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controlled conditions to probe for changes in root 
traits and nutrient uptake.
Results Grain yield increased at 16.0 ± 5.3 kg  ha−1  yr−1 
or 0.43 ± 0.15%  yr−1 at Roseworthy, where average yield 
was 3.1 t  ha−1. There was no relation between yield and 
year of registration at Mintaro, where severe, extended 
frost disrupted reproduction. Changes in phenology with 
year of registration were not apparent. The main driv-
ers of yield gain were grain number per  m2 and harvest 
index, with a minor contribution of shoot biomass. Root 
length density, specific root length, root extension rate, 
and nutrient uptake per cm of root length increased with 
year of registration.
Conclusions The rate of genetic gain of Austral-
ian barley aligned with rates reported for other 
breeding programs worldwide and compared to 
21.0 ± 2.3  kg   ha−1   yr−1 for actual yield in Austral-
ian farms between 1961 and 2019. Changes in the 
growth and functionality of the root system highlight 
the indirect effects of selective pressure for yield and 
agronomic adaptation.

Keywords Adaptation · Nitrogen · Phenotype · 
Phosphorus · Micronutrients · Selection

Introduction

The first barley crop in Australia was 3  ha at Farm 
Cove, after the arrival of the First Fleet in 1788 (Spar-
row and Doolette 1975), and currently spans 4.4 Mha, 

Abstract 
Background and Aims Barley breeding has increased 
yield over the last century, but the associated changes 
in the phenotype are largely unknown. Our aim was to 
quantify the rate of genetic gain in a collection of Aus-
tralian barley cultivars representing seven decades of 
breeding, and the associated changes in the phenotype.
Methods Thirteen barley cultivars were grown in 
the field at Roseworthy and Mintaro, South Australia, 
to evaluate shifts in phenology, yield, and its com-
ponents. A subset of five cultivars was grown under 
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with an average yield of 2.9 t  ha−1 (ABARES 2021), 
and a yield gap from 0.6 to 3.8 t  ha−1 (https:// yield 
gapau stral ia. com. au/). European cultivars were unsuit-
able to the dry and hot Australian environment, and the 
initial improvement of the crop was based on the British 
cultivar “Chevallier”, grown in the UK in the nineteenth 
century (Horne 1952; Sparrow and Doolette 1975). 
In 1903, a South Australian farmer developed the first 
local cultivar, Prior, from a selection of Chevallier. 
Prior was central to Australian barley production for 
more than 60 years. By 1954, Allan R. Callaghan high-
lighted the need for barley improvement, and lack of 
progress in comparison with wheat (Trumble 2001). As 
a result, the first breeding program was created in South 
Australia, releasing Clipper in 1968 (Friedt et al. 2011).

Plant breeding has increased the yield of barley at 
rates between 0.4%  y−1 and 1.1%  y−1 in Canada (Bul-
man et al. 1993), Italy (Martintello et al. 1987), Nor-
dic countries (Ortiz et al. 2002; Peltonen-Sainio and 
Karjalainen 1991), Spain (Muñoz et al. 1998) and the 
US (Boukerrou and Rasmusson 1990; Wych and Ras-
musson 1983). Higher yield associated with shorter 
stem, higher harvest index and more spikes and 
grains per unit area (Abeledo et  al. 2003c). Studies 
on genetic gain in barley yield and associated changes 
in phenotype are lagging in Australia. In parallel to 
breeding advances, better agronomy and its interac-
tion with breeding are required for yield progress.

Traits such as root length, rooting depth, and degree 
of root-soil contact are linked to water and nutrient 
uptake and adaptation to dry environments, and can 
contribute to improving nutrient use efficiency (Li 
et al., 2015; Palta and Turner, 2019; Tian et al., 2014). 
However, these traits involve trade-offs, and match-
ing root phenotype to particular environments is not 
straightforward (Hoad et al. 2001; Kitomi et al. 2015; 
Manschadi et al. 2006; Manschadi et al. 2008; Schwin-
ning and Ehleringer 2001; Tardieu 2012). Selec-
tive pressure for yield could indirectly select for root 
traits that putatively match the target environment. For 
example, selection for yield and agronomic adaptation 
of wheat in winter-rainfall environments of Australia 
over the last five decades reduced the size of the root 
system with no implications for water uptake, indicat-
ing root redundancy, and increased nitrogen uptake per 
unit root length that more than compensated for smaller 
root system (Aziz et al., 2017). The lack of synchrony 
between nutrient availability and crop growth contrib-
utes to the loss of mobile nutrients like nitrogen (Liao 

et al., 2004). Early and more extensive horizontal root 
growth in the 0.2–0.7-m soil profile contributed to 
superior nitrogen uptake in vigorous wheat lines (Liao 
et al., 2006). Developing thinner roots by stem elonga-
tion could improve the amount and rate of water and 
nutrient uptake in wheat (Palta and Nobel 1989). Rob-
inson (2018) found no correlation between seminal 
root angle and grain yield in pot trials with 216 breed-
ing lines from the Northern Region Barley Breeding 
program in Australia. Karunarathne et al. (2020) iden-
tified markers on barley chromosomes 1H(1), 3H(1), 
and 7H(2) associated with shoot length, relative shoot 
length, root dry weight and molecular mechanisms 
driving nitrogen use efficiency in barley. Candidate 
genes were identified including the high-affinity nitrate 
transporter 2.7 (HvNRT2.7), several transcriptional 
factors, protein kinases, and members of the aspara-
gine synthetase gene family. However, the relevance of 
these findings is uncertain because plants were grown 
in a highly artificial hydroponic system.

The aims of this study were (i) to quantify the rate 
of genetic gain and related changes in phenology and 
yield components, and (ii) to probe for changes in 
root traits and nutrient uptake associated with selec-
tion for yield and agronomic adaptation in Australian 
barley representing seven decades of breeding.

Methods

A historic collection of 13 barley cultivars (Table  1) 
adapted to winter-rainfall environments of Australia 
was phenotyped for phenology, yield and its compo-
nents at Roseworthy (-34.54, 138.688) and Mintaro 
(-33.884, 138.774), South Australia in 2018. A subset 
of the collection (five cultivars, plus Proctor) were phe-
notyped for root traits and nutrient uptake under con-
trolled conditions (Table  1). With support from local 
breeders, the historic collection was set according to 
three criteria: a focus on two-rowed phenotypes, proven 
agronomic adaptation and widespread grower uptake.

Genetic gain in yield, shifts in phenology, and yield 
components

The soil was a calcareous loam (Calcarosol) at Rose-
worthy, and a medium-heavy clay (Vertosol) at Mint-
aro (Isbell 1996). Sowing date was 27 May 2018 at 
Roseworthy and 1 June 2018 at Mintaro. Plots were 
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six rows, 10 m long, 0.26 m between rows, and a tar-
get plant density of 180 plants  m−2. Adjacent plots 
were spaced at 0.7  m. Crops were rainfed, fertilised 
with 230 kg  ha−1 of single super phosphate (8.8% P) 
banded 3–4 cm below the seed, and 140 kg   ha−1 of 
urea (46% N) broadcasted at 2-leaves. Crops were 
monitored weekly to control weeds, pests and dis-
eases. Experimental design was a randomised com-
plete block design with three replicates.

Crops were monitored weekly to determine the 
time to heading (GS 5.5) and maturity (GS 9.0) using 
the phenological scale of Zadoks et  al. (1974). At 
maturity, shoots were sampled in two central rows 
(0.52  m2). Samples were oven dried at 70  °C dur-
ing 48  h, weighted and threshed for estimating the 
yield and its components: shoot biomass and harvest 
index, grain number and grain weight. Grain weight 
was estimated in subsamples of 300 grains. Protein in 
grain was measured with Micro-NIR-1700ES spec-
troscopy (VIAVI Solutions Inc, AZ, US).

Root phenotyping

Six cultivars (Table 1, plus the variety Proctor, year 
of registration 1952) were grown in 1-m deep, glass-
walled rhizo-boxes (Supplementary Fig.  1) to map 

the growth and distribution of the root system with 
the method described by Liao et al. (2006) and Aziz 
et al. (2017). The soil was sourced from the top 3 cm 
of a sandy loam from Roseworthy (Supplementary 
Table 1); it was sterilised and packed to a bulk density 
of approximately 1.35 g  cm−3. At sowing, the equiva-
lent of 100 kg N  ha−1 was incorporated (Osmocote ® 
All Purpose Controlled Release Fertiliser, NSW, Aus-
tralia) and mixed into the 0.1-m topsoil. Four plants 
were grown in each rhizo-box. We used a randomised 
complete block design with four replicates per culti-
var. Plants were grown in chambers at 23/14 °C day/
night with a day length of 12 h. Water was applied to 
field capacity just before sowing, and 800  cm3 were 
applied every 10 days after the second visible node.

We mapped the growth of the root system using 
transparent film and drawing roots on the transparent 
wall of each rhizo-box to avoid repeated measurements. 
Roots were measured weekly from emergence until 
roots reached the bottom of the box to avoid artifacts 
(Passioura 2006). Transparent films were scanned with 
WinRhizo (Régent Instrument Inc., Quebec, Canada) to 
estimate root length. At harvest, shoots were counted, 
oven dried during 48 h at 70 °C, and grinded for nutri-
ent analysis (Thomas Wiley® model 4, Swedesboro, 
NJ, US) and). Nutrients (N, P, K, S, Ca, Mg, Na, B, Cu, 

Table 1  Pedigree, class and phenology of 13 Australian bar-
ley cultivars registered between 1942 and 2013. Thermal time 
from sowing to flowering is average (± s.e.) at Roseworthy and 
Mintaro. Superscript “R” indicates cultivars screened for root 

traits and nutrient uptake.  Source of pedigree: Fitzsimmons 
and Wrigley (1984); Menz (2010), and Plant Breeder’s Rights 
(https:// www. ipaus tralia. gov. au/ about- us)

Cultivar Year of 
registration

Pedigree Class Thermal time to flowering 
(°C day)

Roseworthy Mintaro

Prior  AR 1942 Prior/Kwan Malting 750 ± 0.3 673 ± 4.1
ClipperR 1968 Proctor/Prior A Malting 746 ± 6.4 746 ± 6.4
Forrest 1980 Atlas57/(A16) Prior/Ymer Feed 689 ± 1.9 689 ± 0.0
SchoonerR 1983 Proctor/Prior A//Proctor/CI3576 Malting 768 ± 4.6 737 ± 9.5
Chebec 1992 Orge Martin/2*Clipper (86)//Schooner Feed 779 ± 1.1 749 ± 0.0
Barque 1997 Triumph/Galleon Feed 764 ± 5.2 656 ± 2.0
SloopR 1997 WI2468/Norbert//Golden Promise/WI2395/3/Schooner Malting 764 ± 16.4 654 ± 4.0
Buloke 2005 Franklin/VB9104//VB9104 Malting 764 ± 5.6 749 ± 0.0
Flagship 2006 Chieftan/Barque//Manley/VB9104 Malting 779 ± 1.1 749 ± 0.0
Commander 2009 Keel/Sloop//Galaxy Malting 779 ± 1.1 749 ± 0.0
Scope 2009 Induced mutation from ‘Buloke’ Malting 764 ± 5.2 749 ± 0.0
Fathom 2011 JE001*13D-20 (CPI71284-48/Barque*3) and WI3806 

(Mundah/Keel//Barque)
Feed 768 ± 7.3 667 ± 6.7

CompassR 2013 ‘Commander’ x F1 (‘County’ x ‘Commander’) Malting 777 ± 2.8 668 ± 0.0
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Mn, Fe, Al, and Mb) were measured with an ICP-OES 
(Inductively Coupled Plasma Optical Emission Spec-
trometer) Perkin Elmer Optima 7300 (PerkinElmer, 
Inc., MA, USA). The soil was divided into 5 sec-
tions: 0–21 cm; 21–42 cm; 42–63 cm, 63–84 cm and 
84–100 cm; roots were washed, separated with a 2 mm 
mesh and dried to determine dry weight.

Statistical analysis

We used analysis of variance (ANOVA) to probe 
for the effects of cultivar, location and their interac-
tion on phenology, yield and its components in the 
field experiment, and for the effect of cultivar on root 
and nutrient traits. We calculated the absolute (e.g., 
kg  ha−1   yr−1) and relative (%  yr−1) rate of genetic 
change of each trait as the slope of the least square 
regression between the trait and the year of registra-
tion of the cultivar. The relative rate was calculated 
in relation to the newest cultivar (Fischer et al. 2014). 
Following updated statistical recommendations we 
avoid the wording “statistically significant”, “non-
significant”, or the variations thereof, thus avoid-
ing dichotomisation based on an arbitrary discrete 

p-value (Wasserstein et al. 2019). Instead, we report 
p as a continuous quantity, and Shannon information 
transform [s = -log2(p)] as a measure of the informa-
tion against the tested hypothesis (Greenland 2019). 
Although s is a function of p, the additional infor-
mation provided is not redundant. With the base-2 
log, the units for measuring this information are bits 
(binary digits). For example, the chance of seeing all 
heads in 4 tosses of a fair coin is 1/24 = 0.0625. Thus, 
p = 0.05 conveys only s =—log2(0.05) = 4.3 bits of 
information, “which is hardly more surprising than 
seeing all heads in 4 fair tosses” (Greenland 2019).

Results

Growing conditions

Crops grew under warmer and drier conditions at 
Roseworthy compared to Mintaro (Fig. 1). Minimum 
temperature during the first three weeks after sowing 
averaged 6.5 °C at Roseworthy and 3.8 °C at Mintaro. 
Mean temperature during the growing season, from 
May to December averaged 13.5  °C at Roseworthy 

Fig. 1  (a, c) Daily maxi-
mum  (Tmax) and minimum 
 (Tmin) temperature, (b, 
d) rainfall and incident 
solar radiation as a function 
of time after sowing at two 
locations in South Aus-
tralia. Vertical dotted lines 
show the beginning and end 
of heading, averaged across 
varieties

Plant Soil (2022) 480:151–163154
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and 11.8 °C at Mintaro, where 23 days recorded min-
ima below 0 °C, particularly during grain set. Rainfall 
during the first three weeks after sowing was 29 mm at 
Roseworthy and 50 mm at Mintaro. Seasonal rainfall 
was 228 mm at Roseworthy and 324 mm at Mintaro.

Phenology

Time to heading varied with all three sources of vari-
ation, cultivar, location, and interaction (Supplemen-
tary Table 2). It ranged from 654 °C day for Sloop at 
Mintaro to 779 °C day for Flagship and Commander 
at Roseworthy (Table 1), and was not related to year 
of registration (p = 0.097, s = 3.4 at Roseworthy, 
p = 0.2371, s = 2.1 at Mintaro).

Grain yield and its components, and grain protein

Yield responded to all three sources of variation 
(Supplementary Table  2) and was unrelated to phe-
nology (p = 0.32, s = 1.6). Grain yield increased 
at 16.0 ± 5.3  kg   ha−1   yr−1 or 0.43 ± 0.15%  yr−1 
at Roseworthy (Fig.  2). This rate compares with 
21.3 kg   ha−1   yr−1 for Australian farms (Fig. 3a) and 
aligned with rates of genetic gain in other countries 
(Fig.  3b). Frost before heading (Fig.  1) affected the 
early ear cohorts at Mintaro, and yield measured in a 
later cohort did not associate with year of registration 
(Fig. 2a).

Grain number varied with all three sources of 
variation (Supplementary Table 2); it increased with 
the year of registration at 35 ± 15 grains  m−2   yr−1 
or 0.37 ± 0.17%  yr−1 at Roseworthy, with no trend 
at Mintaro (Fig.  4a, Table  2). Grain weight var-
ied with cultivar and location, with no interaction 

(Supplementary Table 2) and was unrelated to year of 
registration (Fig. 4b).

Harvest index and biomass both varied with cul-
tivar and location, but not with interaction (Sup-
plementary Table  2). Harvest index increased at 
0.094 ± 0.03%  yr−1 or 0.23%  yr−1 at Roseworthy and 
at a lower rate at Mintaro (Fig.  4c, Supplementary 
Table  2). Shoot biomass increased with the year of 
registration at 28 ± 14  kg   ha−1   yr−1 or 0.31 ± 0.17% 
 yr−1 at Roseworthy, with no apparent trend at 
Mintaro.

Grain protein concentration varied with cultivar 
and did not vary with location or interaction (Sup-
plementary Table 2). At Mintaro, grain protein con-
centration decreased with the year of registration at 
0.05%  yr−1; no trend was apparent at Roseworthy 
(Fig. 2b).

Root traits

Cultivars differed in several root traits (Supplemen-
tary Table  3, Fig.  5). Root length density increased 
with the year of cultivar registration between 1942 
and 1980s, and levelled off afterward (Fig. 5a). Spe-
cific root length increased with the year of registra-
tion at a rate of 2.8 cm  g−1   yr−1 or 0.47%  yr−1 indi-
cating thinner roots in modern cultivars (Fig.  5b). 
Shoot biomass did not associate with year of registra-
tion (Fig. 5c). There was a weak trend of increase of 
root biomass per tiller with the year of registration at 
0.27 ± 0.14 mg root  shoot−1  yr−1 or 0.33 ± 0.18%  yr−1. 
The root extension rate increased at 0.25 cm  d−1  yr−1 
or 0.5%  yr−1 (Fig. 5e). Time to reach 1-m depth was 
shortened at 2.3 ± 0.05 d every 10 years or 0.31%  yr−1 
(Fig. 5f).

Fig. 2  (a) Grain yield and 
(b) concentration of protein 
in grain of barley cultivars 
adapted to winter-rainfall 
environments of Australia 
as a function of year of 
registration. Error bars are 
two standard errors of the 
mean. Lines are least square 
regressions.
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Uptake and concentration of nutrients

Nutrient uptake per plant, nutrient uptake per unit 
root length and concentration of nutrient in shoot var-
ied with cultivar (Supplementary Table  4). Table  2 
lists the genetic gains in absolute and relative terms 
calculated as the slopes of least square regression 
between trait and year of registration. Nutrient uptake 

decreased with year of registration for K, S, Ca, Mg 
and Na, and did not vary for the other nutrients. 
Nutrient uptake per unit root length decreased with 
the year of registration for N, K, S, Ca, Mg, Na, B, 
Cu, Mn and Mb, with no change for the other nutri-
ents. Concentration of nutrients in shoot increased 
with year of registration for P and decreased for K, S, 
Ca, Mg and Na.

Fig. 3  (a) Comparison of grain yield in a collection of historic 
barley cultivars grown at Roseworthy (this study), and actual 
yield in farmers’ fields. (b) Comparison of genetic yield gain 
of barley in Australia (this study) and breeding programs in 
other countries. The absolute rate of genetic gain is higher in 
higher-yielding environments, captured in a correlation with 
environmental mean yield, the average of all varieties in each 

study. Lines are least square regressions. Sources of data: 
(a)  Farmers’ yield is from FAO (https:// www. fao. org/ faost at/ 
en/), (b) Argentina (Abeledo et  al. 2003a, b), Australia (this 
study), Brazil (Rodrigues et  al. 2020), Canada (Bulman et  al. 
1993; Jedel and Helm 1994), Italy (Martintello et  al. 1987), 
Spain (Muñoz et  al. 1998), Turkey (Kaya and Akçura 2022), 
UK (Riggst et al. 1981), and US (Wych and Rasmusson 1983).

Fig. 4  (a) Grain number, 
(b) grain weight, (c) harvest 
index, and (d) and shoot 
biomass of barley cultivars 
adapted to winter-rainfall 
environments of south-east-
ern Australia as a function 
of the year of registration. 
Error bars are two standard 
errors of the mean. Lines 
are least square regressions.
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Discussion

Australian barley breeders select for yield, phenology, 
plant height, resistance to lodging, head loss caused 
by stem breakage, grain and feed quality, and resist-
ance to disease (Friedt et  al. 2011). Early breeding 
was based on limited backcrossing to incorporate 
resistance traits and with a scarce number of Euro-
pean parents that, during the 1970s and 1980s, ben-
efited from the introgression of genes from African 
landraces that contributed to match phenology to the 
environment, and more recent introgression of genes 
from germplasm from US, Japan and Europe (Friedt 
et  al. 2011). Subsoil chemical constraints such as 
boron toxicity are widespread in our environments, 
and barley breeders have selected for adaptation to 
these constraints, with consequences for root and 
nutrient traits as discussed below.

The rate of genetic yield between 1942 and 2013 
was slightly smaller than the actual rate of yield gain 
in farms, suggesting a narrowing yield gap and the 
need to enhance genetic gains (Fig. 3a). Higher abso-
lute rates were associated with higher yielding envi-
ronments (Fig.  3b), as found for wheat, maize and 
rice (Liu et al. 2021). The relative rate of genetic gain 
in yield is usually independent of environmental yield 
potential (Fischer et  al. 2014). The rate of genetic 
gain for yield in Australia aligned with those reported 
for other breeding programs worldwide (Fig. 3b), and 
could be used to benchmark estimates of genetic gain 
calculated with the breeder’s equation.

Genetic gain in yield associated with harvest index 
and grain number, in common with barley elsewhere 
(Abeledo et  al. 2003b, c; Bulman et  al. 1993; Jedel 
and Helm 1994; Kaya and Akçura 2022; Martintello 
et  al. 1987; Muñoz et  al. 1998; Peltonen-Sainio and 
Karjalainen 1991; Rajala et  al. 2016; Riggst et  al. 
1981; Rodrigues et  al. 2020; Wych and Rasmusson 
1983), and in common with wheat (Calderini et  al. 
1999; Sadras and Lawson 2011; Slafer et  al. 1990, 
1994). Harvest index was below 50%. Improvements 
in the harvest index of barley associated with plant 
height (Austin et  al. 1980; Bertholdsson and Kolo-
dinska Brantestam 2009; Bingham et  al. 2012; Bul-
man et al. 1993; Rajala et al. 2016). Future improve-
ment in biomass partitioning to grain might be 
feasible against theoretical limits of 64% for wheat 
(Foulkes et  al. 2011) and 60% in oats (Peltonen-
Sainio 1991). The actual limit for barley is unknown. 

Early generation selection for harvest index in wheat 
successfully culled low yielding lines, and enriched 
populations with high yielding lines before testing the 
lines for yield at plot level (Cann et al. 2022). Barely 
breeding in South Australia and Western Australian 
has used backcrossing and marker assisted selection 
for disease resistance; New South Wales and Queens-
land have used mass selection for early-generation 
screening and double haploid lines were used in the 
to improve breeding efficiency.

Genetic gain in yield of barley in Argentina related 
to higher grain number, higher spike number per unit 
land, and higher number of spikelet primordia per 
main shoot, with no changes in harvest or plant height 
(Abeledo et al. (2003b). Breeding in Italy and North 
America also increased grain number and also associ-
ated to spike number per unit land (Martintello et al. 
1987; Wych and Rasmusson 1983). The biomass 
improvement observed in our experiment at Rose-
worthy was in agreement with studies in Canada and 
Argentina (Abeledo et al. 2003b; Bulman et al. 1993).

We did not find shifts in phenology with the year 
of registration in our collection of cultivars, similar 
to a study with a Canadian barley sample from 1910 
to 1988 (Bulman et  al. (1993). Lack of association 
between days to anthesis and year of release in barley 
was reported for UK 1880–1980, US 1920–1984, and 
Spain 1937–1993 (Boukerrou and Rasmusson 1990; 
Muñoz et al. 1998; Wych and Rasmusson 1983). One 
exception is the longer time to anthesis in newer cul-
tivars in a series from 1910 to 1987 in Canada (Jedel 
and Helm 1994). Australian breeders incorporated 
earliness into their germplasm through the Eam1 
gene contained the earliest introduced European line 
(Prior), which contributed to adaption to hot springs 
(Friedt et al. 2011). Voss-Fels et al. (2018) suggested 
that selection for lines with the VERNALIZATION1 
(VRN1-1) allele, which is common in Australian bar-
ley varieties and simultaneously induces early flow-
ering and maintains “steep-cheap-deep” root sys-
tems, provides a double mechanism of adaptation 
to drought by modifying phenology with improved 
water or nutrient uptake. This was based on the asso-
ciation between VRN1-1 and narrow root growth in 
young plants and prolonged root growth at 60–80 cm 
depth after flowering.

High concentration of boron is widespread in local 
soils (Brennan and Adcock 2004; Cartwright et  al. 
1986; Sadras et al. 2002). Nable (1988) suggested the 
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B exclusion could be adaptive in barley. In our, exper-
iment B amount per cm or root decreased with the 
year of release. Germplasm and major QTL for boron 
tolerance have been identified in barley (Cartwright 
et  al. 1987, 1986; Jefferies et  al. 1999; Nable 1988; 
Sutton et  al. 2007). Besides improving boron toler-
ance, the QTL on chromosome 4H associate with root 
length, and QTL on 4HL associate with aluminium/
acid tolerance (Raman et  al. 2002, 2003). The gene 
Mel1 was mapped on chromosome 4HS related to Mn 
uptake efficiency and the assessment of 95 Austral-
ian parental lines suggested that two Restriction Frag-
ment Length Polymorphism (RFLP) markers could be 
used for its improvement. Australian breeders devel-
oped cultivars adapted to aluminium, manganese and 
boron toxicity (Jefferies et  al. 1999). For instance, 
Sloop and Gairdner were developed with backcrosses 
and molecular markers for tolerance to both boron 
toxicity and root disease (Barr et al. 1998; McDonald 
et al. 2010). We also found a lower total uptake of K, 
Ca, Mg, Na, Al and Mn per plant in newer varieties. 
The combined selective pressure for yield and adap-
tation to local soils has delivered substantial shifts 

in root and nutrient-related traits (Fig.  5, Table  3). 
Furthermore, new barley varieties had thinner roots 
than older ones, with putative advantages for uptake 
of water and nutrients. Nitrogen uptake per cm root 
length decreased in modern cultivars compared to old 
ones, with no differences in total N uptake per plant 
or in root biomass. Thinner roots were associated with 
advantages in environments with scarce resources 
(Barraclough et al. 1989; Brunel-Saldias et al. 2020; 
Corneo et al. 2016; Melino et al. 2015) but only when 
they are not redundant (Passioura 1983). Thinner 
roots were also observed in the modern Australian 
wheat in the 20–40 cm layer of the soil profile (Aziz 
et al. 2017). Smaller root xylem vessels are associated 
with thinner roots, delaying water uptake (Condon 
et al. 2004; Palta et al. 2011; Richards and Passioura 
1989; Vadez 2014).

Our method proved to be reliable to detect shifts in 
root traits in a historic collection of wheat (Aziz et al. 
2017), but results have to be interpreted carefully due 
to both a small cultivar sample and artefacts from 
growing plants in containers in controlled conditions 
(Passioura 2006; Rich et  al. 2020). Confirming this 

Fig. 5  (a) Root length density, (b) specific root length, (c) root 
biomass, (d) root biomass per shoot, (e) root extension rate, 
and (f) days to reach 1 m as a function of the year of registra-

tion of historical barley cultivars. Error bars are two standard 
errors of the mean. Lines are least squares regressions.
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research with field studies that involve the assess-
ment of the association between grain yield, nutrient 
uptake, root traits and water use would contribute to 
understand the breeding impact on drought adapta-
tion. Newer varieties of barley have higher root length 
density and a faster rate of root vertical development 
than older varieties. This is in contrast to the selection 
for yield in wheat, which favoured smaller root sys-
tems (Aziz et al. 2017).

Conclusion

Selection for yield and agronomic adaptation in Aus-
tralian barley over seven decades returned rates of 
yield improvement that aligned with expectations 
for these low-yielding conditions. We found some 
expected shifts in crop traits associated selection 
for yield, such as the increase in harvest index, and 
overlooked shifts in root and nutrient-related traits. 
Selection for yield in environments with widespread 
subsoil chemical constraints, and direct selection 
for adaptation to these constraints returned higher 
specific root length and faster deepening of the 
root system; these findings need validation in field 
experiments.
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