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Results  Application of Si significantly increased 
root dry weight, plant height and root length. Root 
volume and average root diameter were significantly 
positively correlated with root Cd concentration, bio-
accumulation and translocation factor, respectively, 
of two maize genotypes at the silking stage. Addi-
tion of Si significantly increased Cd concentration, 
content, bioconcentration and translocation factor in 
roots of Zhongke11, but reduced the values of these 
parameters in Shengrui9999 at both growth stages. 
Grain Cd concentration in the combined Cd and Si 
treatment was decreased by 14.4% (Zhongke11) and 
21.4% (Shengrui999) than that in Cd treatment. Grain 
yield was significantly negatively correlated with root 
Cd accumulation. Moreover, addition of Si signifi-
cantly reduced Cd daily intake and health risk index 
in maize.
Conclusions  This study demonstrated that addi-
tion of Si reduced health risk by eliminating Cd 

Abstract 
Background and aims  Cadmium (Cd) contamina-
tion is a serious threat to plants and humans. Silicon 
(Si) was reported to have some alleviative effects on 
Cd stress in plants. However, whether Si alleviates Cd 
toxicity in maize genotypes with contrasting root sys-
tem size are unknown.
Methods  Effects of Si application (200  mg  kg−1 
soil) on shoot and root growth, Cd uptake and trans-
portation under Cd stress (20  mg  kg−1 soil) were 
assessed at the silking and maturity stages of maize 
genotypes Zhongke11 (deep-rooted) and Shengrui999 
(shallow-rooted) in a pot experiment.
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accumulation in maize shoot and grain, and alleviated 
Cd stress with more profound effects in the shallow-
rooted genotype Shengrui999.

Keywords  Maize · Root parameters · Cd stress · 
Cd bioconcentration and translocation · Silicon 
application

Introduction

In China, 16.1% of arable land is polluted and inor-
ganic pollutants, and about 7% of arable land is pol-
luted by cadmium (Cd) (MEP 2014). Cd is an envi-
ronmental threats and industrial pollutant with high 
cytotoxicity (Rehman et al. 2019; Zhang et al. 2019; 
Zhao and Wang 2019; Xu et  al. 2020). Cd intake is 
a health risk to animals and humans although some 
plants do not show toxic symptom grown in Cd 
contaminated soil (Ngugi et  al. 2021). Because Cd 
absorption by plants, it can be enriched in high trophic 
organisms along the food chain (An et al. 2021; Thind 
et al. 2021). Over 50% of all calories consumed in the 
human diet are derived from cereal crops, and these 
crops account for a high proportion of dietary Cd 
(Ma et al. 2021b). The safety threshold of Cd content 
in cereal grains has been set to 0.4 mg  kg−1 for rice 
(0.2 mg  kg−1 in China), 0.2 mg  kg−1 for wheat, and 
0.1 mg kg−1 for maize and barley by the Codex Ali-
mentarius Commission, a joint office of the United 
Nation’s Food and Agriculture Organization and the 
World Health Organization (Codex Alimentarius 
Commission 2014). Therefore, it has become indis-
pensable to adopt a mitigation strategy to diminish 
the Cd concentrations in plants, especially in food 
crops including maize (Akhtar et  al. 2017; Thind 
et al. 2021; Wang et al. 2021). For this reason, many 
remediation techniques have already been used, such 
as organic (biochar, amino acid) and inorganic (zinc, 
silicon) treatments to decrease the bioavailability 
of Cd in soil and its uptake by crops (Rizwan et  al. 
2017a; Rehman et  al. 2020a, b). These amendments 
produced promising results in minimizing the distri-
bution and mobility of Cd in the contaminated soil 
(Lukačová et al. 2013; Adrees et al. 2015).

Silicon (Si), the second most abundant element 
in the earth’s crust, is a beneficial element for plant 
growth and development, especially under various 
biotic and abiotic stresses (Bhat et al. 2019). Studies 

found that Si supply improves plant tolerance to Cd 
stress in many crop species, including wheat (Rizwan 
et  al. 2017a; Wu et  al. 2019), maize (Vaculík et  al. 
2009; Liu et al. 2020), and rice (Nwugo and Huerta 
2008; Zhao et  al. 2020; Zaman et  al. 2021). Appro-
priate Si fertilization could be a practical strategy to 
inhibit the uptake of Cd in maize organs to reduce Cd 
in Cd-contaminated farmland (Liang et al. 2005; Liu 
et al. 2020). Some reports claimed that Si application 
improved plant growth, yield and increased Cd accu-
mulation in shoots, whereas others have refuted such 
claims (Coskun et  al. 2019). In particular, we need 
to pay attention to the concentration and distribution 
of Cd in grains following Si application, aiming to 
increase the content of Cd in non-edible parts, control 
or reduce the content of Cd in grains, and promote the 
phytoremediation of Cd pollution soil while ensuring 
the food safety of maize grains.

Maize (Zea mays L.) is a valuable cereal crop and 
provides food for humans, fodder for the livestock 
and bioconversion to clean energy ethanol (Gupta 
and Verma 2015; Dawid and Grzegorz 2021). It is 
widely adopted for phytomanagement of Cd-contam-
inated soils due to its high biomass production and 
Cd tolerance (Xu et  al. 2014; Rizwan et  al. 2017b). 
Root morphology plays an important role in Cd 
uptake and translocation (Redjala et  al. 2011; Kubo 
et  al. 2015). Seed Cd concentration is influenced by 
the differences among cultivars in ease of transloca-
tion of Cd to seed and in Cd accumulation capacity 
of roots (Sugiyama et  al. 2007). Liang et  al. (2005) 
described that addition of Si into the soil experimen-
tally polluted by Cd induced a significant increase in 
maize biomass. Lukačová Kuliková and Lux (2010) 
reported varied responses to Si application in root 
length and dry weights among five maize hybrids 
under Cd stress. Cadmium transfer from roots to grain 
during the post-flowering are important determinants 
of Cd concentrations in rice (Rodda et al. 2011; Chen 
et al. 2019) and wheat (Tavarez et al. 2015; Yan et al. 
2018). Using two maize genotypes with contrast-
ing root system size (deep-rooted vs shallow-rooted) 
selected from our recent root phenotyping study 
(Qiao et al. 2019), the objectives of this study were to 
assess (i) variation between the deep-rooted and shal-
low-rooted genotypes in response to Si and Cd appli-
cations, (ii) the role of Si in alleviating Cd stress and 
Cd accumulation in maize, and (iii) Cd health risks in 
grains following Si addition.
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Materials and methods

Experimental design, plant materials and soil

This experiment was conducted in a rain shed at the 
Institute of Soil and Water Conservation, Chinese 
Academy of Sciences, and Northwest A&F Univer-
sity during June and October 2019. The day/night 
temperature varied from 25 to 35  °C with relative 
humidity between 50 and 70%. A randomized com-
pletely block design was used consisting of two maize 
genotypes (Zhongke11 and Shengrui999), two Si lev-
els (0 and 200  mg  kg−1 soil), and two Cd levels (0 
and 20  mg  kg−1 soil), two harvests (the silking and 
maturity stages) and four replicates per treatment 
with a total of 64 pots. The codes of the four treat-
ments were Control (no addition of Cd and Si), (2) 
Cd (20 mg kg−1 soil), (3) Si (200 mg kg−1 soil), (4) 
Cd + Si. Three randomized replicates out of four rep-
licates were taken for measurements.

A loessal soil collected from a maize farmland in 
Yangling was used in this study. The soil was air-
dried, sieved (2  mm) and mixed well before putting 
into the plastic pots (diameter 30 cm, depth 30 cm), 
20 kg per pot with a density of 1.25 g cm−3. The soil 
physical and chemical properties were analyzed, pro-
viding in Table 1. Fertilizers of N (46% urea), P2O5 
(16% superphosphate) and K2O (60% potassium chlo-
ride) at a rate of 0.1 (N), 0.15 (P), 0.05 (K) g kg−1 
was applied. Urea was applied in solution; superphos-
phate and potassium chloride were mixed into the soil 
before potting.

Planting and maintenance

Maize seeds were surface sterilized using 1.5% 
hypochlorite bleach solution for 20  min and then 
washed four times with distilled water. Three seeds 
were sown in each pot and thinned to one seedling per 
pot at three leaves, about 13 days after sowing (DAS). 
Si was added as Na2SiO3·9H2O and Cd was added as 
CdCl2·2.5 H2O. The selected Si rate of 200  mg  kg−1 
was based on literature study (Khan et al. 2021; Tubana 
et al. 2016), which was equivalent to 500 kg Si ha−1. Cd 
treat of 20 mg  kg−1 was used based on the published 
work in maize including two local studies (He et  al. 
2013; Hui and Dang 2013). The Na2SiO3·9H2O powder 
was directly mixed with soil before potting; CdCl2·2.5 
H2O solutions was supplied to the pots designated for 
Cd treatments, respectively, started from 15 DAS and 
thereafter every day for 20 days, and the total amounts 
of Cd added to each pot was 20 mg kg−1 soil. The soil 
pH was not adjusted after Si addition. All pots were 
placed in a rain-shed nursery and the soil water content 
was maintained at 80% ± 5% of the pot water by regular 
weighing method during the experiment.

Plant harvesting and measurement

Plants of three replicates were harvested by separating 
roots, stem, leaf and ear at the silking stage (R1, 61 DAS), 
and root, stem, leaf and grain at the maturity stage (R6, 
102 DAS). Ear parameters and yield components includ-
ing ear rows, number of grains per row, 100-seed weight, 
ear length, ear thickness and bare top length (the part lack 
of seeds in the ear) were obtained. The roots were washed 
free of soil, and soaked in 20 mM CaCl2 solution for a 
few minutes, then repeatedly washed with distilled water 
to remove ions on the root surface. The root samples were 
scanned with a desktop scanner (Epson Perfection V800, 
Long Beach, CA, USA), and root morphological param-
eters (root length, root surface area, root volume and aver-
aged root diameter) were generated by analyzing root 
images, using WinRhizo (v2009, Regent Instruments, 
Montreal, QC, Canada) at the silking stage. All plant tis-
sues were dried at 75℃ to a constant weight to determine 
dry weight (DW) for each organ.

Tissue Cd accumulation and translocation

The dried plant organ was digested using di-acid mix-
ture (Liu et al. 2020). Briefly, 0.5 g of plant samples 

Table 1   Physio-chemical physiochemical parameters of soil

Soil parameters Value

Textural class Sandy loam
Sand (%) 52.12
Silt (%) 25.43
Clay (%) 22.45
pH (water) 8.40
Organic matter (g kg−1) 13.5
Total N (g kg−1) 0.92
Available N (mg kg−1) 18.45
Available P (mg kg−1) 13.5
Available K (mg kg−1) 190.5
Total Cd (mg kg−1) 0.16
Effective Cd (mg kg−1) 0.02
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was digested in HNO3: HClO4 (4:1) mixture. Subse-
quently, Cd was determined using atomic absorbance 
spectrometry (PinAAcle 900H, Perkin Elmer, USA). 
Root, stem, leaf and grain Cd concentrations were 
expressed as µg g−1 dry weight. The Cd content in 
each organ was calculated by multiplying Cd concen-
tration in each organ and biomass of the respective 
organ.

Tolerance index (%) was used to assess plant tolerance 
to Cd toxicity, and calculated as the percentage in plant 
dry weight (DW) of Cd stressed treatments (i.e. Cd, and 
Cd + Si) over the Control (Wu et al. 2010; Wilkins 1978):

The Cd bioconcentration factor (BCF) and trans-
location factor (TF) in each organ were calculated 
based on Cd concentration ([Cd]) in the respective 
organs and soil as follows (Liu et  al. 2020; Rehman 
et al. 2020a):

Health risk index

Human Cd health risk index (HRI) at maturity stage 
of maize was calculated according to (Liu et al. 2020; 
Rehman et al. 2020b) as follows:

where DIM is daily intake of metal, [Cd] is the Cd 
concentration in grains (μg g−1), C (factor) is a 

Tolerance index(%) =
DWCdor Cd+Si

DWcontrol

× 100

Root (or stem∕leaf∕grain)CdBCF =
[Cd]root∕stem∕leaf∕grain

[Cd]soil

Root CdTF =
[Cd]root

[Cd]soil

Stem (or leaf) CdTF =
[Cd]stem∕leaf

[Cd]root

Grain CdTF =
[Cd]grain

[Cd]stem + [Cd]leaf

DIM (daily intake ofmetal) =
[Cd] × C (factor) × DFI (daily food intake)

ABW (average body weight)

HRI (health risk index) =
DIM

ORDC (oral referance dose of Cd)

correction factor, the value is 0.085, DFI was set at 
0.4  kg person-1 day-1 according to the FAO/WHO-
proposed provisional tolerable daily intake. ABW was 
set at 70 kg assuming an average human adult body 
weight. ORDC is 0.001  mg  kg-1  day-1 according to 
the U.S. EPA (1985).

Soil Cd concentration and pH

Post-harvest (at the silking and maturity stages) soil 
Cd concentration was determined following Liu et al. 
(2020) and expressed as mg kg–1 soil. Soil samples 
were ground to homogeneity and passed through a 
2 mm sieve; and 0.5 g soil was placed in a digestion 
tube. A mixture acid (HCl: HNO3 = 3:1) was added 
to each tube with simultaneous gentle shaking. The 
tubes, after overnight stay, were then placed on a 
hot-plate set to 160℃ for 1 h and cooled. Next, 4 mL 
HClO4 was added to each tube and digestion was per-
formed at 230℃ until the digested solution samples 
had turned colorless. The supernatant was assessed 
with an atomic absorption spectrometer (PinAAcle 
900H, Perkin Elmer, USA) to measure Cd in the soil.

Soil pH was measured in soil: water = 1:5, 
then a reciprocal shaker for 0.5  h (Apparatus Co. 
Ltd. Changzhou, China), determined with a pH 
meter (Mettler-Toledo AG 8603 Schwerzenbach, 
Switzerland).

Data analysis

The normal distribution and homogeneity of vari-
ance of all data were tested using SPSS 12.5 (IBM, 
USA). All data were subjected to three-way ANOVA 
and Duncan’s multiple range tests for the main factors 
(genotype, Cd and Si treatments) and their interac-
tions at P ≤ 0.05. Pearson’s correlation coefficient was 
used to analyze the relationship between dry weight, 
root traits and Cd concentration, content, bioaccu-
mulation factor, translocation factor of root, stem, 
leaf and soil at the silking stage. Ear traits, 100-seed 
weight and Cd concentration, content, bioaccumula-
tion factor, translocation factor of root, stem, leaf and 
grain at the maturity stage also were used to Pear-
son’s correlation coefficient analyze. Boxplots were 
performed with “ggplot2” and principal component 
analysis (PCA) was performed with “prcomp” with 
the software package R.
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Results

Plant growth at the silking stage

At the silking stage, root dry weight was signifi-
cantly affected by G, Cd, Si and G × Cd (P ≤ 0.01, 
Fig. 1a). Compared to Control, Si additions (both Si 
and Cd + Si treatments) significantly reduced root dry 
weight in Zhongke11; while Cd and Cd + Si treat-
ments significantly increased root dry weight in Shen-
grui999. Aboveground dry weight was significantly 
affected by G and Cd (P ≤ 0.05; Fig. 1b). Compared 
to Control, the Cd treatment significantly increased 
aboveground dry weight in Zhongke11. Plant height 

was significantly affected by G, Cd, Si, G × Cd and 
G × Cd × Si (P ≤ 0.01; Fig.  1c). Compared to Con-
trol, the three Cd/Si treatments significantly increased 
plant height in Zhongke11; while in Shengrui999, Cd 
addition (Cd, and Cd + Si treatments) significantly 
reduced plant height. Less variation in stem diameter 
was found among the treatments with a significant 
increase in Cd treatment only when compared to Con-
trol (Fig.  1d). Root length was significantly affected 
by Si (P ≤ 0.05; Fig. 1e), resulting a decline by 35.3% 
than Control in Zhongke11; while Cd treatment had 
higher root length in Shengrui999. There were sig-
nificant differences in root surface area between geno-
types (G) and Cd treatments (Cd) (P ≤ 0.05; Fig. 1f) 

Fig. 1   Shoot and root 
attributes of maize 
genotypes (Zhongke11 and 
Shengrui999) at the silking 
stage in response to silicon 
(Si, 200 mg kg−1) and 
cadmium (Cd, 20 mg kg−1) 
applications. For each 
attribute across geno-
types, mean data (± SE, 
n = 3) with different letters 
indicate significant differ-
ence (P ≤ 0.05). ANOVA 
results for the main factors 
(genotype, G; silicon, Si; 
cadmium Cd) and their 
interactions (G × Cd, G × Si, 
Cd × Si and G × Cd × Si) 
are given for each attribute 
if significantly different (*, 
P ≤ 0.05; **, P ≤ 0.01)
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with a 31.0% reduction in Si treatment in Zhongke11. 
Effect on root volume mirrored that of root surface 
area (Fig. 1g). Cd addition (both Cd and Cd + Si treat-
ments) significantly increased average root diam-
eter by 23.0% than Control in Zhongke11 (P ≤ 0.05; 
Fig. 1h).

Plant growth at the maturity stage

At maturity, root dry weight was significantly affected 
by genotype (G) and G × Cd (P ≤ 0.01; Table 2). Root 
dry weight was significantly declined in Zhongke11 but 
increased in Shengrui999 under Cd addition (Cd and 
Cd + Si treatments). Aboveground dry weight was sig-
nificantly affected by genotype (G) and Si (P ≤ 0.01; 
Table  2). Si addition (Si, and Cd + Si treatments) 
resulted in a significant increase in the aboveground 
biomass in Shengrui999. Grain yield was significantly 
affected by Cd and Si (P ≤ 0.05; Table  2). Increased 
grain yield was found in Si treatment for Zhongke11, 
and in Si and Cd + Si treatments for Shengrui999.

Cd, Si and Cd × Si significantly affected 100 seed 
weight (P ≤ 0.05; Table  2). Cd treatment signifi-
cantly reduced 100 seed weight compared to Control 

in both genotypes (5–8% reduction). Combined 
Cd and Si had no significant difference in 100 seed 
weight with Control, but significantly increased it by 
7.39% (Zhongke11) and 5.19% (Shengrui999) com-
pared to Cd treatment. Bare top length was signifi-
cantly affected by Cd, Si, G × Cd, G × Si and Cd × Si 
(P ≤ 0.05; Table 2). In Zhongke11, Cd treatment sig-
nificantly increased bare top length by 58.3% than 
Control; Si treatment significantly reduced bare top 
length by 55.8% than Control; Cd + Si treatment sig-
nificantly reduced bare top length than Control and 
Cd treatment. In Shengrui999, Cd + Si significantly 
reduced bare top length compared to Cd treatment 
(Table 2; Fig. S1). There was no significant difference 
in ear thickness and ear row number in all factors and 
their interactions, except for ear rows between geno-
types with more ear row number in Zhongke11 than 
Shenrui999 (P ≤ 0.05; Table 2).

Cd concentration and accumulation

At the silking stage, root Cd concentration was sig-
nificantly affected by G, Cd, G × Cd, G × Si and 
G × Cd × Si (P ≤ 0.05; Fig. 2a); stem Cd concentration 

Table 2   Dry weight and ear characteristics of two maize genotypes (Zhongke11 and Shengrui999) at the maturity stage in response 
to silicon (Si, 200 mg kg−1) and cadmium (Cd, 20 mg kg−1) applications

For each parameter across genotypes, mean data (± SE, n = 3) with different letters indicate significant difference (P ≤ 0.05). ANOVA 
results for the main factors (genotype, G; silicon, Si; cadmium Cd) and their interactions (G × Cd, G × Si, Cd × Si and G × Cd × Si) are 
given for each parameter (*, P ≤ 0.05; **, P ≤ 0.01; ns, non-significant)

Genotype Treatment Dry weight Grain 
Yield
(g plant−1)

100 seed 
weight 
(g)

Ear length 
(cm)

Ear 
thickness 
(cm)

Ear rows Bare top 
length 
(mm)Root (g 

plant−1)
Aboveground
(g plant−1)

Zhongke11 Control 28.5 a 205 ab 99.7 bc 24.3 ab 18.4 47.6 14.7 ab 16.3 bc
Cd 22.6 bc 200 bc 96.9 bc 23.0 c 17.1 47 14.7 ab 25.8 a
Si 25.7 ab 218 a 110 a 24.0 bc 17.5 48.9 15.3 a 7.21 e
Cd + Si 22.8 bc 207 ab 99.3 bc 24.7 ab 18.3 47.5 13.3 abc 11.0 de

Shengrui999 Control 13.5 d 188 cd 96.8 bc 24.5 ab 19.2 46.4 12.7 bc 17.4 bc
Cd 18.7 c 185 d 90.0 c 23.1 c 17.1 45.6 12.0 c 18.7 b
Si 12.7 d 200 bc 107 ab 25.5 a 18.4 48 13.3 abc 14.4 bcd
Cd + Si 20.0 c 207 ab 103 ab 24.3 ab 18.6 48.4 13.3 abc 12.9 cd

ANOVA G ** ** ns ns ns ns ** ns
Cd ns ns * ** ns ns ns **
Si ns ** ** ** ns ns ns **
G × Cd ** ns ns ns ns ns ns **
G × Si ns ns ns ns ns ns ns **
Cd × Si ns ns ns * ns ns ns *
G × Cd × Si ns ns ns ns ns ns ns ns
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was significantly affected by G, Si and Cd × Si 
(P ≤ 0.05; Fig.  2b); leaf Cd concentration was sig-
nificantly affected by G, Cd, Si, G × Cd, and Cd × Si 
(P ≤ 0.05; Fig. 2c). Cd concentration and contents in 
non-Cd treatments (Control, and Si treatment) were 
extremely low or not detected. Cd + Si treatment sig-
nificantly reduced stem Cd concentration by 18.3% 
than Cd treatment, but significantly increased leaf 
Cd concentration by 110% in Zhongke11. Cd + Si 
significantly reduced root and stem Cd concentration 
by 15.5% and 19.0% than Cd treatment, respectively, 
but significantly increased leaf Cd concentration by 
15.5% in Shengrui999.

At the maturity, root Cd concentration was sig-
nificantly affected by Cd, Si, G × Si and G × Cd × Si 
(P ≤ 0.05; Fig.  2e); stem Cd concentration was sig-
nificantly affected by G, Cd, Si, G × Cd and Cd × Si 
(P ≤ 0.05; Fig. 2f); leaf Cd concentration was signifi-
cantly affected by G, Cd, Si, G × Cd, G × Si, Cd × Si 
and G × Cd × Si (P ≤ 0.05; Fig.  2g); grain Cd con-
centration was significantly affected by Cd, Si, and 
Cd × Si (P ≤ 0.01; Fig.  2h). In Zhongke11, Cd + Si 
significantly reduced leaf (31.6%) and grain (14.4%) 
Cd concentration than Cd treatment, but significantly 
increased root Cd concentration by 57.1%. In Shen-
grui999, Cd + Si treatment significantly reduced 

Fig. 2   Cd concentration 
in roots (a, e), stems (b, 
f), leaves (c, g) and ears 
(d, h) of maize genotypes 
(Zhongke11 and Shen-
grui999) at the silking 
(a–d) and maturity (e–h) 
stages in response to silicon 
(Si, 200 mg kg−1) and 
cadmium (Cd, 20 mg kg−1) 
applications. There were no 
ears Cd concentration data 
(d) at the silking stage. For 
each attribute across geno-
types, mean data (± SE, 
n = 3) with different letters 
indicate significantly dif-
ferent (P ≤ 0.05). ANOVA 
results for the main factors 
(genotype, G; silicon, Si; 
cadmium, Cd) and their 
interactions (G × Cd, G × Si, 
Cd × Si and G × Cd × Si) 
are given for each attribute 
if significantly different (*, 
P ≤ 0.05; **, P ≤ 0.01)
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root, stem, leaf and grain Cd concentration by 
23.6%, 17.2%, 9.14% and 21.4% than Cd treatment, 
respectively. Cd concentration in seeds ranged from 
0.05 − 0.06 μg  g−1 when grown in Cd amended soil, 
which is under the safety threshold for human health 
in maize (0.1  mg  kg−1) (Codex Alimentarius Com-
mission 2014).

At the silking stage, root Cd accumulation was 
significantly affected by G, Cd, Si, G × Cd, G × Si, 
Cd × Si and G × Cd × Si (P ≤ 0.05; Fig. S2, Table. S1); 
stem Cd content was significantly affected by Cd, 
Si and Cd × Si (P ≤ 0.05); leaf Cd content was sig-
nificantly affected by G, Cd, Si, G × Cd, and Cd × Si 
(P ≤ 0.01). Combined Cd and Si significantly reduced 
stem Cd content by 24.9% compared to Cd alone, 
but significantly increased root and leaf Cd content 
by 37.9% and 108.5%, respectively, in Zhongke11. 
Cd + Si treatment significantly reduced root and stem 
Cd content by 11.3% and 15.8% than Cd treatment, 
respectively, but significantly increased leaf Cd con-
tent by 20.8% in Shengrui999.

At the maturity, root Cd accumulation was signifi-
cantly affected by G, Cd, Si, G × Cd, G × Si, Cd × Si 
and G × Cd × Si (P ≤ 0.01; Fig. S2, Table S1); stem Cd 
content was significantly affected by Cd (P ≤ 0.05); 
leaf Cd content was significantly affected by G, Cd, 
Si, G × Cd, G × Si, Cd × Si, and G × Cd × Si (P ≤ 0.01); 
grain Cd content was significantly affected by Cd, Si, 
and Cd × Si (P ≤ 0.05). In Zhongke11, Cd + Si treat-
ment significantly reduced leaf and grain Cd content 
by 30.5% and 12.2% than Cd treatment, respectively, 
but significantly increased root Cd content by 88.0%. 
In Shengrui999, Cd + Si significantly reduced root 
and grain Cd content by 18.6% and 10.2% than Cd 
treatment, respectively.

Cd bioconcentration and translocation factors

At the silking stage, Cd + Si treatment increased Cd 
bioconcentration factor (BCF) in leaf in Zhongke11 
by 200% than Cd treatment (Fig.  3c), but reduced 
BCF in root (Fig.  3a), stem (Fig.  3b) and leaf 
(Fig. 3c) in Shengrui999 by 35.2%, 37.1% and 18.2%, 
respectively. At the maturity, in Zhongke11, Cd + Si 
treatment increased root Cd BCF by 69.5% than Cd 
treatment (Fig.  3e), but reduced leaf Cd BCF by 
26.2% (Fig.  3g); in Shengrui999, Cd + Si treatment 
significantly reduced Cd BCF values in root (Fig. 3e), 
stem (Fig.  3f), leaf (Fig.  3g) and grain (Fig.  3h) by 

22.8–35.1% than Cd treatment, respectively. Roots 
had significantly higher Cd BCF values than other 
organs at both the silking stage and the maturity.

At the silking stage, Cd + Si treatment signifi-
cantly increased leaf Cd translocation factor (TF) by 
85.2% (Zhongke11) and 50.0% (Shengrui999) than 
Cd treatment, respectively (Fig.  4c), but reduced 
stem Cd TF by 29.4% in Zhongke11 (Fig.  4b), 
and reduced root Cd TF by 35.2% in Shengrui999 
(Fig.  4a). At the maturity, in Zhongke11, Cd + Si 
treatment significantly increased root Cd TF by 
69.5% than Cd treatment, reduced stem and leaf Cd 
TF by 39.3% and 55.9%, respectively (Fig.  4f, g). 
In Shengrui999, Cd + Si treatment reduced root Cd 
TF by 35.1%, and increased leaf Cd TF by 18.9% 
(Fig.  4e, g). Roots had significantly higher Cd TF 
than other organs at both the silking stage and the 
maturity (Fig. 4).

Soil Cd concentration and pH

At the silking and maturity stages, soil Cd con-
centration was significantly affected by Cd, G × Si 
and G × Cd × Si (P ≤ 0.01; Fig.  5a, c); Si treat-
ment significantly reduced soil Cd concentra-
tion in Zhongke11, but increased in Shengrui999. 
At the both growth stages, pH was significantly 
affected by Si and G × Cd × Si (P ≤ 0.05; Fig.  5b, 
d). In Shengrui999, Cd + Si treatment significantly 
increased soil pH at both growth stages, but soil 
without Si application (i.e. Control and Cd treat-
ments) had lower pH than Si treatments (i.e. Si, 
and Cd + Si treatments).

Plant Cd tolerance, daily intake and health risk 
assessment

At the silking stage, in Zhongke11, Cd treatment 
increased Cd tolerance by 6.0% than Control; no 
significant difference was found in Cd tolerance 
between Cd + Si and Si. In Shengrui999, Cd treat-
ment increased Cd tolerance by 6.0% than Con-
trol, and Cd + Si treatment increased Cd tolerance 
by 5.6% than Si treatment (Fig.  6a). At maturity, in 
Zhongke11, Cd treatment reduced Cd tolerance index 
by 5.1% than Control, and Cd + Si treatment reduced 
Cd tolerance index by 6.0% than Si treatment; in 
Shengrui999, Cd treatment increased Cd tolerance 
index by 1.2% than Control, and Cd + Si treatment 
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increased Cd tolerance index by 7.1% than Si treat-
ment (Fig.  6c). Shengrui999 showed higher tolerant 
to Cd stress than Zhongke11 at both the silking stage 
and the maturity (Fig. 6a, c).

The application of Si significantly decreased daily 
intake of Cd (DIM) and health risk index (HRI) 
under Cd stress. The daily intake of Cd ranged 
from 2.34E−05 (Cd + Si) to 2.98E−05 (Cd) in Shen-
grui999 (Fig.  6b). A similar trend was observed for 
Cd health risk index. Under Cd stress, the applica-
tion of Si decreased Cd health risk index by 14.4% 
(Zhongke11) and 21.4% (Shengrui999) (Fig. 6d).

Correlations between root and ear parameters and Cd 
accumulation

At the silking stage, the correlation among root param-
eters (root length, root surface area, root volume and 
average root diameter), plant organs biomass, Cd con-
centration, bioaccumulation factor, translocation factor 
was analyzed (Table  S2). Pearson’s correlation analysis 
showed that root parameters (root length, root surface 
area, and root volume) had significant negative correla-
tion with pH (P ≤ 0.05). Root volume had significant posi-
tive correlation with root, stem and soil Cd concentration, 

Fig. 3   Cd bioconcentration 
factor (BCF) in roots (a, 
e), stems (b, f), leaves (c, 
g), and ears (d, h) of maize 
genotypes (Zhongke11 and 
Shengrui999) at the (a–d) 
silking and (e–h) maturity 
stages in response to silicon 
(Si, 200 mg kg−1) and 
cadmium (Cd, 20 mg kg−1) 
applications. There were 
no ear Cd BCF data (d) at 
the silking stage. For each 
organ across genotypes, 
mean data (± SE, n = 3) 
with different letters indi-
cate significant difference 
(P ≤ 0.05)
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root and stem bioaccumulation and translocation factor 
(P ≤ 0.05). Average root diameter had significant positive 
correlation with root, stem and soil Cd concentration, root 
bioaccumulation and translocation factor (P ≤ 0.05).

At the maturity stage, the correlation among grain 
yield, ear parameters and yield components (ear 
rows, number of grains per row, 100 seed weight, 
ear length, ear thickness and bare top length), plant 
organs Cd concentration, bioaccumulation factor 
and translocation factor were analyzed (Table  S3). 
Pearson’s correlation analysis showed that grain 

yield had significant negative correlation with root, 
stem, leaf and grain Cd concentration; root, stem, 
leaf and grain bioaccumulation factor, root and grain 
translocation factor, DIM and HRI (P ≤ 0.05); hun-
dred seed weight had significant negative correla-
tion with stem, leaf, grain and soil Cd concentration, 
stem, leaf and grain bioaccumulation and transloca-
tion factor, DIM and HRI (P ≤ 0.05). Hundred-seed 
weight and ear thickness had significant positive 
correlation with pH. Bare top length had significant 
negative correlation with pH (P ≤ 0.05).

Fig. 4   Cd translocation 
factor (TF) in roots (a, e), 
stems (b, f), leaves (c, g) 
and ears (d, h) of maize 
genotypes (Zhongke11 and 
Shengrui999) at the silking 
(a–d) and maturity (e–h) 
stages in response to silicon 
(Si, 200 mg kg−1) and 
cadmium (Cd, 20 mg kg−1) 
applications. There were 
no ear Cd TF data (d) at 
the silking stage. For each 
organ across genotypes, 
mean data (± SE, n = 3) 
with different letters indi-
cate significant difference 
(P ≤ 0.05)
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Principal component analysis of growth and 
physiological traits

At the silking stage, PCA identified four princi-
pal components (PCs) (Table  S4). PC1 and PC2 
accounted for 54.9% and 16.7% of the variation, 

respectively. PC1 separated the effects of Cd treat-
ment, and PC2 separated the effects of genotype treat-
ment (Fig.  S3a). The Cd concentration (root, stem, 
leaf and soil), content (root, stem, leaf and soil), bio-
accumulation factor (root, stem and leaf), and trans-
location factor (root and stem) were the key factors 

Fig. 5   Soil Cd concentra-
tion (a, c) and soil pH (b, 
d) for maize genotypes 
(Zhongke11 and Shen-
grui999) at the silking (a, 
b) and maturity stages (c, d) 
stages in response to silicon 
(Si, 200 mg kg−1) and 
cadmium (Cd, 20 mg kg−1) 
applications. For each 
attribute across geno-
types, mean data (± SE, 
n = 3) with different letters 
indicate significantly dif-
ferent (P ≤ 0.05). ANOVA 
results for the main factors 
(genotype, G; silicon, Si; 
cadmium, Cd) and their 
interactions (G × Cd, G × Si, 
Cd × Si and G × Cd × Si) 
are given for each attribute 
if significantly different (*, 
P ≤ 0.05; **, P ≤ 0.01)

Fig. 6   Plant Cd tolerance 
index (a, c), daily intake 
of metal (b, DIM) and 
Cd health risk index (d, 
HRI) of maize genotypes 
(Zhongke11 and Shen-
grui999) in response to sili-
con (Si, 200 mg kg−1) and 
cadmium (Cd, 20 mg kg−1) 
applications. For each 
attribute across genotypes, 
mean data (± SE, n = 3) 
with different letters indi-
cate significant difference 
(P ≤ 0.05)
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in PC1. Root biomass, plant height, total root surface 
area, total root volume, pH, and leaf translocation fac-
tor were the key factors in PC2 (Table S4).

At the maturity, PCA identified five PCs with 
Eigenvalue greater than one (Table  S5). PC1 and 
PC2 accounted for 63.2% and 11.0% of the variation, 
respectively (Fig. S3b). PC1 separated the effects of 
Cd treatment. The Cd concentration (stem, grain and 
soil), content (stem and grain), translocation factor 
(stem, leaf and grain), daily intake of metal and Cd 
health risk index were the key factors in PC1. Stem 
biomass, grain yield and ear rows were the key factors 
in PC2 (Table S5).

Discussion

Effects of Si application and Cd stress on plant root 
and soil parameters

Root morphological traits have a positive correlation 
with root elongation and development (Qiao et  al. 
2019; Ur Rahman et  al. 2021a). In our study, cad-
mium stress increased average root diameter consider-
ably than Control in Zhongke11 (Fig.  1h). Cadmium 
stress increased root volume in Zhongke11 regardless 
Si application (Fig.  1g). These findings indicate that 
application of Si in maize growth media contaminated 
with low concentration of Cd are not toxic to plants, 
and even stimulate root growth (Romdhane et al. 2021; 
Ur Rahman et  al. 2021a; Li et  al. 2021). In the pre-
sent study, application of Cd significantly increased 
root dry weight in Shengrui999 at both growth stages 
regardless Si status (Fig.  1a, Table  2). Si application 
significantly increased maize root dry weight under 
Cd (Rizwan et  al. 2012), antimony (Vaculíková et  al. 
2014), and nickel stress (Vaculík et  al. 2021). These 
findings showed that Si had significant effects on 
root dry weight under different heavy metals and Si 
deposited in leaf epidermal cells could enhance light-
use-efficiency by facilitating the transmission of light 
to the photosynthetic mesophyll tissue and photosyn-
thetic products transportation through phloem under 
moderate stress of heavy metals (Rizwan et al. 2017b; 
Nwugo and Huerta 2008; Khan et al. 2021).

Silicon addition improved edaphic properties such 
as soil pH (Fig.  5b, d), and soil Cd concentration in 
Shengrui999 (Fig.  5a, c). Si application reduced the 
availability of Cd, increased Cd immobilization in the 

soil (Khan et al. 2021; Ma et al. 2021a). Various studies 
show that Si addition alters soil physical and biochemi-
cal properties (soil pH, soil type, clay minerals, cation 
exchange, organic matter, co-precipitation, soil particle 
size) leading to positive impacts such as enhanced root 
architectural traits, root respiration, nutrient uptake, 
root biomass, and metal reductase (Khan et  al. 2021; 
Ma et al. 2021b; Liang et al. 2005) (Fig. 7).

In our study, correlation analysis indicated that root 
length, root surface area and root volume were posi-
tively correlated with root biomass; root volume and 
average root diameter were positively correlated with 
root Cd concentration, bioaccumulation and translo-
cation factor under moderate Cd stress (Table  S2). 
Root and soil parameters were significantly corre-
lated with root Cd uptake and accumulation (Wang 
et al. 2016; Huang et al. 2015; Lu et al. 2013). PCA 
results demonstrated that the effects of Cd treatment 
were clearly separated by PC1, in which the key fac-
tors were root architectural traits, Cd concentration, 
content and bioaccumulation factor of organs at the 
silking stage (Fig S3, Table S4). Cd and Cd + Si treat-
ments increased PC1 value of growth and physiologi-
cal traits of maize genotypes from the silking stage to 
the maturity (Fig S3). These results suggested that Cd 
significantly affect plant growth at different growth 
stages (An et al. 2022; Zhang et al. 2019).

Si application affects Cd concentration, 
bioaccumulation and translocation factors in different 
organs

Our results showed that roots had the highest Cd con-
centration and content among all organs of maize 
plant (Figs.  2, S2). Cadmium easily infiltrates the 
root via the cortical tissue; the growing root part is 
covered with exudation (carbohydrates, amino acid, 
enzyme) excreted by the root cap and rhizodermal 
cells, which can bind Cd (Fig. 7) (Seregin and Koz-
hevnikova 2011; Bali et al. 2020). Cadmium, like the 
essential nutrients, follows the same apoplastic and 
symplastic pathways to move radially across the root 
layers (Xu et al. 2017; Clemens et al. 2002). Apoplas-
mic movement of Cd to the xylem can be restricted 
by the development of the exodermis, endodermis, 
and other extracellular barriers; symplasm movement 
is thought to be restricted by the production of phy-
tochelatins and the sequestration of Cd-chelates in 
vacuoles (Shi et  al. 2005; Ur Rahman et  al. 2021b). 
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Silicon application can attribute not only to Cd immo-
bilization (Fig. 5a, c) but also to its low bioavailabil-
ity arising from pH rise (Fig. 5b, d) in soil (Vaculík 
et  al. 2009; Cai et  al. 2020), which may restrict Cd 
transfer from root to grain (Fig.  2) (Liu et  al. 2013; 
Khan et  al. 2021). Si-supplied plants also enhanced 
binding of Cd to the cell walls, existing in the form 
of [Si-hemicellulose matrix] Cd complexation (Ma 
et al. 2015), restricted the apoplastic transport of Cd 
and reduced the transporting of Cd into aboveground 
organs (Song et al. 2009; Ye et al. 2012). Moreover, 
Si influences the oxidative status of plants by modi-
fying the activity of various antioxidants, improves 
membrane stability, and acts on transporter gene 
expression (Ma et al. 2015; Vaculík et al. 2020; Khan 
et al. 2021).

Aboveground organs Cd concentrations are deter-
mined largely by Cd entry to the root, sequestra-
tion within root vacuoles, transpiration steam in the 
xylem, dilution within the aboveground tissues dur-
ing the growth (Hart et al. 2006; Vaculík et al. 2009; 

Lukačová et  al. 2013). Silicon application reduced 
stem, leaf and grain Cd concentration than combined 
Cd and Si treatment in Shengrui999 at the maturity 
(Fig.  2). From the silking to the maturity, Cd con-
centration, content, bioconcentration and transloca-
tion factor of root were reduced, but these Cd-related 
parameters were increased in stem, leaf and grain 
(Figs. 2, 3, and 4, S2). Cd is transported to the stems, 
leaves and the outer parts of panicles, then followed 
by remobilized to grains through phloem (Fujimaki 
et al. 2010; Rodda et al. 2011).

Some studies reported that Si inhibits Cd uptake and 
accumulation in maize root, shoot and grain (Lukačová 
et al. 2013; Liu et al. 2020), while others reported maize 
treated with Si increased Cd uptake in roots and shoots 
(Da Cunha and Do Nascimento 2008; Vaculík et  al. 
2009). However, in our study, Si increased total Cd con-
tent in Zhongke11, and reduced that in Shengrui999 
(Fig. S2). The content of Cd in the root, the mobility 
of Cd in the soil and the transportation to aboveground 
organs depend on the concentration of Si and Cd in the 

Fig. 7   Schematic model of the effects of silicon (Si) in soil, 
root, stem, leaf and grain under cadmium (Cd) stress at the 
maturity stage. Soil attributes include soil pH, soil type, clay 
minerals, cation exchange, organic matter, co-precipitation, 
and soil particle size. Under Cd stress, application of Si may 
contribute to the increase in root biomass, root architecture 
traits, nutrient uptake, root respiration, leaves erection, light 

interception and stem diameter. On the other hand, Si applica-
tion may reduce Cd immobilization and accumulation in plant 
parts, Cd toxicity, Cd bioconcentration factor (BCF), Cd trans-
location factor (TF) and health risk index (HRI). Si and Cd can 
be transported to shoots via xylem by transpirational pull. Red 
arrows, increase; green arrows, reduce
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soil–plant system (Liang et  al. 2005; Da Cunha and 
Do Nascimento 2008; Ji et al. 2017). Si diminishes Cd 
concentrations in plants root, stem, leaf and grain in 
Zhongke11 (Fig. 2), by reducing upward translocation 
from soil to root and by decreasing Cd bioaccumulation 
in stem leaf and grain tissues (Figs. 3 and 4). Similar 
results were reported by Liu et  al. (2020) who found 
that Si application also reduced root, stem, leaf and 
grain Cd concentration under Cd stress. Plant organs 
differ in physiological and biochemical properties, 
which may result in variation in Cd uptake, accumula-
tion and translocation under Si application (Lukačová 
et al. 2013; Yu et al. 2020; Ma et al. 2021b). Applica-
tion of Si reduced grain Cd concentration, daily intake 
of metal (DIM) and health risk index (HRI) in maize 
(Fig. 6b, d), which is consistent with the results reported 
in rice (Zaman et al. 2021), wheat (Rizwan et al. 2017a) 
and maize (Liu et al. 2020). We observed a significant 
negative correlation between grain yield and DIM and 
HRI (Table S3). Therefore, exogeneous application of 
Si may be a feasible approach in these contexts.

Genotypic variation in response to Si application 
under moderate Cd stress

Differences among plant species and genotypes of the 
same species in response to Cd and Si were observed 
(Lukačová Kuliková and Lux 2010; Rizwan et  al. 
2017b), in particular, differences in root to shoot 
translocation of Cd (Harris and Taylor 2013; Tavarez 
et al. 2015), and accumulation of Cd in grain (Naeem 
et al. 2015). Tolerant genotypes with smaller biomass 
and higher Cd concentration of root were evidenced 
in previous studies (Ekmekci et  al. 2008; Guo et  al. 
2019). In our study, Cd-tolerant Shengrui999 (shal-
low root system) had less root dry weight, root length, 
root surface area, and root volume than Cd-sensitive 
Zhongke11 (deep root system) (Fig. 1, Table 2). How-
ever, Cd concentration in roots was the highest among 
plant organs regardless of Si (Fig.  2). Shengrui999 
had higher d concentration in stem and leaf, BCF and 
TF efficiency than Zhongke11 regardless of Si at the 
maturity (Figs.  2, 3, and 4). The capacity to translo-
cate elements to shoots is an important factor involved 
in tolerance (Harris and Taylor 2013; Yan et al. 2018). 
Silicon application significantly reduced Cd concentra-
tion and BCF in root, stem, leaf and grain compared to 
non-Si treatment in Shengrui999 (Figs. 2 and 3), dem-
onstrating that silicon is more effective in enhancing 

Cd tolerance in Cd-tolerant genotype than Cd-sensitive 
genotype, through suppressing Cd uptake and root to 
shoot Cd transport (Song et al. 2009).

Conclusion

Maize plants accumulated more Cd in roots than in 
the aboveground parts with the least in grains. Appli-
cation of Si had significant effects on regulating Cd 
uptake and bioconcentration factor in stem and leaf, 
and soil pH, and contributed to daily intake of Cd 
and Cd health risk index under Cd stress. Genotype 
Shengrui999 (shallow-rooted) was more effective 
in response to Si application under Cd stress than 
Zhongke11 (deep-rooted). Root morphology had sig-
nificant correlations with root Cd concentration, bio-
accumulation factor and translocation factor at the 
silking stage in response to silicon and Cd applica-
tions. Therefore, it can be considered as a strategy of 
maize plants to restrict the entry of Cd into the root 
systems. Future studies are required to reveal physi-
ological and molecular mechanisms of the role of Si 
in alleviating plant tolerance to Cd stress involving 
different Si species and more genotypes under both 
controlled and field conditions.
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