021). 
Figure was created with 
BioRender.com
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acidic pH) by Fe deficiency. Ecologically, however, 
a pH-dependent prioritization of specific coumarins 
appears to be highly advantageous. Sideretin is unsta-
ble at high pH and less efficient in mobilizing Fe at 
high pH than fraxetin (Rajniak et al. 2018; Tsai et al. 
2018; Sisó-Terraza et al. 2016b; Gautam et al. 2021). 
Fraxetin, on the other hand, is critical for survival on 
substrates with high pH and limited Fe availability 
(Tsai et  al. 2018). Without pH-dependent modula-
tion of gene expression, the coumarin biosynthetic 
pathway would inevitably lead to the biosynthesis 
of sideretin, which does not support Fe uptake under 
alkaline conditions. Thus, the pH-dependent regu-
lation of the pathway allows for efficient Fe mining 
under a wide range of edaphic conditions.

Growth, chlorophyll, and Fe content correlated with 
fraxetin content among A. thaliana accessions differing 
in performance on high pH/low Fe media, corroborat-
ing the supposition that fraxetin is a major component 
of calcicole behaviour (Tsai et al. 2018). In support of 
this finding, the decisive trait for the adaptation of an 
A. thaliana deme to carbonate-rich soil was a higher 
secretion of catechol-type coumarins such as esculetin 
and fraxetin relative to plants native to Ca-poor soil 
(Terés et al. 2019). Notably, a deme adapted to carbon-
ate-rich soil exhibited lower root reductase activity than 
a carbonate‐sensitive deme, suggesting that the higher 
reductase activity of plants from the non-adapted pop-
ulation reflected a lower Fe status rather than an adap-
tive trait (Terés et  al. 2019). Thus, secretion of cou-
marins (or other Fe-mobilising compounds) appears 
to be a more promising strategy for efficient Fe mining 
at elevated pH than increased root reduction activity. 
Importantly, secretion of coumarins can – at least to a 
certain extent or under certain conditions – bypass the 
reductive Fe uptake system, enabling plants to take up 
Fe-coumarin complexes without prior reduction of Fe 
(Fig. 3). Re-uptake of secreted coumarins is energeti-
cally favourable and provides a competitive advantage 
over other organisms that may otherwise profit from 
the secreted compounds. Coumarins taken up from 
the rhizosphere could be glycosylated and stored in 
the vacuole before undergoing a new circle of de-gly-
cosylation, secretion, and chelation. Evidence for such 
a ‘merry-go-round’ of coumarins derived from the 
observation that coumarin-deficient A. thaliana f6’h1 
mutants contain fraxetin when provided exogenously, 
indicating that roots can indeed take up catecholic 
coumarins (Robe et  al. 2021a, b, c). Such re-uptake 

of Fe(III)-coumarin complexes is a plausible scenario 
which awaits further support. A transporter for Fe(III)-
chelates has, however, not yet been identified.

The uptake of Fe(III) coumarin complexes by 
non-gramineous plants resembles the promotive 
effect observed during intercropping. Here, strat-
egy I plants such as peanut (Arachis hypogaea) 
profit from phytosiderophores secreted by grasses 
that are taken up via AhYSL1 or AhYSL3.1 trans-
porters, the expression of which is induced in 
intercropped peanut plants (Xiong et  al. 2013; 
Guo et al. 2014). Notably, these two YSL proteins 
were shown to complement the yeast fet3fet4 dou-
ble mutant (defective in high- and low-affinity 
Fe-uptake systems) supplied with Fe(III)- deoxy-
mugineic acid (Xiong et al. 2013). It thus appears 
that strategy I plants are able to hijack phytosi-
derophores with an auxiliary Fe uptake system, 
which may have a wide range of suitable sub-
strates (Fig.  3). The next question to be asked is 
as to whether strategy I plants can produce and 
secrete phytosiderophores of the MA family and 
have thus adopted components of the strategy II 
system just as rice (and possibly other strategy II 
species) employs traits typical of strategy I plants. 
In support of this supposition, olive (Olea euro-
paea) trees were found to contain endogenous 
2’-deoxymugineic acid and contigs (i.e., contigu-
ous representations of a genomic region) cod-
ing for MA biosynthesis enzymes such as NAS, 
NAAT, and DMAS as well as for YS1 transport-
ers (Suzuki et  al. 2016). Moreover, MA deriva-
tives were identified in root exudates of Fe-defi-
cient tomato plants in an untargeted metabolomic 
survey (Astolfi et  al. 2020). The assumption that 
tomato roots can indeed produce phytosidero-
phores was supported by the presence of putative 
SlTOM1 orthologous genes in the tomato genome. 
Phytosiderophores were also detected in exudates 
of grapevine (Marastoni et  al. 2020) and in the 
metal hyper-tolerant species Nicotiana thyrsi-
flora and Puya sp. (Kińska et al. 2022). It appears 
from these observations that the mechanisms for 
Fe uptake are not as strictly separated by phylo-
genetic borders as previously suggested. How-
ever, the reciprocal adoption of non-typical Fe 
acquisition mechanisms seems to represent aux-
iliary, non-inducible systems that may be critical 
under specific conditions, but are not as equally 
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important as the canonical Fe uptake strategy of 
the respective group. Moreover, it remains to be 
unequivocally demonstrated that MA-type phyto-
siderophores are secreted and taken up by strategy 
I plants and whether this mechanism is of signifi-
cant physiological importance for this group of 
plants.

The plant‑microbiome holobiont

The term holobiont refers to an amalgamated organ-
ism composed of microbial species and the eukary-
otic host, where a suite of microbes harboured within 
and on the outer surface of the root provide additional 
functionality (Meyer-Abich 1943; Margulis and Fes-
ter 1991; Vandenkoornhuyse et al. 2015; Theis et al. 
2016; Baedke et  al. 2020). The interaction between 
host and microbiome can be viewed as a facilitator 
that provides the plant with additional genes, a con-
cept that has been referred to as ‘the powerhouse of 
the adjustment to local conditions’ (Vandenkoorn-
huyse et al. 2015).

Plant–microbe interactions are of particular 
importance for the uptake of Fe. The rhizosphere is 
strongly influenced by carbon-rich molecules derived 
from or secreted by plant roots, compounds that can 
be both detrimental or beneficial for the microbes. 
Rhizosphere microorganisms such as bacteria, fungi, 
archaea, viruses, and oomycetes may profit from the 
host by using the various kinds of rhizodeposits (i.e., 
material lost from plant roots) such as exudates, nutri-
ents, mucilage, and volatiles as an energy source. Iron 
acquisition by the host, on the other hand, may be 
augmented by bacterial siderophores through one or 
more of the following mechanisms: 1) direct uptake 
of the Fe-siderophore complex, 2) limiting the growth 
of pathogens and, consequently, reduced competition 
for Fe in the rhizosphere, and 3) by stimulation of the 
host Fe uptake system by microbes. Thus, the host 
affects the activity, composition, and functional plas-
ticity of the microbiome, and the microbiome affects 
growth, Fe status, and fitness of the plant (Fig. 5).

Cross‑species hijacking of siderophores in the soil

Bacteria produce a wide range of Fe-scavenging 
siderophores, which play important roles in eco-
system functioning and participate in a variety of 

ecological processes such as pathogen competition, 
Fe cycling in soils, cross-kingdom signalling, and 
plant growth promotion (Trivedi et  al. 2020). Cru-
cially, siderophore-producing species appear to be 
enriched in the rhizosphere relative to the bulk soil 
(Jin et al. 2010; Coleman-Derr et al. 2016; Bulgarelli 
et  al. 2015; Xu et  al. 2018). Bacterial siderophores 
mobilize Fe in the soil and could provide a bio-avail-
able source of soluble Fe for plants, a mechanism that 
can become critical in soils in which other sources 
of Fe are firmly limited. In principle, plants may 
assimilate Fe from bacterial siderophores either by 
reductive splitting of Fe(III) chelates and subsequent 
uptake of the released ferrous ion, direct absorption 
of siderophore-Fe complexes as such, or after ligand 
exchange followed by uptake of the plant-borne Fe-
chelate. While the exact mechanism by which plants 
profit from the abundance of bacterial siderophores 
remain to be elucidated, a suite of studies supports 
the view that plants indeed efficiently highjack Fe 
bound to bacterial siderophores.

Unequivocal evidence for such a mechanism 
derived from an investigation by Vansuyt et  al. 
(2007), showing that A. thaliana plants can take up 
the bacterial siderophore pyoverdine. The authors 
demonstrated that supplementation of the media with 
the bacterial siderophore rescued the A. thaliana irt1 
mutant, whereas substrates of the FRO2/IRT1 uptake 
system such as FeEDTA were ineffective. Pyoverdine 
was immunologically detected in plant roots, exclud-
ing other mechanisms such as ligand exchange to 
account for the observation. A transcriptomic survey 
conducted later revealed that application of pyover-
dine in its Fe-free structure (apo-pyoverdine) induces 
the expression of Fe uptake genes and represses 
defense-related genes (Trapet et  al. 2016), indicat-
ing wide-ranging effects of the bacterial siderophore 
on growth and immunity. Uptake of Fe chelators of 
bacterial origin has been suggested earlier for sidero-
phores produced by the plant growth-promoting bac-
terium Pseudomonas sp. strain GRP3 and mung bean 
(Vigna radiata L. Wilzeck) (Sharma et al. 2003), and 
since then for several bacterial-plant systems such 
as Azospirillum brasilense and cucumber (Pii et  al. 
2015), Pseudomonas strain sp. SP3 and apple (Gao 
et  al. 2022), and P. illinoisensis and peanut plants 
(Liu et al. 2017). While the the transporter(s) facili-
tating the uptake of bacterial siderophores remain to 
be identified, the potential importance of the highly 
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diverse cocktail of Fe-siderophore complexes of bac-
terial origin for the mobilization of Fe is immense. 
More than 500 different bacterial siderophores with 
hydroxamate, catecholate, and α-hydroxycarboxylate 
functional groups have been identified, (Hider and 
Kong 2010), suggesting niche specificity and func-
tional diversity of the various siderophores in metal 
acquisition (Baars et  al. 2016). Thus, the potential 
ability for plants to utilise Fe pools of poor mobility 
is extended to a great extent, allowing for survival in 
stands with extremely poor Fe availability.

Another way by which commensal bacteria 
improve plant Fe acquisition is via stimulation of the 
host’s Fe uptake system. Inoculation of rice plants 

with the endophytic Streptomyces hygroscopicus 
OsiSh-2 improved the Fe status of its host by exploit-
ing the highly efficient Fe uptake system of the bac-
terium in which siderophore secretion was increased 
during rice colonisation (Cao et  al. 2021). Moreo-
ver, OsiSh-2 increased the host’s Fe acquisition by 
up-regulation plant-specific processes. Interestingly, 
OsiSh-2 inoculation specifically induced the strategy 
I-type Fe uptake system in rice such as root-mediated 
ferric reduction and media acidification, while phyto-
siderophore production was down-regulated. These 
observations suggest that the bacterium supports Fe 
acquisition through two different modes: by provid-
ing Fe-loaded bacterial siderophores and by inducing 

Fig. 5   Plant-microbiome interactions relevant to Fe acquisi-
tion. Root exudates such as coumarins can be beneficial to soil 
bacteria or repel plant pathogens. The microbiome in the rhizo-
sphere can support the host’s Fe uptake by stimulation of plant 
Fe uptake, by repressing the growth of pathogenic bacteria and 
thus reducing the competition for soil Fe, and by hijacking bac-

terial siderophores. Beneficial microbes can further strengthen 
the plant’s defence by inducing systemic resistance. Coumarins 
secreted by the plant improve Fe uptake by providing substrate 
for the reducing Fe uptake system and via uptake of the Fe(III) 
coumarin complex as such. PS; phytosiderophores. Figure was 
created with BioRender.com 
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specific components of the host Fe uptake mechanism 
(Cao et al. 2021).

Conspicuously, secretion of siderophores is asso-
ciated with the loss of substantial energy resources, 
making it attractive to highjack Fe and siderophores 
produced by other organisms. Factually, such sidero-
phore piracy is supported by the evolution of uptake 
pathways for siderophores of foreign origin (Lee et al. 
2012; Harrington et  al. 2015), improving Fe uptake 
efficiency of the cheater and attenuating that of the 
producer. Other studies show that siderophore piracy 
is, in fact, bidirectional. In the grass Brachypodium 
distachyon, genes involved in phytosiderophore pro-
duction were upregulated when plants were cultured 
with the soil bacterium Pseudomonas fluorescens 
SBW25::gfp/lux (SBW25), but the abundance of 
secreted phytosiderophores was lower compared to 
media without the bacterium (Boiteau et  al. 2021). 
By contrast, the presence of B. distachyon suppressed 
pyoverdine production by the bacterium. These obser-
vations suggest that microbes can induce phytosidero-
phore production of their host and intercept the alien 
Fe complexes as a Fe source.

The effects of microbial-derived siderophores 
on the host are, however, not restricted to the sce-
narios outline above. A further mechanism is tied to 
the competition for Fe among plants, pathogens, and 
beneficial bacteria. By assessing the ability of sidero-
phores produced by various rhizosphere bacteria to 
suppress or promote the growth of the pathogenic 
bacterium Ralstonia solanacearum, it was found that 
pathogen-suppressive microbes produce siderophores 
that the pathogen cannot take up, resulting in plant 
protection (Gu et  al. 2020). Thus, bacterial sidero-
phores can improve plant growth indirectly and gov-
ern microbiome function in natural ecosystems.

Root exudates shape the microbiome

Coumarin secretion by plants not only mobilises 
Fe in the soil, but also considerably modulates the 
structure of microbial assemblages (Stringlis et  al. 
2018,  2019; Voges et  al. 2019; Harbort et  al. 2020; 
Hou et al. 2021). By employing a synthetic microbial 
community (SymCom), Voges et  al. (2019) dem-
onstrated that secretion of catecholic coumarins by 
plant roots triggered a beneficial shift of the micro-
bial community, repressing proliferation of the Pseu-
domonas  strain sp. Root329 but not that of the 

host-beneficial Pseudomonas simiae WCS417; plants 
harbouring mutations in genes that compromise 
the production or secretion of catecholic coumarins 
such as f6’h1 and pdr9 were ineffective (Voges et al. 
2019). Notably, root colonization by WCS417 stimu-
lates the host’s Fe uptake, leading to improved growth 
and increased Fe levels in both roots and shoots (Ver-
bon et al. 2019). Volatile organic compounds (VOCs) 
from beneficial Pseudomonas can induce AtMYB72 
by an AtOPT3- and Fe-status-independent, photo-
synthesis-related shoot-to-root signal (Zamioudis 
et al. 2015; Verbon et al. 2019), suggesting that ben-
eficial bacteria can induce processes downstream of 
and controlled by MYB72 such as the secretion of 
coumarins and systemic resistance. Thus, coumarins 
secreted by plants can alter bacterial communities, 
which in turn induce coumarin secretion via MYB72 
in a feed forward manner (Fig.  5). The mechanisms 
by which microbes induce MYB72 expression are not 
yet fully resumed, but at least in the case of Tricho-
derma VOCs this process appears to be associated 
with a rapid burst of nitric oxide (Pescador et  al. 
2022), a mechanism that may apply to other bacteria-
host systems.

Microbiota populations are not stable and sub-
ject to rapid evolution driven by environmental con-
straints. Plant-antagonistic Pseudomonas protegens 
bacteria were shown to evolve into mutualists within 
six plant growth cycles due to improved competition 
for root exudates and a higher tolerance to the root-
derived phytoalexin scopoletin, indicative of a fast 
plant-mediated ‘ecological filtering’ (Li et al. 2021). 
Surprisingly, the new mutualists were able to induce 
the expression of MYB72 in A. thaliana, which pro-
moted the production of coumarins and plant growth 
(Li et al. 2021). Thus, plants cannot only recruit spe-
cific beneficial bacteria, but can also alter the func-
tionality of the associated microbiota (Fig. 5).

The catechol fraxetin appears to be of particular 
importance for plant-microbiome-communication 
and critical for commensal-mediated plant growth 
stimulation (Harbort et  al. 2020). A surprising find-
ing was the observation that commensals support the 
growth of the coumarin-deficient f6ʹh1  mutant. The 
concentration of fraxetin required to rescue the chlo-
rotic phenotype displayed by f6ʹh1 plants when grown 
in calcareous substrate was significantly lower in the 
presence of commensals compared to that required for 
ameliorating the f6’h1 phenotype in commensal-free 

16



1 3
Vol.: (0123456789)

media (Harbort et al. 2020), suggesting a boost of the 
host’s Fe uptake system by a yet unexplored mecha-
nism not related to coumarin secretion by the host.

Plants growing in calcareous soils are generally 
undersupplied with multiple mineral nutrients and 
may have more complex effects on the microbiome. 
Unsurprisingly, deficiencies in other mineral nutrients 
such as P or imbalances in Fe/phosphate supply can 
alter the composition of root exudates and, subse-
quently, microbiome composition (Chutia et al. 2019; 
Tang et  al. 2022). In response to phosphate starva-
tion, A. thaliana roots secrete immune-related RAPID 
ALKALINIZATION FACTOR (RALF) peptides 
to suppress plant immunity via the receptor kinase 
FERONIA, which shifts the microbiome towards col-
onization by bacteria that induce phosphate starvation 
genes and mitigate phosphate deficiency (Tang et al. 
2022). Thus, the plant nutritional status is critical for 
the composition of the microbiome, which, in turn, 
support the acquisition of limiting nutrients.

Notably, the communication between the micro-
biome and plants is not strictly confined to roots. In 
A. thaliana, suboptimal light conditions perceived by 
leaves were shown to alter root bacterial communi-
ties, which support growth of the host, but decrease 
its foliar defences. Thus, root commensals can trig-
ger and steer also above-ground stress responses in 
plants, indicating that microbiota-root-shoot com-
munication circuits are drivers of the fitness and phe-
notypic plasticity of the holobiont (Hou et  al. 2021; 
Stassen et al. 2021). Such signalling circuits might be 
widespread and crucial for the prioritization of both 
below- and above-ground plant stress responses.

Conclusions

Much has been learned regarding the mechanisms 
and regulation of Fe uptake over the past decade. The 
acknowledgement of the importance of Fe-mobilising 
exudates of both plant and microbial origin, which 
extend the range of edaphic conditions over which 
Fe uptake is supported, has revealed the tremendous 
plasticity by which plants can respond to edaphic 
cues. The plethora of interactions between the root 
microbiome and the host has added another facet to 
the ways and means by which plants take up Fe, an 
aspect that has not yet been explored comprehen-
sively. It appears that plants function as an integrated 

continuum with the microbiome and ‘outsource’ parts 
of the Fe acquisition tasks to profit from soil bacte-
ria. The mutual exchange between plants and micro-
biota is not restricted to the trade of goods such as 
Fe and organic compounds, but contributes to—or 
even determines—plant fitness in calcareous soils. It 
should also be stated that the ability to thrive in such 
soils represents a multifactorial blend of physiologi-
cal readouts comprising various facets. Ecological 
factors, such as competition, ecological amplitudes, 
and habitat preferences, further complicates the pic-
ture. It seems obvious, however, that the efficiency by 
which Fe is mined from alkaline soils is one of the 
strongest determinants for conferring calcicole behav-
iour. Fitting plants to a given soil, either by tradi-
tional breeding methods or via transgenic approaches, 
requires knowledge regarding the traits conferring Fe 
efficiency on alkaline substrates, knowledge that aids 
in understanding functionally of natural ecosystems 
and in securing nutritional quality of edible plant 
parts.
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