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site using 16S rRNA high-throughput sequencing. 
Additionally, the soil and plant nutrient contents at 
both sites were also analyzed.
Results Although soil N-content at the gravel pit 
was drastically lower than the forest site, pine tissue 
N-levels at both sites were identical. Beta-diversity 
was affected by site and niche-type, signifying that 
the diversity of bacterial communities harboured by 
pine trees was different between both sites and among 
various plant-niches. Bacterial alpha-diversity was 
comparable at both sites but differed significantly 
between belowground and aboveground plant-niches. 
In terms of composition, pine trees predominantly 
associated with taxa that appear plant-beneficial 
including phylotypes of Rhizobiaceae, Acetobacte‑
raceae, and Beijerinckiaceae at the gravel pit and 
Xanthobacteraceae, Acetobacteraceae, Beijerincki‑
aceae and Acidobacteriaceae at the forest site.
Conclusions Our results suggest that, following 
mining activity, regenerating pine trees recruit bacte-
rial communities that could be plant-beneficial and 

Abstract 
Aims Despite little soil development and organic 
matter accumulation, lodgepole pine (Pinus contorta 
var. latifolia) consistently shows vigorous growth on 
bare gravel substrate of aggregate mining pits in parts 
of Canadian sub-boreal forests. This study aimed to 
investigate the bacterial microbiome of lodgepole 
pine trees growing at an unreclaimed gravel pit in 
central British Columbia and suggest their potential 
role in tree growth and survival following mining 
activity.
Methods We characterized the diversity, taxonomic 
composition, and relative abundance of bacterial 
communities in rhizosphere and endosphere niches 
of pine trees regenerating at the gravel pit along with 
comparing them with a nearby undisturbed forested 
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support pine growth in an otherwise severely N-lim-
ited disturbed environment.

Keywords Acetic acid bacteria · Endophytes · 
Nitrogen · Pinus · Rhizobiales · Tree microbiome

Introduction

Forest landscapes around the world are subject to 
alteration by natural and anthropogenic disturbances, 
often leading to ecosystem degradation (Caviedes and 
Ibarra 2017). Soil health is one of the key attributes 
of forest ecosystem affected by degradation. Distur-
bance regimes like resource extraction degrade forest 
soils through compaction and displacement of litter 
and soil, which not only affect the availability of nutri-
ents in soils and inhibit root growth but also obstruct 
the supply of oxygen and water to soil microbes and 
plant roots (Osman 2013). These impacts can thus alter 
the plant–soil–microbial dynamics and subsequently 
affect the normal ecosystem functioning (Bowd et  al. 
2019). In Canada, mining has been identified as one of 
the major factors disrupting forest ecosystems (LeMay 
1999; Frelich 2014). One of the top non-fuel min-
eral commodities mined in Canada includes mineral 
aggregates – crushed stone, rocks, gravel, and sand 
(Koehnken 2018; Barry 2019). The establishment of 
pits and quarries for aggregate mining requires com-
plete removal of natural vegetation and topsoil or in 
some cases even subsoil (Winfield and Taylor 2005), 
resulting in the loss of the existing biodiversity as plant 
and soil habitats are destroyed. Artificial reclamation of 
such disturbed systems is one way to remediate ecosys-
tem services, but it may involve costly procedures and 
the risk of introducing exotic floral and faunal species 
(Macdonald et al. 2015). However, when such sites are 
left unreclaimed, the nearby biological communities 
may take precedence and play a crucial role in the nat-
ural restoration of ecosystem health and productivity. 
Yet, our understanding is largely limited regarding how 
the assemblages of these pioneering aboveground and 
belowground biological communities have evolved to 
thrive in these disturbed ecosystems.

Lodgepole pine (Pinus contorta var. latifolia) is an 
important gymnosperm tree species native to western 
North America that has the remarkable ability to with-
stand severe natural and anthropogenic disturbances 
and thrive on fire-affected sites, dry and coarse sandy 

soils, road cuts, and mining pits (Lotan and Critch-
field 1996; Chapman and Paul 2012; Puri et al. 2018; 
Turner et al. 2019). Culture-based studies suggest that 
lodgepole pine trees associate with endophytic plant-
growth-promoting bacteria having various abilities 
including nitrogen (N) fixation, phosphate solubiliza-
tion and stress tolerance to grow on dry, coarse, nutri-
ent-poor soils (Puri et al. 2020a, b). Swift recovery of 
soil N pools, significant growth of lodgepole pine trees 
and optimal tissue N contents have been observed in a 
lodgepole pine dominated stand severely affected by 
fires in Yellowstone National Park, USA (Turner et al. 
2019). The absence of known nodulating plants and 
minimal deposition of atmospheric N in these stands 
indicate the unique ability of lodgepole pine trees to 
thrive under extreme conditions, possibly by forming 
mutualistic associations with their microbial partners 
to fix N (Turner et al. 2019; Chapman and Paul 2012).

The soil and plant microbiome has been a grow-
ing area of research with several studies establishing 
the key role of microbial communities in plant growth 
and survival (Compant et  al. 2019). Although the 
rhizospheric bacterial communities and their interac-
tions with plants have been studied widely for the last 
few decades, the endophytic bacterial microbiome has 
only received recent attention with studies suggest-
ing that they could be better protected from external 
abiotic and biotic stresses due to their niche inside 
the plant tissues (Chanway et al. 2014). Most of our 
understanding about the overall plant bacterial micro-
biome (endophytic + rhizospheric) has been derived 
from model plants such as Arabidopsis or agricul-
tural plants (Rosenblueth and Martínez-Romero 
2006; Reinhold-Hurek and Hurek 2011), whereas the 
tree microbiome has been an underexplored field of 
research (Pirttilä and Frank 2018). Considering the 
long life-span and large biomass of conifers, bacterial 
communities may play an even more important role 
in helping these trees to thrive in the extreme envi-
ronmental conditions that characterize boreal and 
temperate forest ecosystems, including the weakly-
developed nutrient-poor soils, slow mineralization 
rates, climate extremes, and invasive pests (Puri et al. 
2017a; Pirttilä and Frank 2018). For instance, bacte-
rial communities in the foliage of North American 
conifers such as coast redwood (Sequoia sempervi‑
rens), giant sequoia (Sequoiadendron giganteum), 
and limber pine (Pinus flexilis) have been reported 
to largely comprise taxa closely related to N-fixing 
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acetic acid bacteria (Carrell and Frank 2015; Carrell 
et al. 2016; Moyes et al. 2016). It was suggested that 
associating with these foliar endophytic communities 
may be an evolutionarily stable N-fixing strategy of 
conifers to thrive on disturbed, N-poor soils, and may 
explain how boreal and temperate forests accumulate 
more N than can be accounted for by known N input 
pathways (Wurzburger 2016).

Of the various conifer species, the highly adapt-
able nature of lodgepole pine may be attributed, at 
least in part, to its microbial partners as evidenced 
previously in culture-based inoculation stud-
ies (Anand et  al. 2013; Padda et  al. 2019). Chap-
man and Paul (2012) provided compelling evi-
dence using the 15N natural abundance technique 
that lodgepole pine trees growing on abandoned 
gravel mining pits in the central interior of British 
Columbia (BC), Canada could be accessing bio-
logically fixed N in conjugation with certain symbi-
onts. In addition, lodgepole pine trees at the gravel 
pits had virtually identical growth rates in terms 
of tree height, leader length and root collar diam-
eter when compared with the lodgepole pine trees 
of equivalent age from a nearby undisturbed forest 
stand having intact soil (Chapman and Paul 2012). 
Similar tree growth rates despite drastic differences 
in edaphic conditions raise the possibility that pio-
neering lodgepole pine trees could rely on their 
microbiome for survival and fitness under difficult 
environmental conditions.

In this study, our primary objective was to exam-
ine the bacterial communities inhabiting the rhizos-
phere and endosphere of lodgepole pine trees grow-
ing at an aggregate mining site (Skulow gravel pit) 
located in central-interior BC and suggest their 
potential role in tree growth and survival follow-
ing mining activity. Additionally, we determined if 
these pioneering pines assemble similar or different 
bacterial microbiomes post-disturbance by compar-
ing them with lodgepole pine trees from a nearby 
undisturbed forest stand along with assessing how 
bacterial communities differentiate among various 
tree niches (needle, stem, root, rhizosphere). Our 
secondary objective was to compare the nutrient 
content of soil and plant (lodgepole pine) samples 
collected from the gravel pit with the undisturbed 
forest site and to determine if various soil param-
eters affected the bacterial community structure of 
pine trees at both sites.

Materials and methods

Sampling sites

The Skulow pit is located 40  km north-east of Wil-
liams Lake (52°18′54.1” N, 121°53′39.3” W, 
1064 m a.s.l.) in the central interior of BC. The aver-
age yearly temperature for 1981–2010 recorded at 
the nearby Camille Lake weather station was 3.7 °C 
and the normal annual precipitation was 174.1 cm as 
snowfall and 361.9  mm as rainfall (Government of 
Canada n.d.). Lodgepole pine trees were predominant 
inside and on the slopes of the Skulow pit, whereas 
hybrid white spruce (Picea glauca × engelmannii) 
and Douglas-fir (Pseudotsuga menziesii) trees were 
present on the edges. Lodgepole pine trees were 
thriving on the bare gravel substrate characterized by 
no topsoil or organic forest floor, weak profile devel-
opment and no soil horizons. Ten young lodgepole 
pine trees (<5  years old and < 30  cm height) were 
randomly selected from different sections within the 
pit. Similarly, ten young lodgepole pine trees were 
randomly selected from the nearby undisturbed forest 
stand (within a 250  m radius around the pit) which 
consisted of lodgepole pine, hybrid white spruce and 
Douglas-fir trees. The soil in this forest stand con-
sisted of intact forest floor and distinct soil horizons 
with no evidence of anthropogenic soil disturbance.

Plant and soil sampling

The selected lodgepole pine trees from the gravel 
pit and nearby forest stand were carefully extracted 
ensuring that the root system was preserved. The 
intact root system of each tree was excavated care-
fully using a shovel to undercut the roots, followed 
by gentle hand digging to allow the gravel and sand 
to fall free of the roots. Gloves were worn at all 
times during the sampling. Sterility was maintained 
by cleaning the shovel and hands with 75% etha-
nol before and after sampling each tree to avoid any 
cross-contamination. The bulk soil loosely attached 
to the pine roots was removed through vigorous shak-
ing. Each tree was placed in a sterile plastic bag and 
immediately transported to the laboratory on dry ice 
and processed within two days of sampling. Mineral 
soil samples were collected around each tree (within 
30–40  cm radius) in four cardinal directions from 0 
to 20  cm depth using an Oakfield probe at both the 
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gravel pit and the nearby undisturbed forest stand. 
Samples collected in four cardinal directions were 
pooled to obtain one mineral soil sample around each 
tree.

Soil and plant analyses

Mineral soil samples were air-dried and sieved 
through a 2  mm sieve to remove coarse fragments. 
Each mineral soil sample was further divided into two 
subsamples and analyzed to determine the physico-
chemical properties and nutrient status of the gravel 
pit and the undisturbed forest stand soils. Total C, N, 
S; available N  (NH4

+ and  NO3
−); mineralizable N; 

available P; pH in  H2O and  CaCl2; cation exchange 
capacity (CEC); organic matter; percent sand, silt 
and clay; and extractable macro- and micro-nutrients 
(Al, B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S and Zn) were 
determined at the Analytical Chemistry Services 
Laboratory, BC Ministry of Environment and Climate 
Change Strategy, Victoria, BC, Canada. Five trees 
collected from each site were used to analyze plant 
nutrient contents. The roots of each tree were washed 
under running water to remove soil particles. Each 
tree was oven-dried at 70 °C and sent to the Analyti-
cal Chemistry Services Laboratory to determine total 
C, N, S and standard nutrients including Al, B, Ca, 
Cu, Fe, Mg, Mn, Mo, P, K, S and Zn. To compare 
the soil and plant nutrient concentrations between the 
undisturbed forest site and gravel pit, an analysis of 
variance (ANOVA) was performed using the statis-
tical package SAS University Edition (SAS Institute 
Inc., Cary, NC, USA).

DNA extraction and 16S rRNA sequencing

Tree bacterial microbiome analysis was performed 
using a metabarcoding approach to elucidate and 
compare the structure of bacterial communities pre-
sent in the rhizosphere and internal tissues of young 
lodgepole pine trees growing in the gravel pit and 
the nearby undisturbed forest stand. Five pine trees 
from each site were used for the microbiome analy-
sis. Once trees from each site were transported to the 
lab, rhizosphere soil samples (~ 1  g) were obtained 
from each tree by carefully collecting the soil parti-
cles intimately attached to the roots using a scalpel. 
Subsequently, each tree was surface-sterilized by 

immersing in 2.5% (w/v) sodium hypochlorite for 
2 min, followed by three 30-s rinses in sterile distilled 
water (Puri et al. 2018). Needle, stem and root tissue 
samples (~250 mg) from each surface-sterilized tree 
were collected for subsequent DNA isolation.

Total genomic DNA from each needle, stem, root 
and rhizosphere soil sample was extracted using the 
Qiagen MagAttract PowerSoil DNA KF Kit follow-
ing the manufacturer’s protocol. All DNA extrac-
tions were performed in triplicate per sample, after 
which extracts were combined into one sample. The 
polymerase chain reaction (PCR) was performed in 
triplicate to reduce PCR bias. Following the protocol 
outlined by Kozich et al. (2013), PCR amplification 
of the prokaryotic 16S rRNA genes was performed 
using dual-barcoded primers targeting the V4 region 
(515F 5’-GTG CCA GCMGCC GCG GTAA-3′, and 
806R 5’-GGA CTA CHVGGG TWT CTAAT-3′). PCR 
conditions used for 16S sequencing were identical 
to those of Kozich et  al. (2013) and Gweon et  al. 
(2015), respectively. Amplicons were sequenced 
with an Illumina MiSeq using the 300-bp paired-end 
kit (v.3). Bacterial sequences were denoised, taxo-
nomically classified using Silva (v. 138) as the ref-
erence database, and clustered into 97%-similarity 
operational taxonomic units (OTUs) with the mothur 
software package (v. 1.44.1) (Schloss et  al. 2009), 
following the recommended procedure. Paired-end 
reads were merged and curated to reduce sequenc-
ing error (Huse et  al. 2010). The potential for con-
tamination was addressed by co-sequencing the 
DNA amplified from specimens with template-free 
control (negative control) and cloned Thioglobaceae 
SUP05 DNA (positive control). For both positive 
and negative controls, the extraction kit reagents 
were processed the same way as the specimens. The 
OTUs were considered putative contaminants (and 
were removed) if their mean abundance in controls 
reached or exceeded 25% of their mean abundance in 
specimens. The raw sequence data have been depos-
ited in the NCBI Sequence Read Archive (BioSam-
ple accession no. SAMN19608371 and BioProject 
accession no. PRJNA736087).

Bioinformatics and statistical analysis

Statistical analyses of bacterial community data 
were completed in R (version 3.6.2). Alpha diver-
sity was estimated using the Shannon index on raw 
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count OTU data after filtering out putative contami-
nants, compared across different groups by two-way 
ANOVA, and pair-wise comparisons were computed 
by Tukey post-hoc test. To estimate beta diversity 
across samples, we excluded OTUs occurring with 
a count of less than 3 in at least 10% of the samples 
and then computed Bray-Curtis indices. We visual-
ized beta diversity, emphasizing differences across 
samples, using Principal Coordinate Analysis (PCoA) 
ordination. Differences in the communities of undis-
turbed forest and gravel sites were compared by per-
mutational multivariate analyses of variance (PER-
MANOVA) with the site as the main fixed factor 
and using 9999 permutations for significance testing 
(Nguyen et al. 2020).

To identify differentially abundant taxa between 
the gravel pit and forest site, the DESeq2 package was 
used (Love et  al. 2014). DESeq2 analysis was per-
formed by taking the site (gravel pit vs undisturbed 
forest site) as a factor after normalizing the OTU 
data. To present the variation of bacterial microbi-
ome profiles between the two sites and among dif-
ferent niches, the relative abundance (RA) of the 50 
most abundant taxa at OTU level were visualized 
using ComplexHeatmap r package (Gu et  al. 2016). 
Both rows and columns were unsupervised clustered 
based on distance matrix converted from Spearman’s 

correlation matrix (Nguyen et  al. 2020) using the 
Ward.D method (Ward 1963), resulting in clusters 
of co-occurring bacteria. A dendrogram for columns 
was rendered to group individual samples based on 
their bacterial microbiome profile (dendextend r pack-
age v1.14.0; Galili 2015). Metadata such as site and 
niche were annotated and all analyses were performed 
in the R environment. The association between vari-
ous soil properties and the bacterial community data 
was evaluated using phylogenetic isometric log-ratio 
(Silverman et  al. 2017) and visualized using princi-
pal component analysis (See Supplementary file for 
detailed methodology).

Results

Soil and plant analyses

Total N and C (%) in the mineral soil samples at the 
gravel pit were significantly lower (~7-fold) than the 
undisturbed forest stand (Fig. 1a and b). The amount 
of available  NH4

+ was >40-fold lower at the gravel 
pit in comparison to the undisturbed forest site, but no 
difference was observed in the available  NO3

− con-
tent (Fig.  2a and b). Mineralizable N was also sig-
nificantly lower (230-fold) at the gravel pit than at 

Fig. 1  Boxplots of (a) total 
N and (b) total C (%) in 
the mineral soil samples 
(0–20 cm depth; n = 20) 
collected from the gravel pit 
and forest site. Boxplots of 
(c) tissue N and (d) tissue 
C (%) in the lodgepole pine 
tree samples collected from 
the gravel pit and forest site 
(n = 5). ‘╳’ represents the 
mean value on boxplots. 
*** P < 0.001 (significantly 
different from forest site)
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the undisturbed forest site (Fig.  2c). No available P 
was detected in the soil samples from the gravel pit 
whereas undisturbed forest soils had a considerable 
amount of available P (Table S1). Soil organic mat-
ter content was also significantly lower (9-fold) at 
the gravel pit (Table  S1). Likewise, concentrations 
of several macro- and micro-nutrients were also sig-
nificantly lower at the gravel pit compared to the 
undisturbed forest site (Table S1). Soil pH was acidic 
(4.9 to 5.5) at the forest site whereas gravel pit soils 
had a slightly alkaline pH (7.7 to 8.3) (Table  S1). 
The sand content at the gravel pit (80%) was signifi-
cantly higher than the forest soils (58%) (Table S1). 
Despite the large differences in the soil N contents at 
both sites, the tissue N contents (%) of lodgepole pine 
trees at the gravel pit and undisturbed forest site were 
identical (Fig. 1a and c). Similarly, no significant dif-
ferences were observed in the tissue C content and 
macro- and micro-nutrient levels between pine trees 
originating from both sites (Fig.  1d; Table  S2). The 
associations between various soil properties and the 
bacterial community were analyzed with phylogenetic 
isometric log-ratios and visualized using principal 
component analysis. At the undisturbed forest site, 
only available soil nitrate had a significant association 
(positive or negative) with the bacterial OTUs present 
in different niches of lodgepole pine trees  (r2 = 0.383; 
p = 0.035) (Fig. S1). For the gravel pit, we determined 
that the soil properties had no significant association 
with the bacterial OTUs (Fig. S1).

Bacterial community structure

Considering taxa with a RA of ≥4%, members of 
the phylum Proteobacteria (65%) were the most 

abundant at the gravel pit, followed by the Act‑
inobacteriota (13%), Acidobacteriota (7%), Bac‑
teroidota (4%) and unclassified bacteria (4%) 
(Fig.  S2). Similar to the gravel pit, Proteobacte‑
ria (60%) were the most abundant at the undis-
turbed forest site, but the proportion of Acido‑
bacteriota (17%) was considerably higher in 
comparison to the gravel pit, followed by Act‑
inobacteriota (8%), Verrucomicrobiota (5%) and 
unclassified bacteria (5%) (Fig.  S2). Niche-wise 
comparison (rhizosphere, root, stem and nee-
dle) revealed that the proportion of Proteobac‑
teria was higher in the aboveground lodgepole 
pine tissues (66–71%) as compared to the below-
ground rhizosphere and root tissues (49–55%) at 
the undisturbed forest site (Fig.  3a). In contrast, 
Proteobacteria were more abundant in the stem 
(64%) and root (66%) tissues of pine trees at the 
gravel site (Fig. 3a). Actinobacteriota were more 
abundant in the lodgepole pine rhizosphere (22%) 
at the gravel pit compared to the undisturbed for-
est (10%) whereas the proportion of Acidobacte‑
riota was considerably higher in all niches at the 
undisturbed forest site in contrast to the gravel 
pit (Fig.  3a). Alphaproteobacteria were the most 
abundant class in all niches at both sites, domi-
nated by the orders Rhizobiales and Acetobacte‑
rales (Fig. 3a and b). The Acetobacteraceae (ace-
tic acid bacteria) was the most common bacterial 
family at the gravel pit, followed by the Beijer‑
inckiaceae and Rhizobiaceae (Figs.  3b and S2) 
while at the undisturbed forest site, the Acetobac‑
teraceae, Xanthobacteraceae, Beijerinckiaceae 
and Acidobacteriaceae dominated the bacterial 
taxa (Figs. 3b and S2).
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Niche‑wise comparison of Proteobacterial families

Given that the Proteobacteria was the most abundant 
phylum at both sites, we analyzed how different Pro-
teobacterial families were distributed among differ-
ent tree niches. Members of the Xanthobacteraceae 
heavily dominated pine roots and rhizosphere at the 
undisturbed forest site, whereas Proteobacterial fami-
lies at the gravel pit were more evenly distributed, 
led by Rhizobiaceae, Xanthobacteraceae and Coma‑
monadaceae (Fig.  4). Despite the substantial differ-
ence in belowground community composition at both 
sites, the aboveground needle and stem niches pre-
dominantly comprised of Acetobacteraceae and Bei‑
jerinckiaceae at the gravel pit and forest site (Fig. 4). 
However, the Sphingomonadaceae were more preva-
lent in pine needle and stem tissues at the gravel pit in 
comparison to the forest site (Fig. 4).

OTU distribution across different plant niches

To provide a complete overview of the OTU distri-
bution within the plants, we calculated the propor-
tion of OTUs shared by the different plant niches 
(Fig. 5). The proportion of OTUs shared by all plant 
niches was 16.5% at the gravel pit and 27.2% at the 
undisturbed forest site. Of the total OTUs, 5% were 
exclusively observed in the aboveground endosphere 
niches (needle and stem) at the gravel pit and 6% at 
the undisturbed forest site whereas 25–30% of the 
total OTUs were exclusively found in the below-
ground rhizosphere and root niches at both sites. 
Additionally, we observed a higher overlap in OTUs 
between the rhizosphere and root samples (gravel pit: 
19.8%, undisturbed forest: 15.9%) compared to the 
overlap between any other two niches.

Alpha and beta diversity

Alpha diversity based on the Shannon diversity index 
was comparable at both sites, with no significant dif-
ference between the undisturbed forest site and the 
gravel pit (Table 1). However, niche-wise, the rhizos-
pheric and root bacterial communities of pine trees 
displayed a significantly higher Shannon diversity 
index than the stem and needle communities at both 
sites (P < 0.0001) (Fig.  6). Within the plant endo-
sphere, the Shannon index was significantly higher in 
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the root at both sites (P < 0.0001), whereas the stem 
bacterial community at the forest site had the lowest 
average Shannon diversity index (Fig. 6).

Bray–Curtis beta diversity metrics with PCoA 
were used to visualize how the site (gravel pit vs 
undisturbed forest) and plant-niche impacted bac-
terial community composition (Fig.  7). The PCoA 
showed significant variability among different plant 
niches (P < 0.0001) as they formed distinct clusters 
away from each other along the axis (Fig. 7, Table 2). 
The site also had a significant effect on the cluster-
ing pattern (P < 0.0001), most noticeably in the roots 
and rhizosphere dataset (Fig. 7, Table 2). In addition, 
there was a significant site x niche interaction, where 
bacterial communities responded to the site as well as 
niche-type (Table 2).

Most abundant taxa

The RA of the 50 most abundant OTUs across all 
the samples showed that the most abundant OTUs, 
in general, tended to be dominant in either above-
ground or belowground niches but not both (Fig. 8). 
Among the most abundant taxa, OTUs belonging 
to Beijerinckiaceae (6), Acetobacteraceae (5) and 

Rhizobiaceae (3) were predominant. OTU_3 of the 
Beijerinckiaceae family dominated multiple stem 
samples at the forest site with an RA of 30–40%. 
While OTU_2 (Bradyrhizobium) was prevalent in the 
forest root and rhizosphere samples (20% RA). Three 
OTUs of the Acetobacteraceae family dominated the 
needle and stem samples from both sites. In particu-
lar, the RA of OTU_4 (48%) was highest in the pine 
stem tissues from the gravel pit. Three OTUs of the 
genus Methylobacterium (Beijerinckiaceae family) 
dominated needle tissues at the gravel pit with an RA 
of up to 25%. Conversely, the belowground niches at 
the gravel pit were dominated by the Rhizobiaceae 
group, including Rhizobium and Mesorhizobium (up 
to 15% RA).

Differentially abundant taxa

Using DESeq2 analysis, we found 69 OTUs that 
were significantly differentially abundant between 
the gravel pit and the undisturbed forest site 
(adjusted p value <0.001) with an absolute log2 
fold change >3 (Fig.  9a). Twenty-two of these 
OTUs were differently abundant at the gravel pit, 
of which approximately one-third belonged to the 

Fig. 4  Relative abundance of families of Proteobacteria within 
individual lodgepole pine niches (needle, rhizosphere, root and 
stem) at the gravel pit and forest site. Only families with >4% 

relative abundance in at least one of the tissues are displayed 
on the doughnut charts
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order Rhizobiales, including the genera Rhizobium, 
Bosea, Hyphomicrobium and Nordella (Fig.  9b). 
Whereas 47 OTUs were differently abundant at the 
forest site, dominated by the genera Bryobacter and 
Ca. Udaeobacter as well as the family Acidobacte‑
riaceae (Subgroup 1) (Fig. 9b).

Discussion

Little is known about the interaction of Pinus con‑
torta with their bacterial microbiome in disturbed as 
well as undisturbed ecosystems, as most studies have 
employed culture-dependent methods (Anand et  al. 
2013; Padda et al. 2018). In addition, plant microbi-
ome studies have largely concentrated on model and 
agricultural plants, with little focus on forest trees. In 
an attempt to comprehensively elucidate the rhizos-
pheric and endophytic bacterial communities asso-
ciated with lodgepole pine, we sampled young pine 
trees from a disturbed (Skulow gravel mining pit) 
and a nearby undisturbed (natural forest stand) site 
in central-interior BC. These sites differed signifi-
cantly in soil characteristics, with the gravel pit hav-
ing extremely low soil nutrient levels (particularly N 
and P), CEC and soil organic matter in comparison to 
the undisturbed forest site (Figs. 1 and 2, Table S1). 
Even for the forest site, the overall soil nutrient status 
was relatively low compared with other regions of the 
BC interior, likely due to the dry, cold climatic con-
ditions and limited weathering (Driscoll et  al. 1999; 
Sanborn et  al. 2005, Kranabetter et  al. 2006, Hope 
2007). While significant differences in soil  NH4

+ lev-
els were observed between gravel pit and forest site, 
the similar soil  NO3

− levels observed at both sites 
suggests the abundance of nitrifying and denitrifying 
communities in the gravel pit soil, which remains to 
be examined.

Interestingly, the tissue N content of lodgepole 
pine trees at the gravel pit was unaffected by the dra-
matic differences in total N, available  NH4

+ and min-
eralizable N levels in gravel pit soils compared to 
the undisturbed forest soils. Other than these differ-
ences, there were no major environmental differences 
between the two sites in terms of N inputs and no 
N-fixing plant species were observed near the sam-
pled trees. These findings are consistent with Krana-
better et  al. (2006), Puri et  al. (2018) and Chapman 
and Paul (2012), indicating that lodgepole pine tree 
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Fig. 5  Venn diagram showing the distribution of OTUs across 
different lodgepole pine niches (needle, rhizosphere, root and 
stem) at the gravel pit and forest site. The diagram was created 
using VENNY 2.1 (https:// bioin fogp. cnb. csic. es/ tools/ venny/ 
index. html)

Table 1  Results of ANOVA for the effects of site (gravel pit 
and forest), niche (needle, stem, root and rhizosphere) and their 
interaction on Shannon diversity index

Significant (P < 0.001) differences are in bold

Treatments df F value P value

Site 1 1.179 0.287
Niche 3 40.615 0.000
Site: Niche 3 2.284 0.102
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growth is often unaffected by large differences in soil 
N levels. The combination of bare gravel substrate, 
lack of topsoil and low plant-available nutrients, 
make the Skulow gravel pit an extremely nutrient-
poor environment, yet pioneering pines in the gravel 
pit have growth rates typical for the area. This sug-
gests that pine trees could be relying on their microbi-
ome to sustain their growth in an otherwise uninhab-
itable environment for conifers.

Fig. 6  Shannon index 
showing alpha diversity 
of bacterial communities 
in different lodgepole pine 
niches (needle, rhizosphere, 
root and stem) at the gravel 
pit and forest site. Signifi-
cant differences in Shannon 
index among various pine 
niches are indicated by dif-
ferent letters (P < 0.0001)

Fig. 7  Bray-Curtis beta 
diversity of bacterial com-
munities in different lodge-
pole pine niches (needle, 
rhizosphere, root and stem) 
at the gravel pit and forest 
site plotted using Principal-
coordinate analysis (PCoA). 
Dash-dot lines represent the 
clustering of points for each 
niche of each site on the 
PCoA plot

Table 2  Effect of site (gravel pit and forest), niche (needle, 
stem, root and rhizosphere) and their interaction on bacterial 
beta-diversity assessed by PERMANOVA

Significant (P < 0.001) effects are in bold

Treatments df R2 P value

Site 1 0.1421 0.0001
Niche 3 0.3229 0.0001
Site: Niche 3 0.1290 0.0001
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In this study, we determined the bacterial com-
munity structure of naturally regenerating pine trees 
post-disturbance in comparison to pines growing at 
the nearby undisturbed forest stand. By 16S rRNA 
sequencing, the composition and alpha and beta 
diversity indices of rhizosphere- and endosphere-
associated microbiomes were characterized. All 

samples strongly clustered according to the site 
(gravel pit vs. undisturbed forest) and niche (rhizo-
sphere, root, needle, stem) as evidenced from the 
Bray-Curtis beta diversity metrics (Fig. 7, Table 2). 
One possible explanation for these dissimilarities 
is that the site characteristics including the physi-
cal and chemical properties of soil influenced the 

Fig. 8  Heatmap showing the 50 most abundant OTUs in the 
entire bacterial community data set of gravel pit and forest site. 
Colour tones ranging from dark to light blue indicate lowest 
to highest relative abundance values. Rows and columns were 

unsupervised clustered based on the distance matrix converted 
from Spearman’s correlation matrix. A dendrogram for col-
umns was rendered to group individual samples based on their 
bacterial microbiome profile

Plant Soil (2022) 474:213–232 223



1 3
Vol:. (1234567890)

adjusted p < 0.001
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adjusted p > 0.001
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Fig. 9  a Differentially abundant OTUs between the gravel pit 
and forest site represented as a volcano plot between absolute 
log2 fold change and adjusted p values determined through 
DESeq2 analyses. Bigger size dots represent significantly dif-

ferentially abundant OTUs (adjusted p value <0.001). b Hori-
zontal bar plot representing the 69 significantly differentially 
abundant OTUs between the gravel pit and forest site with 
adjusted p value <0.001 and absolute log2 fold change >3
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differentiation of bacterial communities between 
both sites (Ullah et al. 2019; Firrincieli et al. 2020). 
Alternatively, host-dependent selection of certain 
communities as a result of adaptation mechanisms 
toward specific environmental constraints could be 
a major driver of variation (Laforest-Lapointe et al. 
2016; Firrincieli et al. 2020). The site and niche dif-
ferentiation in the tree bacterial microbiome have 
been previously observed in several poplar tree spe-
cies including Populus trichocarpa, P. deltoides and 
P. tremula x P. alba, originating from sites with var-
ying edaphic conditions (Gottel et al. 2011, Beckers 
et al. 2017, Firrincieli et al. 2020).

Our results indicate that the alpha diversity 
(Shannon index) of lodgepole pine bacterial com-
munities inhabiting the aboveground tree tissues is 
lower in contrast to the belowground communities 
regardless of the origin site (Fig.  6). Rhizodepo-
sition by the host plant including root exudation 
drives soil-plant-microbe interactions and enhances 
rhizosphere colonization, resulting in the struc-
turing of a diverse microbiome in the rhizosphere 
(Bais et  al. 2006; Beckers et  al. 2017). A decrease 
in alpha diversity in the aboveground plant parts is 
in line with previous studies (Zarraonaindia et  al. 
2015; Deyett and Rolshausen 2020), suggesting that 
the rhizosphere-root interface acts as a bottleneck to 
the bacterial richness, and that the ability to colo-
nize aerial plant tissues is limited to specific bacte-
ria. Systemic colonization of lodgepole pine by cer-
tain bacteria as indicated by the proportion of OTUs 
shared within all plant niches (gravel pit: 16.5%, 
undisturbed forest: 27.2%, Fig.  5) also highlights 
that many bacterial endophytes likely originate in 
the rhizosphere, penetrate plant root cells, and reach 
the xylem vessels to colonize internal tissues of the 
host plant (Compant et al. 2005, 2010).

The proportion of OTUs uniquely identified in 
the aboveground niches (5–6%) (Fig.  5) indicates 
that, while most endophytic bacteria likely originate 
from the rhizosphere soil (Compant et  al. 2010), 
some may gain entry to the tree via vertical trans-
mission from seeds (Frank et al. 2017) or horizontal 
transmission routes including wounds (Munkvold 
and Marois 1995) or natural openings such as sto-
mata (Fahlgren et  al. 2010; Compant et  al. 2011). 
In addition, each plant niche offers distinct micro-
environments (Bulgarelli et al. 2013; Beckers et al. 
2017) which may explain why certain proportions 

of OTUs are confined to specific niches only 
(Fig. 5).

At the phylum level, Proteobacteria (mainly Alp‑
haproteobacteria) dominated the bacterial assem-
blages at both the gravel pit and undisturbed forest 
site (Figs. 3a and S2) possibly due to their ability to 
respond to labile C sources, rapid growth, and adap-
tation to diverse plant niches (Lagos et  al. 2015). 
After Proteobacteria, to a lesser extent, the Actino‑
bacteria and Acidobacteria were predominant at the 
gravel pit and forest site, respectively (Figs. 3a and 
S2). The dominance of Acidobacteria at the forest 
site could be due to their high metabolic versatil-
ity that allows them to decompose complex C sub-
strates present in the forest ecosystem (Rasche et al. 
2011; Naether et  al. 2012). In addition, Acidobac‑
teria have also been linked to dissimilatory nitrate 
reduction to ammonium, mobilization of ammo-
nium in soils and N-fixation processes, which may 
explain the higher  NH4

+ content in undisturbed for-
est soils (Kielak et  al. 2016; Eichorst et  al. 2018; 
Kalam et  al. 2020). Interestingly, the RA of Pro‑
teobacteria increased from the rhizosphere soil to 
endosphere niches and the RA of Actinobacteria 
and Acidobacteria decreased from the rhizosphere 
to endosphere (Fig.  3a), a trend which has also 
been observed in microbiomes of grapevine, pop-
lar and rice (Gottel et al. 2011, Beckers et al. 2017, 
Deyett and Rolshausen 2020). In terms of unique 
phyla between both sites, Chloroflexi and Firmi‑
cutes were primarily detected in the rhizosphere and 
Cyanobacteria in the needle tissues of pine trees 
at the gravel pit (Fig.  3a). Species within Chloro‑
flexi and Firmicutes phyla have been associated 
with stress tolerance such as low nutrient concen-
trations and limited labile carbon (Uroz et al. 2016; 
Fierer 2017), much like the conditions at the gravel 
pit. In addition, genera of phyla Firmicutes have 
been closely linked to N cycling processes includ-
ing N-fixation, nitrification, and denitrification 
(Feng et al. 2015; Srivastava et al. 2016; Puri et al. 
2017b). Furthermore, Chloroflexi was also associ-
ated with nitrification activity in a previous study 
(Sorokin et al. 2012). Cyanobacteria are known for 
their photosynthetic and N-fixing capacity and have 
been previously observed in aboveground tissues of 
various plant species including wheat (Gantar et al. 
1995), potato (Ringelberg et al. 2012), Jingbai pear 
(Ren et  al. 2019a), and Norway spruce (Ren et  al. 
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2019b) as well as several vascular plant species in a 
Costa Rican rainforest (Fürnkranz et al. 2008).

Though the association of plant-beneficial endo-
phytic bacteria with lodgepole pine has been exten-
sively studied using culture-dependent methods 
(Anand et  al. 2013; Puri et  al. 2017a, 2020a, b), no 
study so far has examined the complete bacterial 
microbiome of pine using high throughput sequenc-
ing. In the past, studies have only focused on analyz-
ing the microbiome of a particular niche of lodgepole 
pine. For example, two decades ago, Chow et  al. 
(2002) evaluated the rhizosphere bacterial com-
munities of lodgepole pine at three Long-term Soil 
Productivity (LTSP) sites in central BC (one site 
within 1 km distance of our study sites) with varying 
levels of disturbance including surface organic mat-
ter removal and soil compaction. Post-disturbance, 
Alphaproteobacteria and Actinobacteria dominated 
the pine rhizosphere communities at the LTSP sites 
(Chow et al. 2002). These results correspond with our 
observations of pine trees at the gravel pit, suggesting 
a possible pattern in the assembly of pine rhizosphere 
bacterial community after disturbance events. In addi-
tion to this, Carrell et al. (2016) evaluated the needle 
bacterial communities of lodgepole pine in nutrient-
limited subalpine ecosystems of Colorado and Cali-
fornia, USA and identified Alphaproteobacteria (par-
ticularly, Acetobacteraceae) as the most dominant 
taxa followed by Bacteroidetes.

The composition and proportion of root and rhizo-
sphere bacterial microbiota varied substantially 
between the gravel pit and undisturbed forest site, 
where Proteobacterial families (mainly Rhizobiaceae, 
Comamonadaceae, Xanthobacteraceae) evenly 
enriched the belowground communities at the gravel 
pit while Xanthobacteraceae alone was more predom-
inant at the forest site (Figs. 3b and 4). Members of 
the family Rhizobiaceae and Comamonadaceae have 
been reported to typically associate with pioneer-
ing plants in oligotrophic environments of disturbed 
areas, such as the post-mining initial-development 
reclamation sites in Germany (Vuko et al. 2020), the 
oil sands reclamation sites in northern Alberta, Can-
ada (Mitter et al. 2017) and the LTSP sites in central 
BC (Chow et al. 2002). These results suggest that in 
nutrient-poor post-disturbance settings, plants likely 
associate with these well-known beneficial microor-
ganisms for their survival and growth. Furthermore, 
in the belowground root and rhizosphere niches at 

the gravel pit, two OTUs from the Comamonadaceae 
group and three OTUs from the Rhizobiaceae group 
(including notable N-fixers Rhizobium and Mes‑
orhizobium) were among the most abundant OTUs 
with RA of approx. 15% (Fig. 8). Members of Xan‑
thobacteraceae have been found to associate with the 
rhizosphere and roots of rice (Chang et al. 2021) and 
tea plantations (Chen et  al. 2021). In addition, bac-
teria within the families Rhizobiaceae, Comamona‑
daceae, and Xanthobacteraceae have been closely 
linked to N cycling processes including N-fixation, 
nitrification, and denitrification in the past stud-
ies (Chen and Ni 2011; Gomez-Alvarez et  al. 2014; 
Jang et al. 2020), which might help explain the soil N 
dynamics of the gravel pit.

The aboveground (stem and needle) community 
varied substantially from the belowground (root and 
rhizosphere) community, implying some degree of 
microbial selection or adaptation to plant niches. The 
composition of the stem and needle microbiome of 
lodgepole pine was very similar across the gravel pit 
and undisturbed forest site (Figs. 3b and 4), in addi-
tion to being comparable to the endo-microbiome of 
other Pinaceae species in nutrient-limited environ-
ments (Carrell and Frank 2014; Carrell et  al. 2016; 
Moyes et al. 2016; Carper et al. 2018). Two Proteo-
bacterial families, Acetobacteraceae and Beijerincki‑
aceae, dominated needle and stem niches at both 
sites, with five OTUs of the Acetobacteraceae and 
six OTUs of the Beijerinckiaceae among the 50 most 
abundant OTUs in our dataset (Fig.  8). The large 
overlap in key community members of aboveground 
endophytic bacterial assemblages across both sites 
demonstrates that: (i) efficient endophytic coloniza-
tion of specific plant niches is potentially reserved 
for a minority of bacterial taxa, and/or (ii) dominant 
stem and needle bacterial communities of lodgepole 
pine are likely seed-borne instead of soil- or air-borne 
because it is likely that the seed source for gravel pit 
trees is the nearby undisturbed forest site (Carrell 
et al. 2016; Beckers et al. 2017).

The consistent dominance and coexistence of dis-
tinct Acetobacteraceae OTUs have been previously 
reported in foliage endophytic communities of Engel-
mann spruce (Picea engelmannii) and limber pine 
(Carrell and Frank 2014; Carper et al. 2018), suggest-
ing a possible selection and mutualism between mem-
bers of the Pinaceae family and Acetobacteraceae 
endophytes. One phylotype (OTU_4) with 48% RA 
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in lodgepole pine stem tissues at the gravel pit shared 
100% similarity with one of the most abundant OTUs 
of limber pine (Carper et  al. 2018) and lodgepole 
pine in the western US (Carrell et  al. 2016). Taken 
together, these results suggest that acetic acid bacteria 
are likely core members of the endophytic microbi-
ome across diverse Pinus host species and locations. 
Furthermore, Moyes et al. (2016) proposed that foliar 
endophytic bacteria, particularly members of the Ace‑
tobacteraceae may be involved in fixing N endophyti-
cally based on the 13N radioisotope enrichment and 
acetylene reduction assays performed on limber pine 
twig samples. Endophytic and rhizospheric members 
of this acetic acid bacterial family, including Glucon‑
acetobacter, Acetobacter, Asaia and Swaminathania, 
are known to fix N in association with sugarcane 
(Saccharum officinarum), rice (Oryza sativa), sweet 
potato (Ipomoea batatas), Kombucha tea (Medu‑
somyces gisevii) and coffee (Coffea arabica) (Bod-
dey et al. 1991, 2001; Pedraza 2008; Saravanan et al. 
2008; Komagata et al. 2014; Reis and Teixeira 2015). 
However, it is important to note that the link between 
these acetic acid bacteria and N fixation needs to be 
further explored using more robust methods such as 
shotgun metagenome sequencing before firm con-
clusions can be drawn. Besides Acetobacteraceae, 
Beijerinckiaceae also dominated aboveground pine 
niches at both sites, similar to what was observed in 
limber pine and Engelmann spruce foliage in nutri-
ent-poor subalpine environments (Carrell and Frank 
2014; Marín and Arahal 2014). Previous studies have 
reported that members of the Beijerinckiaceae fam-
ily associate with conifers such as Lepidothamnus 
fonkii inhabiting N-deficient ombrotrophic peatlands 
(Borken et  al. 2016) and Corsica pine (Pinus nigra) 
originating from the sandy soils of Culbin forest in 
Scotland (Izumi et al. 2006).

Previously, we characterized the culturable endo-
phytic bacteria associated with lodgepole pine trees 
at the Skulow gravel pit which exhibited significant 
potential to stimulate host-tree growth through sev-
eral mechanisms including N-fixation, phosphate 
solubilization, phytohormone modulation and sidero-
phore production (Padda et al. 2018, 2019, 2021). In 
a year-long greenhouse study, these culturable endo-
phytes of genera Pseudomonas, Rhizobium and Fla‑
vobacterium fixed significant amounts of N in planta 
(up to 53%), estimated using a 15N isotope dilution 
assay (Padda et  al. 2019). However, the culturable 

bacteria represent a very small proportion of the tree 
bacterial microbiome and likely don’t elucidate all 
the functions of the entire bacterial community. Nev-
ertheless, the dominant bacterial taxa observed in all 
pine niches in the current study, particularly phylo-
types of the Rhizobiaceae, Acetobacteraceae, Xan‑
thobacteraceae and Beijerinckiaceae, also imply that 
lodgepole pine trees could be associating with benefi-
cial bacteria at the disturbed gravel pit. Furthermore, 
the prevalence of Rhizobiales bacteria (well-known 
beneficial partners in plant-microbe interactions) as 
the differentially abundant taxa at the gravel pit in 
comparison to the undisturbed forest site (Fig.  9), 
demonstrates the potential dependence of lodgepole 
pine on its bacterial microbiome for survival and 
growth under nutrient-poor conditions. Nonetheless, 
it is important to study the N cycling genes in soil and 
plant environments to help explain how these conifers 
can grow in severely N-limited gravel substrate and 
from where pine trees are accumulating the unknown 
N in their tissues. Furthermore, the lack of avail-
able  NH4

+ in gravel pit soils but identical available 
 NO3

− levels in gravel pit soils and undisturbed forest 
soils, also raises the likeliness of nitrification occur-
ring at the gravel pit which should be investigated 
further.

Notwithstanding the potentially important role 
prokaryotes play in pine growth at nutrient poor sites, 
the influence of the fungal microbiome, especially 
root-associated mycorrhizal fungi, in supporting the 
growth of gravel pit pine trees cannot be ignored. 
Isolates of the genera Rhizopogon, Suillus, Laccaria, 
Hebeloma, and Scleroderma have been reported to 
enhance the growth of Pinus trees through nutrient 
scavenging in soils and plant growth hormone modu-
lation (MacFall and Slack 1991; Scagel and Linder-
man 1998; Ortega et al. 2004). Therefore, we are cur-
rently evaluating the composition and possible roles 
of the fungal microbiome of lodgepole pine trees at 
the Skulow gravel pit to explore the importance of 
fungal communities in sustaining pine growth at dis-
turbed environmental sites.

In summary, this study provides the first com-
prehensive analysis of the bacterial microbiome of 
lodgepole pine trees under varying soil conditions. 
The profile of rhizosphere and endosphere microbiota 
highlight diverse bacterial communities with poten-
tial plant growth-promoting capabilities. The current 
study helps improve our understanding of the native 
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tree microbiome in boreal ecosystems and the natu-
ral revegetation strategies of long-lived conifers on 
disturbed sites. It is recommended that future stud-
ies should focus on using shotgun metagenomics and 
metaproteomics to move from the descriptive phase 
of studying the tree microbiome and assign functions 
to the members of the community.
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