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Results Relative to the most drained treatment 
(SSD + SD), the undrained treatment caused higher water-
logging at 0–30 cm depth, and decreased solute potential 
(Ψs) of soil at 7.5 cm to 52–374 kPa, leaf  K+ by 5–20%, 
stomatal conductance by 5–37% and leaf greenness by 
12–25%, but increased leaf  Na+ by 25–70%,  Na+/K+ 
ratio by 38–100% and leaf water potential by 90–250 kPa 
throughout the cropping season; these changes were 
closely related to reduced growth and yield.
Conclusions The improved yield from the combi-
nation of shallow surface and sub-surface drains was 
attributed to an alleviation of salinity-waterlogging 
stress early in the season and to increased soil water 
late in the season that increased Ψs and decreased 
 Na+/K+ ratio in leaves.

Keywords Cultivar Hysun-33 · Leaf water 
potential · Na+/K+ ratio in leaf · Relative growth 
rate · SEW30 · Solute potential of soil

Abstract 
Purpose While well-designed drainage systems could 
improve crop growth and yield by mitigating waterlog-
ging and salinity stresses, field evidence of the yield 
responses to changes in plant-water relations and ion 
concentrations in leaves is scarce. We investigated the 
changes in ion concentrations in leaves and plant-water 
relations of sunflower caused by drainage in waterlogged 
saline soil, and their relationships to growth and yield.
Methods Over two growing seasons, we tested four 
drainage treatments: undrained, surface drains (SD; 
0.1 m deep, 1.8 m apart), subsoil drains (SSD; 0.5 m 
deep, 4.5  m apart) and SSD + SD. All plots were 
inundated (2–3 cm depth; water salinity,  ECw, 1.5–2.5 
dS  m–1) for 24 h at vegetative emergence and at the 
8-leaf stage before opening drains.
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Introduction

Waterlogged saline soils are a serious threat to agri-
cultural productivity (Barrett-Lennard 2003; Falakbo-
land et  al. 2017). Globally, around 20% of irrigated 
areas are affected by secondary salinization, and 
one-third are facing waterlogging (Dagar and Min-
has 2016). Coastal deltas, many of which are impor-
tant food production regions, are at particular risk 
because their low elevation, flat terrain and shallow 
groundwater, which create both waterlogging and 
salinization of soils (van der Zee Sjored et al. 2017). 
Waterlogging and salinity affect morphological, 
physiological, and biochemical processes, seed ger-
mination, plant growth, and water and nutrient uptake 
(Falakboland et al. 2017; Paul et al. 2021c; Wu et al. 
2015), resulting in low agricultural productivity, low-
income returns and soil degradation (Hu and Schmid-
halter 2004).

Waterlogging is a huge challenge to plants, par-
ticularly roots. The saturation of soil pores immedi-
ately decreases the rates of movement of oxygen into 
soils (Cannell et al. 1985), decreasing oxygen concen-
trations in soils (Barrett-Lennard et al. 1986) and con-
sequently decreasing the energy that root tissues can 
obtain from respiration (Pan et al. 2021).

As separate stresses, waterlogging and salinity 
have a variety of effects on plant water relations. With 
waterlogging, the impacts on water relations are vari-
able. Several researchers have reported that waterlog-
ging decreases leaf water potentials (Ψleaf), i.e. show 
increased water stress (Ashraf et  al. 2011; Shaw 
2015). By contrast, there is also evidence that Ψleaf in 
sunflower and tomato plants can be increased rather 
than decreased by waterlogging (Bradford and Hsiao 
1982; Jackson et  al. 1978), but in these cases, was 
associated with decreased stomatal conductance (gs) 
(Jackson et  al. 1978). One of the immediate effects 
of salinity is to decrease the availability of water to 
plant cells and lowering cell water potential (Ψ); this 
decreases cell expansion and growth (Munns 2002). 
In soil, salinity can be expressed through measures 
of the solute potential (Ψs), which increases with soil 
salinity (in measures like the  EC1:5 – the electrical 
conductivity of a 1:5 soil:water slurry) and decreases 
in response to soil water content (Paul et  al. 2020). 
In combination, waterlogging and salinity have sub-
stantial adverse effects on plant ion relations. A major 
effect of waterlogging with salinity is the increased 

 Na+ concentration in shoots, with correspondingly 
lower  K+ and  K+/Na+ ratio in the leaf (Barrett-Len-
nard 2003; Barrett-Lennard and Shabala 2013); these 
are correlated with reduced photosynthetic rate, sto-
matal conductance (gs) and shoot growth (Akram 
et al. 2008; Kirmizi and Bell 2012; Saqib et al. 2005). 
Part of the differences in responses among stud-
ies may be that for many crops, the combination of 
waterlogging and salinity stresses have more severe 
impacts on plant growth and yield than either water-
logging or salinity alone (Barrett-Lennard 2003; 
Barrett-Lennard and Shabala 2013; Falakboland et al. 
2017).

The coastal zone of the Ganges Delta covers more 
than 30% of the total cultivable lands of Bangladesh, 
and around 40% of this area is affected by various 
degrees of soil salinity (SRDI 2010). This zone is 
also subject to waterlogging following heavy rainfall 
in the monsoon (aman) season, river flooding and the 
development of a shallow water-table (Mainuddin 
et al. 2021). In the dry (rabi season) crops can be sub-
ject to a wide range of climate risks. Excess soil water 
after the aman rice harvest can cause waterlogging, 
which delays the sowing of rabi (dry season) crops, 
exposing rabi crops to damage because of end of sea-
son drought and salinity stresses, thereby increasing 
the risk of crop failure (Paul et al. 2021a). In addition, 
heavy rabi season rainfall can also occur, particularly 
from December to February, which creates waterlog-
ging, another barrier to rabi crop cultivation in this 
region (Yu et  al. 2019). Because of this diversity of 
risks, most smallholder farms leave their land fallow 
in the rabi season.

Our study focused on sunflower (Hysun-33), a 
promising rabi crop in the study area because of its 
moderate salt-tolerant and drought-adapted features 
(Elsheikh et  al. 2012). Plants use three main strate-
gies to adapt to salt-stress: osmotic stress tolerance, 
toxic ion  (Na+,  Cl–) exclusion and tissue tolerance to 
toxic ions (Munns and Tester 2008). Apart from ions, 
a range of compatible osmolytes (e.g. proline, glycine 
betaine, etc.) are involved in osmotic adjustment in 
plants under salt stress (Yang and Guo 2018). While 
sunflower is a high-value crop and is becoming a pop-
ular rabi crop in this region, it is sensitive to water-
logging like other rabi crops in this area (e.g. mung 
bean, lentil, sesame, maize and watermelon).

Generally, drainage to alleviate waterlogging 
and salinity is important for optimal plant growth 
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and yield. Either surface or subsurface drainage 
is practiced in many parts of the world to allevi-
ate these constraints. Surface drains can be effec-
tive for improving aeration and reducing salinity in 
the upper root zone of the growing crop (Hou et al. 
2016), while deep drains (> 1.75  m) are often rec-
ommended for mitigating salinity (Gupta 2002). 
Islam et  al. (2022) found that the combination 
of shallow surface (10  cm depth) and subsurface 
drains (50  cm depth) alleviated waterlogging and 
salinity, and gave a twofold higher sunflower yield 
than the undrained treatment. While previous field-
based studies have reported the effects of drains on 
waterlogging, salinity, plant morphology and yield 
(Ritzema et al. 2008; Sharma et al. 2000), they have 
not reported on related changes in plant water rela-
tions or ion concentrations in shoots. Hence, while 
Islam et  al. (2022) found that the combination of 
shallow surface and subsurface drains alleviated 
waterlogging and salinity and increased sunflower 
yield, the physiological mechanisms accounting for 
these responses were not determined. In contrast to 
previous studies under controlled (net house) con-
ditions in coarse-textured soil, our studies were on 
the fine-textured soils typical of a large proportion 
of agricultural land in the Ganges delta. Plants can 
withstand higher salinity in sandy than in fine-tex-
tured soils as sand particles have bigger pores for 
water to pass through relative to clay particles, lead-
ing to rapid salt leaching. Furthermore, clay soils are 
slower to drain than sandy soils, resulting in more 
prolonged periods of hypoxia on roots (Warrence 
et al. 2002).

In the present paper, we investigated the changes 
in Ψs in soil, plant-water relations and ion concen-
trations in leaves, and their relation to drainage and 
sunflower growth and yield that were first reported 
by Islam et al. (2022). We hypothesized that early in 
the season, the hypoxia  (O2 deficiency) due to water-
logging and decreased Ψs would lead to increases 
in the  Na+/K+ ratio in leaves, decreases in Ψleaf and 
decreases in gs, all of which would decrease growth 
and yield of sunflower. In the first paper (Islam et al. 
2022), we also hypothesized that yield damage from 
the drains would occur due to decreasing soil water 
content and increasing soil salinity late in the season. 
This was found not to be true; in this present paper, 
we present further information to shed light on why 
this occurred.

Materials and methods

Experimental site and season

The methods of the experiments have been previously 
described in detail by Islam et  al. (2022); a brief sum-
mary is presented here. The field experiments were 
undertaken during two consecutive dry (rabi, Novem-
ber–May) seasons in 2018–19 and 2019–20 on a clay-
textured soil under waterlogged saline conditions in a 
farmer’s field at Dacope, Khulna, Bangladesh (22.6321° 
N and 89.5034° E). The experimental site is in the Gan-
ges Tidal Floodplain (Islam et al. 2022), located in the 
south-western coastal region of Bangladesh. The climate 
is sub-tropical monsoonal with an average annual rainfall 
of 1,850 mm, a dry winter (December–February) and a 
wet summer (March–June) (Rahman et  al. 2015). Dur-
ing the first cropping season in 2018–19, total rainfall, 
monthly average minimum and maximum temperature 
were 338 mm, 12.4–24.1 °C and 26.9–34.6 °C, respec-
tively, while in 2019–20 they were 54 mm, 13.9–20.6 °C 
and 24.0–32.3 °C, respectively (Islam et al. 2022). The 
soil in the experimental field had a clay loam texture 
with a bulk density of 1.5–1.6 g   cm–3, a pH of around 
8 at 0–60 cm depth and a saturated hydraulic conductiv-
ity of 34 mm  day–1 at 0–45 cm depth. The soil  EC1:5 at 
0–60 cm depth ranged between 0.2 and 1.0 dS  m–1 dur-
ing the sunflower growing seasons (Islam et al. 2022).

Experimental details and crop husbandry

The drain establishment procedure, field layout and 
crop husbandry have been described in  Islam et  al. 
(2022). Sunflower cv. Hysun-33 was used as the test 
crop. The experiment had 4 drainage treatments, und-
rained plots, and plots with open surface drains (SD; 
0.1 m deep, 1.8 m apart), slotted-pipe subsoil drains 
(SSD; 0.5 m deep, 4.5 m apart) and SSD + SD treat-
ments. There were three replicates of each treatment. 
Replicates of the SSD and SSD + SD treatments were 
blocked together to avoid hydrological interference 
between treatments: the rationale for this has been 
previously discussed (Islam et al. 2022).

Each plot was 10  m × 6  m in size and polyethylene 
sheets were placed vertically around each plot to a depth 
of 0.6 m to prevent the lateral flow of water from one plot 
to another plot. A levee of 1 m wide was made between 
adjacent plots to minimize the cross-flow of water. There 
were two waterlogging events in a season. The plots 
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were inundated (2–3 cm above the soil surface) for 24 h 
at both vegetative emergence (the VE stage of sunflower 
development, 14  days after sowing) and at the mid-
vegetative stage when the crop had 8 leaves (V8 stage, 
Schneiter and Miller 1981). After inundation for 24  h, 
drains were opened in the drainage treatments but not in 
the undrained treatment. The first inundation was sup-
plied artificially using canal water (EC: 1.5–2.5 dS  m–1), 
while the second inundation occurred naturally because 
of heavy rainfall (151 mm on 27–28 February in the first 
season and 25 mm on 4 January in the second season, 
Islam et al. 2022).

Sunflower seeds were sown by dibbling on 18 
January 2019 and 25 November 2019 with a row to 
row distance of 60  cm and a plant to plant distance 
of 30  cm. According to the recommendation of the 
Bangladesh Agricultural Research Institute (Islam 
et  al. 2022), urea-triple super phosphate-muriate of 
potash-gypsum-zinc sulphate-boric acid was applied 
at 200–200-170–170-10–12 kg   ha–1 in both seasons. 
The crops were harvested at physiological maturity 
on 29 April 2019 and 19 March 2020 in the first and 
second seasons, respectively.

Sampling and measurement techniques

Soil samples for the measurement of  EC1:5, soil water 
content (SWC), waterlogging severity and soil solute 
potential (Ψs) were collected from the edge and centre of 
each plot. These were also the locations of plant meas-
urements: stomatal conductance (gs), leaf water potential 
(Ψleaf) and achene yield. In the subsoil drainage treat-
ments (SSD and SSD + SD), soil samples were collected 
from the edge of the drain pipe and midway between two 
pipes in the centre of the plot. In the SD and control treat-
ments, soils were sampled near the edge and centre of the 
plot. In addition, three plants in each plot were randomly 
sampled and composited to one sample for measuring 
shoot dry weight (SDW) and leaf  Na+ and  K+ concentra-
tions. Dates of sampling are given in the Supplementary 
Material, Table S5.

Waterlogging  (SEW30)

The degree of waterlogging in the soil was quantified 
by measuring the sum of excess water in the 0–30 cm 
layer  (SEW30). Measurements of the depth to water-
table were made daily throughout the season, and the 

 SEW30 was calculated according to the method of 
Sieben (1964) and Cox (1988) (see Islam et al. 2022).

Solute potential

The three soil samples that were collected from each 
of the positions (centre and edge) at each depth (0–15, 
15–30, 30–45, and 45–60 cm) were mixed thoroughly 
to make a composite sample for each depth. Soil sam-
ples were collected at 7 and 14 days after first inunda-
tion (DAFI), 10 and 17 days after second inundation 
(DASI), 30–50% flowering (FL) and harvest (HRV). 
Soil water content (SWC) was measured gravimetri-
cally (after oven-drying). The  EC1:5 was measured 
in mixtures of 10  g of air-dried soil with 50  mL of 
distilled water. The solute potential (Ψs) of the soil 
solution was calculated using the following equation 
(Paul et al. 2020).

where Ψs is the solute potential (kPa),  EC1:5 is the 
electrical conductivity (dS  m−1) of the 1:5 soil:water 
extract, and W is the soil water content (%, w/w).

Leaf  Na+ and  K+ concentrations and the  Na+/K+ ratio

Three plants were randomly selected in each plot; all 
leaves at 7 DAFI, the 2–3 youngest fully expanded and 
the oldest live leaf blades at 10 DASI and flowering 
from each plant were detached from the petiole. 
Leaves were then rinsed in deionized water, blotted 
with tissue paper and dried in an oven at 70˚C for 
72 h. About 0.2 g of ground leaves were digested in 
a mixture of nitric and perchloric acid (5:2 ratio). 
Concentrations of  Na+ and  K+ were then measured 
with a flame photometer (Model: 410, Sherwood) 
(Yamakawa 1992).

Stomatal conductance and leaf water potential

Stomatal conductance (gs) and leaf water potential 
(Ψleaf) were measured with a leaf porometer (SC-1 
Leaf Porometer, Decagon Devices, USA) and a Pres-
sure Chamber Instrument (Model-1000, PMS Instru-
ment Company, USA), respectively. In the first sea-
son (2019), gs was measured at 3 DASI, 10 DASI and 
17 DASI, and Ψleaf at 3 DASI and FL. In the second 

Ψs = −22580 × EC
1∶5∕W
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season (2019–20), Ψleaf was measured at 3 DASI, 10 
DASI, 17 DASI and FL. Three plants were selected 
randomly from each position (the edge and centre in a 
plot), and one fully expanded youngest leaf from each 
plant was measured for gs and Ψleaf. Measurements 
were taken between noon and 2 pm.

Shoot dry weight and relative growth rate of shoot

Four shoots were collected randomly from each plot 
before first inundation, 7 DAFI, 14 DAFI, 10 DASI, 
17 DASI and FL, and were dried in an oven at 70 °C 
for 72 h and weighed. The relative growth rate (RGR) 
for the single shoot was calculated following Hunt 
(1982).

where  W1 and  W2 are shoot dry weights at times  t1 
and  t2, respectively.

Statistical analyses

STAR software (version 2.0.1) was used to do the 
analysis of variance (ANOVA). Regression analyses 
for different factors were conducted using Jamovi 
software (version 1.1.9.0) and the graphs were pre-
pared in Microsoft Office 365. One-way ANOVAs 
were used to test the significance of the effects of 
the drains on SDW, RGR,  Na+ and  K+ concentra-
tion in leaves, and the molar ratio of  Na+ and  K+ 
in leaves. The effects of drains and position within 
the plot on gs, Ψleaf and leaf chlorophyll content 
(LCC) were measured using two-way ANOVAs. 
The significance of the effects of the drain on Ψs 
of soil was determined using three-way (treatment, 
position and soil depth) factorial ANOVA models 
that also considered the effects of soil depth as a 
repeated measure. The comparison of means was 
made using the least significant difference (LSD) 
at P = 0.05. Single-factor regression analysis were 
done to investigate the relationships between achene 
yield and other parameters (SDW and Ψs of soil, gs, 
Ψleaf, LCC,  Na+,  K+ and  Na+/K+ in leaves). Cross 
correlations between  Na+,  K+ or  Na+/K+ in leaves 
and Ψs or  EC1:5 or  SEW30 were also tested in single 
factor regression analyses.

RGR =
ln
(

W
2

)

− ln(W
1
)

t
2
− t

1

Results

In our previous paper (Islam et  al. 2022) drainage 
treatments caused up to 95% increase in achene yield 
in sunflower relative to the undrained treatment under 
waterlogged saline conditions in both seasons. The 
drainage treatments reduced  SEW30 and soil  EC1:5 
at 0–60  cm by 40–60 and 20–40%, respectively, 
relative to the undrained treatment. Increased sun-
flower yield was significantly (P < 0.001) correlated 
with decreased  SEW30 and soil  EC1:5 in the topsoil 
(0–15  cm). This paper focuses on the physiologi-
cal causes of these effects. There was consistency 
between seasons in response to drainage treatments 
in waterlogged saline soil for all parameters measured 
(ion concentrations in leaves, leaf chlorophyll content, 
leaf water potential, soil solute potential and shoot 
growth rate), but values in the first (2018–19) and 
second growing season (2019–20) differed slightly 
due to variations in rainfall, temperature, soil salinity, 
and in dates of planting, waterlogging and harvesting.

Concentrations of  Na+ and  K+ in leaves and their 
ratio  (Na+/K+)

This section examines the impacts of treatments on 
 Na+,  K+ and  Na+/K+, their impacts on yield, and their 
correlations with other soil factors.

In both seasons,  Na+ concentration and  Na+/
K+ ratio in all leaves at 7 DAFI and in the older 
leaves at 10 DASI and FL were decreased by drain-
age treatments compared with the undrained treat-
ment, while the  K+ concentrations were increased 
(Fig.  1). At 7 DAFI, the lowest leaf  Na+ concentra-
tion was found in the most drained (SSD + SD) treat-
ment (838 mmol  kg–1 in 2018–19 and 485 mmol  kg–1 
in 2019–20), whereas the highest was with und-
rained treatment (1374  mmol   kg–1 in 2018–19 and 
825 mmol  kg–1 in 2019–20). The SD and SSD treat-
ments had  Na+ concentrations between the SSD + SD 
treatment and the undrained treatment. Similar trends 
were observed at 10 DASI and FL (Fig. 1). By con-
trast, leaf  K+ concentrations at 7 DAFI, 10 DASI 
and FL were 894–972  mmol   kg–1 in 2018–19 and 
980–1023 mmol  kg–1 in 2019–20 in the most drained 
treatment and 764–926  mmol   kg–1 in 2018–19 and 
788–938  mmol   kg–1 in 2019–20 with the undrained 
treatment (Fig. 1). In both seasons, the most drained 
treatment had the lowest  Na+/K+ ratio at 7 DAFI (all 
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leaves), 10 DASI (older leaves) and FL (older leaves), 
which was 9–37, 19–32 and 32–52% lower than the 
SSD, SD and undrained treatments, respectively 
(Fig. 1). However, younger leaves did not show sig-
nificant changes in leaf ion concentration or  Na+/K+ 
ratio (Supplementary Material, Fig. S1).

Leaf  Na+ concentration and  Na+/K+ ratio during 
the season were significantly and negatively associ-
ated with achene yield, while leaf  K+ positively cor-
related with the achene yield (Figs.  2 and 3; yield 
data reported in Islam et  al. 2022). Leaf  Na+ con-
centration at different times explained 46–81% and 
40–81% of the yield variation in 2018–19 (Fig.  2) 
and 2019–20 (Fig. 3), respectively. The achene yield 
variation explained by variation in  K+ concentration 
ranged from 53 to 70% in 2018–19 and 50 to 75% in 
2019–20. The  Na+/K+ ratio explained 50–79% of the 
yield variation in 2018–19 and 64–86% in 2019–20. 
The younger leaves showed weak relationships 
between ion parameters and achene yield compared 
with older leaves.

In both seasons, increased  SEW30 and soil  EC1:5 
at 0–15 cm, and decreased Ψs at 0–15 cm were sig-
nificantly correlated with increased  Na+, decreased 
 K+ and increased  Na+/K+ in leaves at different times 
during the crop growing season (Table 1). However, 
younger leaves showed either no relationship or weak 
relationships, particularly at flowering. The  SEW30 
explained 60–76, 52–54 and 56–73% of the vari-
ation in 2018–19 and 47–84, 43–79 and 34–89% of 
the variation in 2019–20 in leaf  Na+,  K+ and  Na+/
K+ respectively. The strongest correlations with  Na+ 
 (r2 = 0.76),  K+  (r2 = 0.63) and  Na+/K+  (r2 = 0.73) 
were observed in the older leaves at 10 DASI in 
2018–19. In 2019–20, leaf  Na+  (r2 = 0.84) and  Na+/
K+  (r2 = 0.89) showed similar response but leaf  K+ 
 (r2 = 0.79) showed strongest correlation at 7 DAFI. 
In addition, the longer duration of soil (top 20  cm) 
saturation was significantly correlated  (r2 values of 
0.67–0.90) with the higher  Na+/K+ ratio in leaves in 
both seasons (Supplementary Material, Fig. S10). In 
the case of soil  EC1:5, the  r2 values for  Na+,  K+ and 

Fig. 1  Effect of drains 
on the concentration of 
Na and K ions in leaves 
and its ratio  (Na+/K+) in 
2018–19 (a–c) and 2019–20 
(d–f). Abbreviations: SSD 
subsoil drain, SD surface 
drain, DAFI days after first 
inundation, DASI days after 
second inundation, FL 
flowering, AL all leaves, OL 
older leaves. Vertical bars at 
the top of columns indicate 
the LSD at 5% level of 
significance
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 Na+/K+ were 0.49–0.72, 0.39–0.84 and 0.54–0.74, 
respectively in 2018–19 and 0.46–0.86, 0.43–0.78 
and 0.72–0.90 in 2019–20. The strongest correla-
tions with  Na+  (r2 = 0.72 in 2018–19 and 0.86 in 
2019–20) and  Na+/K+  (r2 = 0.74 in 2018–19 and 0.90 
in 2019–20) were observed in the older leaves at FL 
in both seasons. The strongest correlation with  K+ 
 (r2 = 0.84) were observed in the young leaves at 10 
DASI in 2018–19, but in 2019–20 the correlation was 
strongest  (r2 = 0.78) in the older leaves at 10 DASI.

The soil Ψs also showed significant linear rela-
tionship with leaf  Na+  (r2 values of 0.58–0.75 in 
2018–19 and 0.44–0.85 in 2019–20),  K+  (r2 values of 
0.46–0.77 and 0.47–0.70 in 2018–19 and 2019–20, 
respectively) and  Na+/K+  (r2 values of 0.42–0.78 
in 2018–19 and 0.37–0.92 in 2019–20) in both sea-
sons although no correlation was found at 7 DAFI in 
2018–19 (Table 1). The strongest correlation with leaf 
 Na+ and  Na+/K+ occurred in the older leaves at FL 
in both seasons. However, the strongest correlation 
with leaf  K+ differed between seasons. In 2018–19, 
it was highest in the young leaves at 10 DASI, while 

in 2019–20, it was highest in the older leaves at 10 
DASI.

Stomatal conductance, leaf water potential and leaf 
chlorophyll content

This section examines the impacts of treatments on 
stomatal conductance, leaf water potential and leaf 
chlorophyll content, their impacts on yield, and their 
correlations with other soil factors.

There was a significant difference (P < 0.001) in sto-
matal conductance (gs) between the treatments at 3 DASI 
but no difference at 10 and 17 DASI (Table  2). The 
combined drain treatment (SSD + SD) showed the high-
est gs (633 mmol  m–2  s–1), while the lowest gs was with 
the undrained treatment (401 mmol  m–2  s–1) at 3 DASI, 
compared with the gs of 552 mmol  m–2  s–1 for SSD and 
562  mmol   m–2   s–1 for SD treatments. Drainage treat-
ments also influenced the leaf water potential (Ψleaf) at 
different times in both seasons (Table 3). In 2018–19, the 
lowest Ψleaf was with the SSD + SD treatment (-1.29 to 
-1.40 MPa) during the season, while the highest Ψleaf was 

Fig. 2  Correlation between 
achene yield and  Na+ or 
 K+ or  Na+/K+ in leaves at 
different times in 2018–19. 
Abbreviations: DAFI days 
after first inundation, DASI 
days after second inunda-
tion, FL flowering, AL all 
leaves, YL younger leaves, 
OL older leaves. Each point 
indicates the value from an 
individual plot (n = 12)
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with the undrained treatment (-1.18 to -1.25 MPa). There 
was no difference between SD and SSD treatments. A 
similar trend occurred in 2019–20; the lowest Ψleaf (-1.27 
to -1.58 MPa) was with the most drained treatment and 
the highest Ψleaf (-1.16 to -1.33 MPa) was with the und-
rained treatment.

Measurements of leaf chlorophyll content (LCC) 
are reported in the Supplementary Materials (Table S1) 
with the units of chlorophyll content index (CCI). In 
2018–19, the most drained treatment had the high-
est LCC (12.0–17.2 CCI), the undrained treatment had 
the lowest LCC (9.0–14.8 CCI), and the SD and SSD 
treatments had values between the undrained treatment 
and SSD + SD treatment (Supplementary Material, 
Table S1). In 2019–20, the relative responses of LCC to 
drainage treatments were similar to the previous year.

The achene yield was significantly associated with 
gs (positive correlation; one year of data only), Ψleaf 
(negative correlation) and LCC (positive correlation) 
in both seasons (Supplementary Material, Table S2). 
The gs, Ψleaf and LCC accounted for 17–68, 45–67 
and 47–69% of the variation in achene yield, respec-
tively. In most cases, the greatest variation was 
observed at 3 DASI at P < 0.001.

Soil Ψs,  EC1:5 at 0–15  cm soil depth and  SEW30 
all showed significant relationships with gs, LCC 
and Ψleaf at different times during the cropping sea-
son (Supplementary Material, Table  S3). The Ψs in 
soil was positively correlated with gs  (r2 = 0.45 at 17 
DASI) and LCC  (r2 values of 0.33–0.67), and nega-
tively correlated with Ψleaf  (r2 values of 0.44–0.63). 
The strongest correlations with gs, LCC and Ψleaf were 
at 17 DASI, FL and FL, respectively. In contrast, the 
soil  EC1:5 gave a negative correlation with gs  (r2 = 0.34 
at 17 DASI) and LCC  (r2 values of 0.59– 0.74), and a 
positive correlation with Ψleaf  (r2 values of 0.42–0.63). 
The strongest relationships with gs, LCC and Ψleaf 
were at 17 DASI, FL and FL, respectively. The  SEW30 
also showed negative correlation with gs  (r2 values of 
0.19–0.80) and LCC  (r2 values of 0.57–0.90), and a 
positive correlation with Ψleaf  (r2 values of 0.25–0.68). 
The highest  r2 values were observed at 3 DASI. The 
results also showed that plant height (Supplementary 
Material, Fig. S2) and leaf area (Supplementary Mate-
rial, Fig. S3) were negatively correlated with Ψleaf at 3 
DASI and at FL in both seasons. Plant height and leaf 
area explained 58–64% and 56–72% of the variation in 
Ψleaf, respectively.

Fig. 3  Correlation between 
achene yield and  Na+ or 
 K+ or  Na+/K+ in leaves at 
different times in 2019–20. 
Abbreviations: DAFI days 
after first inundation, DASI 
days after second inunda-
tion, FL flowering, AL all 
leaves, YL younger leaves, 
OL older leaves. Each point 
indicates the value from an 
individual plot (n = 12)
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Solute potential

This section examines the impacts of treatments on 
solute potential (Ψs) in the soil, and their impacts on 
yield.

The drainage treatments and soil depths significantly 
influenced Ψs in the soil in 2018–19 (Fig. 4) and 2019–20 
(Fig. 5). In both seasons, there were significant interac-
tions between drainage treatments and soil depth, but no 
interaction between treatment and position in the plot, 
or between depth and position in the plot. In general, 
the range in Ψs values between treatments was greatest 
in shallow soil, with these differences increasing with 
time. The Ψs values were lowest with the undrained treat-
ment (-148 to -614 kPa in 2018–19; -75 to -555 kPa in 
2019–20), highest with the SSD + SD treatment (-79 to 
-482 kPa in 2018–19; -51 to -300 kPa in 2019–20), with 
the SD and SSD treatments were between these extremes.

The Ψs was lowest in the upper soil (average depth 
7.5 cm), increasing sharply at average depth 22.5 cm. At 
average depth 7.5 cm, the higher Ψs was with SSD + SD 
treatment (-87 to -482 kPa) and the lower values were 
with the undrained treatment (-177 to -614 kPa) through-
out the season in both seasons. The SSD and SD treat-
ments had a similar Ψs in the topsoil (average depth 

Table 1  Significance of effects of  SEW30, soil  EC1:5 at 0–15 cm and Ψs at 0–15 cm on  Na+,  K+ and  Na+/K+ in leaves at different 
times during the growing season in 2018–19 and 2019–20

DAFI days after first inundation, DASI days after second inundation, FL flowering, AL all leaves, YL younger leaves, OL older leaves, 
Ψs solute potential in soil, * = P < 0.05, ** = P < 0.01, *** = P < 0.001, NS = non-significant. For all relationships n = 12

Significance level with  r2 values and direction of the slope (in brackets)

2018–19 2019–20

SEW30
(cm days)

EC1:5
(dS  m–1)

Ψs
(kPa)

SEW30
(cm days)

EC1:5
(dS  m–1)

Ψs
(kPa)

At 7 DAFI
   Na+ (AL) ( +) 0.74*** ( +) 0.57** NS ( +) 0.81*** ( +) 0.72*** (-) 0.63**
   K+ (AL) (-) 0.52** (-) 0.41* NS (-) 0.79** (-) 0.59** ( +) 0.47*
   Na+/K+ (AL) ( +) 0.73*** ( +) 0.60** NS ( +) 0.88*** ( +) 0.73*** (-) 0.61**

At 10 DASI
   Na+ (YL) NS ( +) 0.49* (-) 0.58*** ( +) 0.47* ( +) 0.46* (-) 0.44*
   K+ (YL) (-) 0.54** (-) 0.84*** ( +) 0.77*** (-) 0.43* (-) 0.72*** ( +) 0.57**
   Na+/K+ (YL) NS ( +) 0.54** (-) 0.62** ( +) 0.61** ( +) 0.73*** (-) 0.65**
   Na+ (OL) ( +) 0.76*** ( +) 0.62** NS ( +) 0.84*** ( +) 0.60** (-) 0.48*
   K+ (OL) (-) 0.63*** (-) 0.74*** ( +) 0.53** (-) 0.71*** (-) 0.78*** ( +) 0.70***
   Na+/K+ (OL) ( +) 0.73*** ( +) 0.69*** (-) 0.42* ( +) 0.89*** ( +) 0.72*** (-) 0.60**

At FL
   Na+ (YL) NS NS NS NS NS NS
   K+ (YL) NS (-) 0.49* ( +) 0.46* NS (-) 0.43* ( +) 0.48*
   Na+/K+ (YL) NS NS NS ( +) 0.34* NS (-) 0.37*
   Na+ (OL) ( +) 0.60** ( +) 0.72*** (-) 0.75*** ( +) 0.70*** ( +) 0.86*** (-) 0.85***
   K+ (OL) NS (-) 0.39* ( +) 0.42* NS (-) 0.57** ( +) 0.60**
   Na+/K+ (OL) ( +) 0.56** ( +) 0.74*** (-) 0.78*** ( +) 0.68*** ( +) 0.90*** (-) 0.92***

Table 2  Effects of drains on stomatal conductance at different 
times in 2018–19

Means with the same letter are not significantly different at 5% 
level of significance. Abbreviations: SSD subsoil drain, SD sur-
face drain, DASI days after second inundation

Treatment Stomatal conductance
(mmol  m–2  s–1)

3 DASI 10 DASI 17 DASI

SSD + SD 633 a 944 955
SSD 552 b 946 952
SD 562 b 937 947
Undrained 401 c 900 898
P-value  < 0.001 NS NS

687



Plant Soil (2022) 479:679–697

1 3
Vol:. (1234567890)

7.5 cm), but at average depth 22.5 cm, the SSD treatment 
had higher Ψs than the SD treatment. In the deeper soil 
(average depth 52.5 cm), there was a little variation in Ψs 
between the treatments.

Figure  6 shows the relationship between sunflower 
yield and Ψs measured at 0–15 cm depth on 6 occasions 
during each growing season. The 12 relationships shown 
were all significant, but accounted for most variation at 

flowering (with  r2 values of 0.92 in 2018–19 and 0.77 in 
2019–20 (Fig. 6).

Relative growth rate and dry weight of shoot

The dry weight data used to calculate the rela-
tive growth rate (RGR) of the shoots are reported 

Table 3  Effects of drains on leaf water potential at different times in 2018–19 and 2019–20

Means with the same letter are not significantly different at 5% level of significance. Abbreviations: SSD subsoil drain, SD surface 
drain, DASI days after second inundation, FL flowering

Treatment Leaf water potential (MPa)

2018–19 2019–20

3 DASI 10 DASI 17 DASI FL 3 DASI 10 DASI 17 DASI FL

SSD + SD -1.29 c - - -1.27 b -1.29 b -1.35 b -1.58 c -1.27 b
SSD -1.22 ab - - -1.19 ab -1.22 a -1.27 a -1.44 b -1.19 ab
SD -1.24 b - - -1.22 b -1.25 ab -1.29 ab -1.47 b -1.22 b
Undrained -1.18 a - - -1.16 a -1.20 a -1.25 a -1.33 a -1.16 a
P-value  < 0.01 - -  < 0.001  < 0.01  < 0.05  < 0.001  < 0.001

Fig. 4  Effect of different 
drains on solute potential 
at different soil depths at 
different times during the 
crop growing season in 
Dacope, Bangladesh, in 
2018–19. Abbreviations: 
SSD subsoil drain, SD sur-
face drain, DAFI days after 
first inundation, DASI days 
after second inundation, 
FL flowering, HRV harvest. 
Each point is the average of 
3 replicates
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in Supplementary Materials (Table  S4). RGR was 
measured over 4 time intervals: before inundation to 
7 DAFI, 7 DAFI to 14 DAFI, 10 DASI to 17 DASI 
and 17 DASI to flowering (Fig.  7). In each grow-
ing season, RGR measurements showed a curvilin-
ear response with time, with values being greatest 
between 7 to 14 DAFI; this was also the interval that 
maximised the differences between treatments, with 
highest RGR in the most drained treatment (0.17 
and 0.18 g  g–1  d–1) and lowest RGR in the undrained 
treatment (0.11 and 0.11 g  g–1  d–1). From 17 DASI to 
flowering, there was no variation between treatments 
(Fig. 7).

In both seasons, the shoot dry weight showed 
strong negative correlations with  SEW30  (r2 values 
of 0.85–0.95 in 2018–19, and 0.82–0.94 in 2019–20) 
and soil  EC1:5  (r2 values of 0.66–0.93 in 2018–19, 
and 0.69–0.84 in 2019–20) (Supplementary Mate-
rial, Figs. S4 and S5). In contrast, there were positive 
linear relationships with Ψs in soil, with  r2 values of 
0.41–0.90 and 0.52–0.86 in 2018–19 and 2019–20, 
respectively (Supplementary Material, Fig.  S6). In 

addition, the higher shoot dry weights were signifi-
cantly correlated with higher leaf  K+  (r2 values of 
0.46–0.73 in 2018–19, and 0.47–0.80 in 2019–20), 
lower leaf  Na+  (r2 values of 0.78–0.80 in 2018–19, 
and 0.47–0.82 in 2019–20) and higher  Na+/K+ ratio 
 (r2 values of 0.34–0.78 in 2018–19, and 0.65–0.90 in 
2019–20) (Supplementary Material, Figs. S7 and S8). 
The LCC also showed positive linear relationships 
with shoot dry weight, with  r2 values of 0.75–0.89 
and 0.62–0.80 in 2018–19 and 2019–20, respectively 
(Supplementary Material, Fig. S9).

Discussion

In our previous paper focusing on the yield of sun-
flower in waterlogged saline soils (Islam et  al. 
2022), we reported that a combination of shallow 
drains (SSD with 0.5  m depth and SD with 0.1  m 
depth) yielded 20–37, 16–45 and 92–95% higher 
achene weight than SSD, SD and undrained treat-
ments, respectively. Here we investigated the 

Fig. 5  Effect of different 
drains on solute potential 
at different soil depths at 
different times during the 
crop growing season in 
Dacope, Bangladesh, in 
2019–20. Abbreviations: 
SSD subsoil drain, SD sur-
face drain, DAFI days after 
first inundation, DASI days 
after second inundation, 
FL flowering, HRV harvest. 
Each point is the average of 
3 replicates
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Fig. 6  Relationship between sunflower yield and solute poten-
tial at 0–15  cm soil depth at different times during the crop 
growing period in Dacope, Bangladesh, in 2018–19 and 2019–
20. Abbreviations: DAFI days after first inundation, DASI days 

after second inundation, FL flowering, HRV harvest. Each 
point indicates values from an individual plot taken at the cen-
tre or edge of the plot (n = 24)
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possible physiological mechanisms behind these 
yield responses in field-grown sunflower. We found 
that the positive responses in growth and yield were 
correlated with less hypoxia in the soil, higher (less 
negative) Ψs, and in the plant – improved ion rela-
tions (lower leaf  Na+, higher leaf  K+ and lower  Na+/
K+ ratio) but higher gs, and lower Ψleaf. This dis-
cussion has two sections that focus on the causes of 
growth responses to drainage early in the growing 
season immediately after the two inundation events, 
and then to different mechanisms during the recov-
ery period towards the end of the growing season.

Effects of hypoxia and reduced soil solute potential 
early in the growing season

This section focuses on two sequences of physi-
ological changes (causes and effects) that occurred 
early in the growing season. We have termed these 
the ‘adverse ion relations’ and ‘stomatal closure’ 
sequences (Fig. 8).

Adverse ion relations

In saline soils that waterlog, drainage has the poten-
tial to overcome adverse ion relations in plants (i.e., 
increased  Na+, decreased  K+, increased  Na+/K+) in 
two ways: by improving soil aeration thereby over-
coming adverse waterlogging-salinity interactions 
(c.f. Barrett-Lennard 2003; Barrett-Lennard and 

Shabala 2013) and by decreasing soil salinity (i.e., 
increasing Ψs) (c.f. Munns 2002). In overview, our 
data suggest that the beneficial effects of drainage on 
ion relations occur initially through the first of these 
mechanisms, and later through the second.

Fig. 7  Effect of drains on the RGR of the shoot during the 
cropping season in: (a) 2018–19, and (b) 2019–20. Abbrevia-
tions: RGR = relative growth rate, T1 = before inundation to 
7 days after first inundation (DAFI), T2 = 7 DAFI to 14 DAFI, 

T3 = 10 days after second inundation (DASI) to 17 DASI and 
T4 = 17 DASI to flowering. Each point is the mean of 3 repli-
cates. Vertical bars at each time indicate the LSD at 5% level 
of significance

Fig. 8  Schema of possible mechanisms of growth and yield 
reduction under waterlogged saline conditions early in the sea-
son
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The initial cause of the beneficial effect of drain-
age derives from the analysis of Barrett-Lennard 
(2003) and Barrett-Lennard and Shabala (2013). The 
most important consequence of waterlogging in the 
field is to reduce the oxygen  (O2) concentration due 
to the replacement of air with water, low rates of  O2 
solubility in water, and rapid utilization of dissolved 
 O2 by roots and microorganisms (Barrett-Lennard 
et al. 1986; Belford et al. 1985; Cannell et al. 1985). 
Although we did not measure the concentration of 
oxygen or the redox potential of the soil, it is evident 
from earlier studies (Barrett-Lennard et al. 1986) that 
the rhizosphere (10–20  cm) loses ~ 75% of its dis-
solved  O2 within 2–5  days after the commencement 
of waterlogging. This hypoxic condition causes wide-
spread metabolic disruption including reductions in 
 H+-ATPase pumping activity, disturbance of cyto-
solic  K+  homeostasis, disturbance to the transport 
of essential nutrients, and ultimately tissue death, 
starting first with the root tips (Barrett-Lennard and 
Shabala 2013; Colmer and Greenway 2011; Wu et al. 
2021; Barrett-Lennard et  al. 1988). There is now 
a substantial body of published evidence that sug-
gests that when root-zones become waterlogged (i.e., 
hypoxic), plants rapidly reduce the selectivity of  K+/
Na+ uptake in favour of  Na+ and obstruct  K+ trans-
port to the shoots (Armstrong and Drew 2002), which 
increases the concentration of  Na+ and decreases  K+ 
in the leaf tissues, leading to reduced plant growth 
and yield (Barrett-Lennard and Shabala 2013).

In our study, strongest evidence for the strong 
initial effects of hypoxia on changes to  Na+ and  K+ 
uptake comes from comparisons of the most drained 
treatment (SSD + SD) with the undrained treatment. 
By 7  days after the first inundation, plants with the 
SSD + SD and undrained treatments would have 
experienced a water-table less than 20  cm deep for 
1–2 and 4–5 days, respectively. (Capillarity into soil 
pores shallower than this depth would have ensured 
that these soils would have been hypoxic.) This 3-day 
difference in hypoxia between the undrained and 
SSD + SD treatments was associated with 64 and 70% 
increases in the concentration of  Na+ (Fig. 1a, d) and 
9 and 16% decreases in the concentration of  K+ in 
leaves (Fig. 1b, e); the speed of these changes (within 
7 days) suggests that the effects were caused mostly 
by the interaction between hypoxia and salt in the 
growth medium: typically, the effects of hypoxia on 
 Na+ and  K+ concentrations in leaves can be evident 

after just a few days (see reviews by Barrett-Lennard 
2003; Barrett-Lennard and Shabala 2013) whereas 
changes in ion concentrations in leaves because of 
variation in soil salinity takes longer (weeks, months) 
(see review by Munns 2002).

In the longer term, there would also have been 
effects on ion concentrations in leaves caused 
through beneficial effects of drainage on Ψs of the 
soil (c.f. Paul et al. 2020). The Ψs of the soil is pro-
portional to the salt concentration in the soil and is 
inversely related to the soil water content of the soil 
(Rengasamy 2006). In our previous paper (Islam 
et  al. 2022), the shallow combined drain treatment 
decreased soil  EC1:5 at 0–60  cm depth by 35–44%, 
early in the season (7 DAFI) relative to the undrained 
treatment. By 7 DAFI, the Ψs was more negative in 
the undrained treatment (by 41–44 kPa) relative to the 
most drained treatment and these differences extended 
throughout the growing season. We argue that these 
long-term differences in Ψs could have affected ion 
concentrations in leaves over the longer term (later 
in the growing season) but would not likely have 
been responsible for the differences in ion concentra-
tions in leaves immediately after the first inundation. 
For both of these scenarios, the increased uptake of 
 Na+  relative to  K+ at the cellular level can disorder 
enzyme activities affecting a broad range of catabolic 
and synthetic processes (Tester and Davenport 2003), 
which might be plausible reasons for reduced crop 
growth and yield.

We are aware of one other study with sun-
flower which has reported the effects of hypoxia 
and salinity on the concentration of  Na+ in plants 
grown in nutrient solution (Kriedemann and Sands 
1984). In this work, the combination of salinity 
(50 mM NaCl) and hypoxia (bubbling with  N2 gas) 
from days 24 to 50 increased  Na+ concentration in 
leaves 35-fold relative to aerated non-saline con-
ditions; by contrast, salinity alone increased  Na+ 
concentration by 4.5-fold.

One final aspect on ion relations in our study needs 
comment. In undrained plants at 10 DASI,  Na+ and 
 Na+/K+ ratios were around 350–400 and 450–500% 
higher in older than in younger leaves, respectively. 
This is supported by an earlier study (de Azevedo 
Neto et al. 2020) which reported that  Na+ and  Na+/K+ 
ratios were about 70 and 585% higher, respectively, 
in older leaves of sunflower (cv. AG967) relative to 
younger leaves during the vegetative stage (at 35 days 
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after germination) under saline conditions (100  mM 
NaCl for 20  days). The explanation for this is that 
salts are continuously deposited in leaves through the 
transpiration stream, and salt accumulation in leaves, 
therefore, gradually increases with time. Relative to 
import in the transpiration stream, there is little re-
translocation of salt from older leaves. The presence 
of salt in leaves, already absorbed, therefore contin-
ues despite the salt around the root being removed 
(Munns 2002).

Stomatal closure

A second impressive physiological change in sun-
flower following the onset of hypoxia was a decrease 
in stomatal conductance (gs) in leaves. The gs of 
leaves controls  CO2  uptake (which affects photo-
synthesis) and transpiration (which affects water 
and nutrient uptake) (Farooq et  al. 2009). Stoma-
tal closure can also lead to the accumulation in tis-
sues of free radicles/reactive oxygen species (ROS), 
decreased evaporative cooling, and a decrease in 
LCC, leading to cell death (Zhang et al. 2017; Zheng 
et al. 2009).

In the present study, we found decreases in gs 
associated with the undrained treatment early in the 
season. This lower gs in undrained plants was associ-
ated with decreased Ψs and higher (0.11–0.25 MPa) 
Ψleaf compared with the most drained treatment 
(Table 3). The causes of decreased gs were therefore 
not ion excess in the external medium and conse-
quent adverse water relations in the leaves. Another 
mechanism must therefore be invoked. Waterlogging 
is known to decrease the stomatal conductance in a 
range of dicots including: sunflower (Kriedemann 
and Sands 1984; Yan et  al. 2018), tomato (Bradford 
and Hsiao 1982; Jackson et al. 2003) and a range of 
tree species (Pereira and Kozlowski 1977; Schmull 
and Thomas 2000). Evidence from some of these 
studies (Jackson et  al. 1978; Bradford and Hsiao 
1982; Pereira and Kozlowski 1977) shows that these 
decreases in gs were not associated with decreases 
in Ψleaf, suggesting that the plants communicate the 
presence of waterlogging to the leaves by means of 
a chemical/hormonal signal, believed to be absci-
sic acid (Pan et al. 2021) as suggested in Fig. 8. For 
example, HaHB11 might act as a biotechnological 
tool to improve waterlogging tolerance and crops’ 
yield as it can regulate various genes involved in 

glycolysis, sucrose breakdown and fermentation 
pathways, which are induced by hypoxic conditions 
(Cabello et al. 2016). It can also regulate other genes 
(alanine aminotransferase, heat shock proteins, aspar-
tate aminotransferase) induced due to hypoxia. Our 
observation of a recovery in gs within 10  days after 
waterlogging of sunflower in the field, is consistent 
with the results from a previous study with Fraxinus 
pennsylvanica that stomata closed due to waterlog-
ging began to reopen after 15 days; in that study, the 
recovery in gs was associated with the formation of 
new adventitious roots (Sena Gomes and Kozlowski 
1980).

Effects of solute potential late in the season, leading 
to decreases in plant growth and yield

Generally, at the end of the dry rabi season 
(March–April), soil salinity increases and SWC 
decreases in the study area (Rahman et al. 2015; Sale-
hin et al. 2018). In our first paper (Islam et al. 2022), 
we hypothesized (incorrectly) that the presence of 
deep drains (i.e., excess drainage) might dry the soil 
early in the growing season, decreasing the availabil-
ity of water late in the growing season, thereby having 
an adverse effect on crop growth. In fact, the reverse 
occurred: the most drained treatment had increased 
SWC which maintained higher (less negative) Ψs val-
ues in the soil. How could the drains actually increase 
SWC? Our observations suggest that the drains appear 
to be ‘watering’ the plants. The soils of the Ganges 
Delta are generally ‘shrink-swell’ clays (Moslehud-
din et al. 1999) that form deep cracks as the soil dries 
out (c.f. Paul et al. 2021b). It is likely that when rain 
falls on the soil surface late in the growing season, a 
large proportion of this water rapidly runs down these 
cracks. Interception of the cracks by the slotted pipe 
subsoil drains provides a route for this water to then 
be rapidly redistributed laterally through a whole plot, 
where it can then recharge the soil profile to depths 
greater than 50  cm. It can also re-supply the shal-
lower soil with water by capillarity. At these depths 
in the bulk of the soil, there is less evaporation, so the 
water is conserved for later crop growth. By contrast, 
in undrained soils, there may still be some movement 
of rainwater to the bottom of cracks, but the water 
remains in the immediate locality of that crack where 
it is susceptible to more rapid evaporation, which is 
exacerbated by the less soil shading due to lower LAI 
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(Islam et al. 2022; Villalobos and Fereres 1990). We 
conclude that drained soils experienced better rather 
than worse water relations at the end of the growing 
season.

It should be noted however that our explanation 
for these effects requires the combination of cracks 
plus drains to harvest late season rainfall. In  situ-
ations where there was no late season rainfall, the 
combination of cracks plus drains might be worse for 
crop yields than in the undrained soils as originally 
hypothesised. The key question is whether plants late 
in the season used predominantly rainwater associated 
with subsurface drains or groundwater or both. The 
sources of water being used by plants could be inves-
tigated by measuring the stable isotope composition 
of water (δD and δ18O) if the isotopic signatures vary 
between the groundwater and rainwater. For example, 
based on different isotopic signatures in groundwater 
and rainwater, Mensforth et al. (1994) and Thorburn 
and Walker (1993) concluded that groundwater was 
the dominant source of water for trees, despite its 
salinity, but the proportion of groundwater used by 
trees declined after rainfall.

Conclusion

In a salt-affected, waterlogged coastal zone clay 
soil in the Ganges Delta, shallow drains improved 
sunflower growth and yield by decreasing water-
logging  (SEW30) and duration of hypoxia, and 
increasing the Ψs of soil, leaf  K+ and gs, and 
decreasing leaf  Na+ and  Na+/K+ ratio. However, 
the Ψleaf increased in the undrained treatment. 
Indeed, decreased Ψleaf was significantly corre-
lated with increased LA and plant height. Early in 
the season, the most drained treatment (SSD + SD) 
reduced the waterlogging and soil salinity impacts 
on the plant-water relations and ion concentrations 
in leaves of sunflower more efficiently than other 
treatments. In the late-season, shallow combined 
drains increased Ψs of soil by increasing water 
availability and reducing soil salinity, resulting in 
better plant-water and ion relations.
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