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Abstract
Purpose The mechanical contribution of plant roots
to the soil shear strength is commonly modelled using
fibre bundle models (FBM), accounting for sequen-
tial breakage of roots. This study provides a generic
framework, able to includes the many different exist-
ing approaches, to quantify the effect of various model
assumptions.
Methods The framework uses (1) a single model
parameter determining how load is shared between
all roots, (2) a continuous power-law distribution of
root area ratio over a range of root diameters, and (3)
power-law relationships between root diameters and
biomechanical properties. A new load sharing param-
eter, closely resembling how roots mobilise strength
under landslide conditions, is proposed. Exact analyt-
ical solutions were found for the peak root reinforce-
ment, thus eliminating the current need for iterative
algorithms. Model assumptions and results were val-
idated against existing biomechanical and root rein-
forcement data.
Results Root reinforcements proved very sensitive to
the user-defined load sharing parameter. It is shown
that the current method of discretising all roots in
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discrete diameter classes prior to reinforcement cal-
culations leads to significant overestimations of rein-
forcement. Addition of a probabilistic distribution of
root failure by means of Weibull survival functions,
thus adding a second source of sequential mobilisation,
further reduced predicted reinforcements, but only
when the reduction due to load sharing was limited.
Conclusion The presented solutions greatly simplify
root reinforcement calculations while maintaining
analytical exactness as well as clarity in the assump-
tions made. The proposed standardisation of fibre
bundle-type models will greatly aid comparison and
exchange of data.

Keywords Root reinforcement · Root cohesion ·
Fibre bundle model · Root diameter distributions ·
Root Bundle Model · Slope stability

Nomenclature

βε : Root diameter–root tensile strain to
peak power coefficient [-]c

βφ : Root diameter–root area ratio power
coefficient [-]

βE : Root diameter–root stiffness power
coefficient [-]

βF : Fibre bundle model load sharing
parameter [-]

βt : Root diameter–root tensile strength
power coefficient [-]
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εr : Root tensile strain [mm/mm]
εr,0: Root tensile strain in root with diameter

dr = dr,0 [mm/mm]
εr,0,max : Root tensile strain in root with diameter

dr = dr,0 at the point of peak tensile
strength in a root with diameter dr =
dr,max [mm/mm]

εr,0,min: Root tensile strain in root with diameter
dr = dr,0 at the point of peak tensile
strength in a root with diameter dr =
dr,min [mm/mm]

εr,u: Root tensile strain at peak tensile
strength [mm/mm]

εr,u,0: Tensile strain at peak tensile strength in
root with diameter dr = dr,0 [mm/mm]

ζ1: dimensionless parameter group used in
FBMc and FBMcw [-]

ζ2: dimensionless parameter group used in
FBMc and FBMcw [-]

κ: Shape parameter in Weibull root sur-
vival function used in the RBMw and
FBMcw models

κt : Shape parameter in Weibull distribution
for normalised root tensile strength [-]

κε : Shape parameter in Weibull distribu-
tion for normalised root tensile strain to
peak [-]

λ: Scale parameter in Weibull root survi-
val function used in the RBMw model

φr : root area ratio for roots with a specific
diameter [mm2/mm2]

φr,0: root area ratio for roots with diameter
dr = dr,0 [mm2/mm2]

φr,t : total root area ratio [mm2/mm2]
cr : root reinforcement at current level of

strain
cr,FBMc: root reinforcement at the current level

of strain, according to the fibre bundle
model using a continuous root diameter
distribution [MPa]

cr,FBMcw: root reinforcement at the current level
of strain, according to the fibre bundle
model using a continuous root diam-
eter distribution and Weibull survival
functions [MPa]

cr,u: peak root reinforcement [MPa]
cr,u,WWM : peak root reinforcement according to

the Wu/Waldron model using discrete
root diameter classes [MPa]

cr,u,WWMc: peak root reinforcement according to
the Wu/Waldron model using a contin-
uous root diameter distribution [MPa]

cr,u,FBM : peak root reinforcement according to
the fibre bundle model using discrete
root diameter classes [MPa]

cr,u,FBMc: peak root reinforcement according to
the fibre bundle model using a continu-
ous root diameter distribution [MPa]

cr,u,FBMcw: peak root reinforcement according to
the fibre bundle model using a con-
tinuous root diameter distribution and
Weibull survival functions [MPa]

cr,u,FBMw: peak root reinforcement according to
the fibre bundle model using discrete
root diameter classes and Weibull sur-
vival functions [MPa]

dr : root diameter [mm]
dr,0: reference root diameter [mm]
dr,min: smallest root diameter present in a bun-

dle of roots [mm]
dr,max : largest root diameter present in a bun-

dle of roots [mm]
Er : root Young’s modulus [MPa]
Er,0: Young’s modulus of root with diameter

dr = dr,0 [MPa]
h: soil shear zone thickness
k′: Wu/Waldron root reinforcement coeffi-

cient [-]
k′′: Reduction coefficient for peak root

reinforcement due to sequential break-
age [-]

tr : root tensile stress [MPa]
tr,u: root tensile strength [MPa]
tr,u,0: root tensile strength of root with diam-

eter dr = dr,0 [MPa]
ur : axial root displacement [mm]
ur,u: axial root displacement at root tensile

failure [mm]
us : soil shear displacement [mm]

Introduction

Plant roots reinforce shallow soil layers against mass
movements through both extracting moisture and by
mobilising their mechanical strength. The latter effect
is however difficult to predict and many models have
since been developed.
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A simple and therefore commonly used root rein-
forcement model was developed by Waldron (1977)
and Wu et al. (1979) (since called the ‘Wu/Waldron
model’, or ‘WWM’), who proposed the peak root rein-
forcement is linearly correlated to the sum of root
tensile resistances:

cr,u,WWM = k′∑

i

φr,i tr,u,i (1)

where tr,u,i is the tensile strength of root i (subscript
‘r’ for ‘root’ and ‘u’ for ‘ultimate’, i.e. at root peak
strength), φr,i the root area ratio of root i (i.e. the frac-
tion of the soil cross-section occupied by this root) and
k′ an multiplication factor accounting the effect of root
orientation at root failure, often assumed as k′ = 1.2
(Wu et al. 1979).

Experiments by many authors have shown that this
model tends to overestimate reinforcements due to the
underlying assumption that all roots break simulta-
neously (e.g. Operstein and Frydman 2000, Loades
et al. 2010, Liang et al. 2017). More realistically,
roots will mobilise their strength sequentially instead
(some break before others), resulting in a reduction
in reinforcement. Sequential root mobilisation may be
affected by:

1. Variation in root diameters and associated differ-
ences in biomechanical properties (such as tensile
strength and stiffness, e.g Loades et al. (2013) and
Boldrin et al. (2017), among many others). This
variation is related to differences in root topology
and anatomy (Loades et al. 2013; Mao et al. 2018)
and is henceforth referred to as ‘inter-diameter
variation’ in root properties;

2. Variation in root biomechanical properties and
topology between roots with the same diameter
(no single root is the same) (Schwarz et al. 2013;
Mao et al. 2018). This variation is henceforth
called ‘intra-diameter variation’;

3. Variation in root architecture, e.g. root orienta-
tions (Thomas and Pollen-Bankhead 2010) or root
branching (Mao et al. 2018; Meijer et al. 2019b);

4. Variation in root anchorage (Waldron 1977;
Pollen 2007). Some roots may slip more easily
than others, and some may never reach tensile
failure if anchorage is insufficient.

Fibre bundle models (FBM), developed by Daniels
(1945) and introduced to root reinforcement research
by Pollen and Simon (2005), are widely used to

incorporate inter-diameter effects. The reduction in
peak reinforcement due to sequential mobilisation can
be captured by adding an additional reduction factor
k′′ (e.g. Bischetti et al. 2009, Thomas and Pollen-
Bankhead 2010, Preti 2013):

cr,u,FBM = k′′cr,u,WWM (2)

where cr,u,FBM is the peak root reinforcement pre-
dicted by the fibre bundle model. Such models require
a mechanism for how the total load is shared between
all roots. Many mechanisms have been proposed (e.g.
Pollen and Simon Pollen and Simon, Schwarz et al.
2010, Ji et al. 2020), which are discussed in more
detail in this paper. It is however not clear what
which mechanism most closely resembles the actual
mobilisation behaviour of a bundle roots. Commonly
conducted experiments such as shear box tests only
provide information about the bulk behaviour of the
rooted soil and not about the behaviour of individual
roots within this soil. More advances models such as
the RBMw model by Schwarz et al. (2013) in addi-
tion include intra-diameter variation by considering a
probability of failure for each root depending on the
current level of root displacement.

WWM and FBM-type models require that the
diameter of each root or the diameter class it belongs
to is known, both for calculation of the root area ratio
and biomechanical properties. Measuring all diame-
ters, either by trench wall (e.g. Moos et al. 2016)
or (core) sampling methods (e.g. Genet et al. 2008)
is however time-consuming. Commonly, root diame-
ters are grouped into a finite number of root diameter
classes (e.g. Genet et al. 2008, Ji et al. 2020). All
roots within each class must be assigned a diame-
ter (this may be the average diameter in the class, or
may follow some other rule, see for example Thomas
and Pollen-Bankhead 2010, Ji et al. 2020). All roots
with the same assigned diameter are assigned the same
root properties and will therefore break simultane-
ously. It is here hypothesised that this will result in an
overestimation of root reinforcement, analogous to the
WWM predicting larger reinforcements compared to
the FBM.

Given the large number of roots involved in slope
stability mechanisms, the distribution of roots diame-
ter is likely to approximate a continuous distribution.
Few studies have attempted to use continuous rather
than discrete distributions of root diameters. Notably,
Cohen et al. (2011) successfully used uniform,

Plant Soil (2021) 468:45–65 47



log-normal and Weibull distributions for modelling
of root pullout tests. This study was limited to one
species (Norway spruce) and 29 individual roots.
There is therefore scope for a more thorough investi-
gating of the use of continuous diameter distributions,
covering a wider range of species and larger root
samples, as well as integrating this approach into
calculation models for root reinforcement of soil.

This study aimed to increase our understanding of
the mechanical interaction between roots and soil and
the accuracy of root reinforcement predictions. The
specific objective were to:

1. Standardise existing fibre bundle-type models into
a generic and coherent framework, incorporating
both inter- and intra-diameter variation. This will
facilitate easy comparison between models and
reveal the merits and drawbacks of each model;

2. Incorporate continuous distributions of root diam-
eters, rather than counts of individual roots with
discrete diameters, to simplify both experimental
and computational procedures.

This generic fibre bundle model framework was
used to:

1. Study the effect of various load-sharing mech-
anisms and the relative contribution of inter-
diameter and intra-diameter variation on soil rein-
forcement by plant roots;

2. Investigate the magnitude of the errors intro-
duced by using a limited number of root diameter
classes.

Existing experimental data for root biomechanical
properties, root diameter distributions and measured
root reinforcements was used to demonstrate the pro-
posed approach.

Materials and methods

Fitting root biomechanical properties

The root tensile strength tr,u was assumed to vary as
function of root diameter dr following the commonly-
used power-law (e.g. Mao et al. 2012 among many
others):

tr,u = tr,u,0

(
dr

dr,0

)βt

(3)

where tr,u,0 is the tensile strength of a root with
a diameter equal to reference diameter dr,0, and βt

a dimensionless power-law coefficient. A reference
diameter, usually set to dr,0 = 1 mm and therefore
often omitted in the literature, is required to make the
system of units used fully consistent. dr,0 = 1 mm is
assumed throughout the remainder of this manuscript.

The tensile strain εr,u required to reach root peak
tensile strength may also follow a power law:

εr,u = εr,u,0

(
dr

dr,0

)βε

(4)

where εr,u,0 is the tensile strain to peak of a root with
a diameter equal to reference diameter dr,0, and βε a
dimensionless power-law coefficient.

Assuming the roots behave linear elastic until fail-
ure, it follows that the root stiffness Er also follows
a power-law relation (as for example used by Loades
et al. (2013) or Boldrin et al. (2017)), since:

Er = tr,u

εr,u

= Er,0

(
dr

dr,0

)βE

(5)

where:

Er,0 = tr,u,0

εr,u,0
βE = βt − βε (6)

All power-law curves were fitted using the non-linear
weighted squares method.

Root biomechanical properties vary widely, even
between roots with similar diameters. This variation
was captured using a Weibull distribution, charac-
terised by a shape parameter κ and scale parameter λ.
Assuming that the mean of the distribution is equal to
tr,u or εr,u, it follows that the scale parameters for the
distribution of tensile strength (λt ) and strain to peak
(λε) satisfy:

λt = tr,u

Γ
(
1 + 1

κt

) λε = εr,u

Γ
(
1 + 1

κε

) (7)

where Γ () is the gamma-function and κt and κε

the shape parameters for the distribution of tensile
strength and tensile strain to peak, respectively. Essen-
tially, strengths/strains were first normalised by the
best power-law fit and subsequently a Weibull dis-
tribution with a mean of 1 was fitted, using the
log-likelihood method, to obtain the shape of the
distribution.
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Continuous distributions of root area ratio over root
diameters

When quantifying the root area ratio (for example
using trench wall methods or root scanning methods),
root diameters are generally discretised into a finite
number of diameter classes. Thicker roots may still
be counted individually. In typical cases where root
reinforcement may be of importance, for example in
the case of shallow landslides, the number of roots
mobilised may however be very large and the distri-
bution of root diameters may therefore approximate a
continuous distribution over the root diameter range
present.

In this study, it was assumed that all roots fall
within a diameter range defined by a minimum
(dr,min) and a maximum (dr,max) diameter. These lim-
its can be easily established from a representative
sample of roots. It was proposed to model the con-
tinuous distribution of the root area ratio φr (e.g. the
fraction of cross-sectional area occupied by roots)
over this continuous diameter range using a power
law:

φr = φr,0

(
dr

dr,0

)βφ

(8)

where φr,0 is the root area ratio contribution of roots
with a diameter equal to reference diameter dr , and βφ

a dimensionless power coefficient. When βφ = 0, the
root area ratio is equally split over all root diameters.
When βφ > 0, relatively many large roots are present,
and when βφ < 0, thin roots are relatively abundant.

The total root area ratio φr,t should satisfy:

φr,t =
dr,max∫

x=dr,min

φr dx (9)

And therefore φr,0 can be expressed as:

φr,0 =

⎧
⎪⎪⎨

⎪⎪⎩

φr,t (1+βφ)

dr,0

[(
dr,max

dr,0

)1+βφ −
(

dr,min
dr,0

)1+βφ
] when 1 + βφ �= 0

φr,t

dr,0 ln
(

dr,max
dr,min

) when 1 + βφ = 0

(10)

where ln() is the natural logarithm function.

Load sharing in fibre bundle models

The fibre bundle model is often used to account
for progressive root failure. An important modelling
choice in this model is how to distribute the total ten-
sile load over all unbroken roots. In root reinforcement
literature, the load is typically split according to the
root diameter:

Fi

Fj

=
(

dr,i

dr,j

)βF

(11)

where F is the current tensile force in unbroken roots i

and j , and βF a dimensionless load sharing parameter.

Existing load sharing laws

All previously proposed FBMs are part of the same
‘family’; they can all be described in terms of the value
of βF assumed:

– βF = 0: Load is split equally over all roots,
regardless of root diameter (e.g. Thomas and
Pollen-Bankhead 2010, Mao et al. 2012);

– βF = 1: Load is split proportionally to root diam-
eter (e.g. Pollen and Simon 2005, Thomas and
Pollen-Bankhead 2010, Mao et al. 2012);

– βF = 2: Load is split proportionally to the
root cross-sectional area (resulting in equal tensile
stresses in each root) (e.g. Thomas and Pollen-
Bankhead 2010, Mao et al. 2012);

– βF = 2 + βE − βL (or βF = 2 + βt − βε +
βL): This is the underlying assumption in the Root
Bundle Model (RBMw) by Schwarz et al. (2013),
in which an equal root elongation ur is applied
to each root. In this model, the length Lr of each
root may vary with root diameter dr according to
a power law:

Lr = Lr,0

(
dr

dr,0

)βL

(12)

where Lr,0 is the length of a root with a diame-
ter equal to the reference diameter dr = dr,0, and
βL a dimensionless power coefficient. The tensile
strain (εr ) in each root is subsequently assumed
constant along the entire root: εr = ur/Lr .

The load sharing law can be demonstrated by
looking at load sharing between two arbitrary
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linear elastic roots with diameters dr,i and dr,j and
circular cross-sectional areas Ar,i and Ar,j :

Fi

Fj

= Ar,iEr,iεr,i

Ar,jEr,j εr,j

(13)

=

(
πd2r,i
4

)
Er,0

(
dr,i

dr,0

)βE
(

ur

Lr,0

) (
dr,i

dr,0

)−βL

(
πd2r,j
4

)
Er,0

(
dr,j

dr,0

)βE
(

ur

Lr,0

) (
dr,j

dr,0

)−βL
(14)

=
(

dr,i

dr,j

)2+βE−βL

(15)

– βF = {2, 2.5 or 3} + 0.5βE (or βF =
{2, 2.5 or 3} + 0.5βt − 0.5βε): This is underlying
assumption in the energy-based models (FBM-
W) proposed by Ji et al. (2020), in the case of
linear elastic roots. In these models, the tensile
force is distributed according to the mechanical
work (energy) per unit cross-sectional area of root
(Wr ) required to elongate a root with initial length
Lgauge by a distance ur in a uniaxial tension test:

Wr = 1

Ar

∫ ur

x=0
F(x)dx (16)

where F(x) is the root tensile force given root
elongation x. For linear elastic roots, Wr can be
rewritten as:

Wr = Fur

2Ar

(17)

where F is the tensile force at elongation ur ,
which for linear elastic roots equals:

F = ArErεr = ArEr

ur

Lgauge

(18)

Combining Eqs. 17 and 18, the current tensile
force F can be written as function of the mechan-
ical work Wr :

F = Ar

√
2ErWr

Lgauge

(19)

Now consider two unbroken linear elastic roots
with diameters dr,i and dr,j . Assuming the gauge

length Lgauge is the same for both roots, the load
sharing equals:

Fi

Fj

=
Ar,i

√
2Er,iWr,i

Lgauge

Ar,j

√
2Er,j Wr,j

Lgauge

(20)

=

(
πd2r,i
4

)
√

2Er,0

(
dr,i
dr,0

)βE
Wr,i

Lgauge

(
πd2r,j
4

)
√

2Er,0

(
dr,j
dr,0

)βE
Wr,j

Lgauge

(21)

=
(

dr,i

dr,j

)2+0.5βE
(

Wr,i

Wr,j

)0.5

(22)

Ji et al. (2020) defined three different energy-
based models. In the FBM-WN, the mechanical
work is distributed evenly over all roots, so:

Wr,i

Wr,j

=
(

dr,i

dr,j

)0

= 1 (23)

Substituting this into Eq. 22 reveals the load
sharing law for the FBM-WN:

Fi

Fj

=
(

dr,i

dr,j

)2+0.5βE+0.5·0
−→ βF = 2 + 0.5βE

(24)

In the FBM-WDia, the mechanical work is dis-
tributed proportionally to the diameter of each
unbroken root, so:

Wr,i

Wr,j

=
(

dr,i

dr,j

)1

−→ βF = 2.5 + 0.5βE (25)

In the FBM-WS, the mechanical work is dis-
tributed proportionally to the root cross-sectional
area, so:

Wr,i

Wr,j

=
(

dr,i

dr,j

)2

−→ βF = 3 + 0.5βE (26)

It should be emphasized that load sharing parame-
ter βF is not limited to any of these values. In fact, βF

may take any value −∞ ≤ βF ≤ ∞. The influence
of βF on the predicted reinforcement will be explored
later.
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New load sharing mechanism based on mobilisation
of root strength in direct shear conditions

The value of load sharing parameter βF should ideally
be based on the actual physics behind the mobilisa-
tion of root stress, rather than being a more arbitrary
model assumption (such as assuming equal stress or
equal strain in each root). A new load sharing rule is
therefore proposed using a load sharing rule based on
Waldron (1977)’s model for the tensile stress tr in a
root loaded in direct shear, accounting for the gradual
mobilisation of root–soil interface friction along the
root axis:

tr =
√
4τiEr

dr

√√
u2s + h2 − h (27)

where τi is the shear resistance along the root–soil
interface, us the direct shear displacement of the soil
and h the shear zone thickness. This expression is also
valid for a tensile crack, in which case h = 0 and us

the width of the crack opening. Since Er is a function
of diameter dr (Eq. 5), Eq. 27 can be rewritten as:

tr = d0.5(βE−1)
r

√
4τiEr,0

d
βE

r,0

√√
u2s + h2 − h (28)

After converting from tensile stress to tensile force by
multiplying by the root cross-sectional area, it follows
that the corresponding FBM load sharing factor βF

associated with Waldron’s mobilisation mechanism
equals:

βF = 2 + 0.5 (βE − 1) = 1.5 + 0.5βE (29)

Load sharing and the order of root breakage

There has been some debate about which load sharing
mechanism is most accurate, based on observations
on which root diameters break first (e.g. Schmidt
et al. 2001, Comino et al. 2010, Thomas and Pollen-
Bankhead 2010). This can be further investigated by
looking at the tensile stresses during mobilisation.

The load sharing rule (Eq. 11) can be re-expressed
in term of tensile stresses by dividing by the circular
root cross-sectional area:

tr,i

tr,j
=

(
dr,i

dr,j

)βF −2

(30)

The load sharing rule can equally be re-expressed in
terms of the fraction of tensile strength mobilised by
dividing the tensile stress in each root by its tensile
strength (Eq. 3). After rewriting:

tr,i

tr,u,i

= tr,j

tr,u,j

(
dr,i

dr,j

)βF −2−βt

(31)

From this follow that all roots break simultaneously
when βF = 2+βt . When βF < 2+βt , roots will break
in the order from thin to thick. When βF > 2 + βt ,
roots will break in the order from thick to thin.

The order of breakage is therefore insufficient
information for uniquely determining what the most
suitable load sharing parameter βF would be; it can
only indicate a range of appropriate load-sharing
parameters βF at best.

Model derivations

Wu/Waldron Model with continuous root diameter
distributions (WWMc)

The continuous root distribution (Eq. 8) can be used to
calculate the peak root reinforcement according to the
Wu/Waldron solution (Eq. 1) by integrating over all
root diameters, rather than the usual summation over
all root diameter classes:

cr,u,WWMc = k′
dr,max∫

x=dr,min

φr tr,u dx (32)

where cr,u,WWMc is the peak reinforcement according
to the WWM with continuous root diamemeter distri-
butions (‘c’ for ‘continuous’). Resolving the integral
gives:

cr,u,WWMc =

⎧
⎪⎨

⎪⎩

k′φr,0tr,u,0dr,0
1+βφ+βt

[(
dr,max

dr,0

)1+βφ+βt −
(

dr,min

dr,0

)1+βφ+βt
]
when 1 + βφ + βt �= 0

k′φr,0tr,u,0dr,0 ln
(

dr,max

dr,min

)
when 1 + βφ + βt = 0

(33)
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Fibre bundle models with continuous root diameter
distributions (FMBc)

Most FBMs have typically been described as a force-
controlled mechanism (apart from the RBMw, which
is formulated in terms of displacement). The peak
reinforcement is found by gradually increasing the
load in an iterative process until all roots have broken.

All FBMs can however easily be expressed in an
equivalent strain-controlled framework. Assume εr,0

is the tensile strain in a root with reference diameter
dr,0. When unbroken, the tensile stress in this root is:

tr,0 = Er,0εr,0 =
(

tr,u,0

εr,u,0

)
εr,0 (34)

Using the load sharing law in terms of stress (Eq. 30),
the tensile stress tr in a root with an arbitrary diameter
x satisfies:

tr = tr,0

(
x

d0

)βF −2

(35)

Substituting Eq. 34 into Eq. 35 gives the tensile stress
in a root with diameter x given the current level of
reference strain εr,0:

tr = tr,u,0

εr,u,0

(
x

dr,0

)βF −2

εr,0 (36)

The current tensile strain in this root can be obtained
by dividing the tensile stress by the root stiffness:

εr = tr

Er

=
(

x

dr,0

)βF −2−βt+βε

εr,0 (37)

The breakage parameter fb indicates whether a root
is still unbroken (fb = 1) or broken (fb = 0):

fb = H
(
tr,u − tr

)
(38)

where H is the Heaviside function (H(y < 0) = 0,
H(y ≥ 0) = 1).

The (current) root reinforcement (cr,FBMc) at a
given value of strain εr,0 can be established by inte-
grating the contribution of each root diameter at this
level of strain:

cr,FBMc = k′
∫ dr,max

x=dr,min

φr trfb dx (39)

It is more convenient to integrate only over the range
of roots d1 ≤ dr ≤ d2 that are still unbroken.
Resolving the integral in Eq. 39:

cr,FBMc =

⎧
⎪⎨

⎪⎩

k′φr,0tr,u,0dr,0
βF −1+βφ

[(
d2
dr,0

)βF −1+βφ −
(

d1
dr,0

)βF −1+βφ
]

εr,0
εr,u,0

when βF �= 1 − βφ

k′φr,0tr,u,0dr,0 ln
(

d2
d1

)
εr,0

εr,u,0
when βF = 1 − βφ

(40)

εr,0,min and εr,0,max are defined as the values of the
reference strains εr,0 at which the thinnest and thickest
roots break. These can be found by solving tr = tr,u
using Eq. 36:

εr,0,min = εr,u,0

(
dr,min

dr,0

)2−βF +βt

(41)

εr,0,max = εr,u,0

(
dr,max

dr,0

)2−βF +βt

(42)

The integration limits d1 and d2 required in Eq. 40 can
be expressed as:

– when both εr,0 ≤ εr,0,min and εr,0 ≤ εr,0,max , all
roots are still unbroken, so:

d1 = dr,min d2 = dr,max (43)

– when εr,0,min < εr,0 < εr,0,max , some of the
thinnest roots have already broken while thicker

ones are still unbroken:

d1 = dr,0

(
εr,u,0

εr,0

)1/(βF −2−βt )

d2 = dr,max

(44)

– when εr,0,min > εr,0 > εr,0,max , some of the
thicker roots have already broken while thinner
ones are still unbroken:

d1 = dr,min d2 = dr,0

(
εr,u,0

εr,0

)1/(βF −2−βt )

(45)

– when εr,0 ≥ εr,0,min and εr,0 ≥ εr,0,max , all roots
are broken and therefore:

cr,FBMc = 0 (46)

With the full reinforcement versus strain behaviour
now established, attention can be shifted to the peak
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root reinforcement cr,u,FBMc, often of more inter-
est for engineering applications. It is convenient to
normalise this reinforcement by the WWMc solution
defined previously:

k′′ = cr,u,FBMc

cr,u,WWMc

(47)

An exact analytical solution for k′′ was found, which is
a function of just two dimensionless parameter groups
ζ1 and ζ2:

ζ1 = (2 + βt − βF ) ln

(
dr,max

dr,min

)
(48)

ζ2 = (
1 + βt + βφ

)
ln

(
dr,max

dr,min

)
(49)

ζ1 is directly related to how the load is distributed
among the range of root diameters (inter-diameter
variation). ζ2 is a measure for the skewness of avail-
able strength across the range of root diameters.

Exact analytical solutions for k′′ are shown in
Table 1. These can be used to directly calculate the
peak root reinforcement for any combination of root
parameters and load sharing rule adopted, without the
need for any iterative computation algorithms.

Fibre bundle models with continuous root diameter
distributions and Weibull survival functions (FMBcw)

Intra-diameter variation can be incorporated into the
proposed generic fibre bundle model approach in a
similar fashion to Schwarz et al. (2013). In their
approach, the probability of a root still being unbroken

given the current root elongation (ur ) equals:

fb = exp
[
−

(ur

λ

)κ]
(50)

where κ and λ are the user-defined shape and scale
parameter of a Weibull survival function.

The average displacement ur,u at which a root
breaks depends on the tensile strain to peak and the
root length Lr :

ur,u = εr,uLr (51)

The average displacement at root breakage (ur,u) has
be be equal to the mean of the Weibull distribution,
and therefore scale parameter λ is given by:

λ = εr,uLr

Γ
(
1 + 1

κ

) = εr,u,0Lr,0

Γ
(
1 + 1

κ

)
(

dr

dr,0

)βε+βL

(52)

The current root elongation ur in a root with diameter
x can be found by multiplying the current tensile strain
εr (Eq. 37) by the root length Lr (Eq. 12):

ur = εrLr = Lr,0

(
x

dr,0

)βF −2−βt+βε+βL

εr,0 (53)

Substituting Eqs. 52 and 53 into Eq. 50 gives an alter-
native expression for the breakage parameter fb for a
root with diameter x as function of the reference strain
εr,0:

fb = exp

[
−

(
Γ

(
1 + 1

κ

)
εr,0

εr,u,0

(
x

dr,0

)βF −2−βt
)κ]

(54)

Assuming κ = ∞ corresponds with the breakage
parameter definition in the FBMc solution.

Table 1 Ratio k′′ between peak root reinforcements calculated using the continuous WWM and the FBM. Due to the asymptotic
nature of the various power-law curves used, different solutions are required for various combinations of ζ1 and ζ2

Conditions k′′

ζ1 > 0 & ζ2 > 0 & ζ1 = ζ2 & ζ1 ≤ 1 ζ2 exp(−ζ2)
1−exp(−ζ2)

” & ” & ” & ζ1 > 1 exp(−1)
1−exp(−ζ2)

” & ” & ζ1 �= ζ2 &
(

ζ1
ζ2

)1/(ζ2−ζ1)

> exp(−1)

(
ζ1
ζ2

)ζ1/(ζ2−ζ1)

1−exp(−ζ2)

” & ” & ” &
(

ζ1
ζ2

)1/(ζ2−ζ1) ≤ exp(−1) ζ2
ζ1−ζ2

[
exp(−ζ2)−exp(−ζ1)

1−exp(−ζ2)

]

” & ζ2 = 0 1−exp(−ζ1)
ζ1

” & ζ2 < 0 ζ2
ζ1−ζ2

[
exp(−ζ2)−exp(−ζ1)

1−exp(−ζ2)

]

ζ1 = 0 1

ζ1 < 0 Same as in the case ζ1 > 0, but with ζ1 = −ζ1 and ζ2 = −ζ2
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The current reinforcement cr,FBMcw (added sub-
script ‘w’ for ‘Weibull’), given reference strain εr,0,
can again be obtained by integration of the reinforce-
ment contributions of all roots (similar to Eq. 39), now
using the just derived expression for fb (Eq. 54).

cr,FBMcw = k′
∫ dr,max

x=dr,min

φr trfb dx (55)

The peak reinforcement cr,u,FBMcw is then obtained
by finding the maximum value of cr,FBMcw on the
strain interval 0 ≤ εr,0 ≤ ∞.

No exact analytical solution for cr,u,FBMcw could
be found and numerical solutions were obtained
instead. These are further discussed in the results
section. The results for reduction factor k′′ can be
expressed as a function of three parameters only: the
same ζ1 and ζ2 as obtained in the FBMc, plus Weibull
shape parameter κ .

For the special case ζ1 = 0, in which case there
is only intra- and no inter-diameter variation, an ana-
lytical solution for the peak reinforcement cr,u,FBMcw

does exist:

k′′∣∣
ζ1=0 =

κ

√
1
κ
exp

(−1
κ

)

Γ
(
1 + 1

κ

) (56)

Experimental data sources

The validity of the assumed distributions for root
biomechanical properties and the power-law distribu-
tion of root area ratio over the range of root diameters
was tested against previously collected data. To pre-
vent numerical problems associated with negative or
zero diameters during root area ratio fitting, dr,min ≥
0.05 mm was enforced. This data was also used
to compare experimentally measured peak root rein-
forcement to those predicted by the various models.

The first set of data consisted of laboratory direct
shear tests on soil reinforced by juvenile willow, gorse
and festulolium grass grown under laboratory condi-
tions (Liang et al. 2017), Bull et al. (2020). In the
following, first author initials ‘TL’ and ‘DB’ are used
to differentiate tests conducted by Liang et al. and Bull
et al.. Root area ratios were determined by measuring
the diameter of each root crossing a shear plane.

A second set of data consisted of field cork screw
extraction tests on blackcurrant shrubs (Meijer et al.
2018a) and mature Sitka spruce trees at two differ-
ent field sites in Scotland: Halliburton Hill (’HH’, see
Meijer et al. 2018a) and the Queen Elizabeth Forest
Park (’QEFP’, see Meijer et al. 2019a). Additional
data was obtained from blade penetrometer tests on
mature Pedunculate oak (Meijer et al. 2018b). Root
area ratios were derived from WinRhizo root volume
scans.

For all data sets, root biomechanical data was col-
lected by means of uniaxial tensile testing in the
laboratory.

Model simulations

A series of FBMc and FBMcw calculations was con-
ducted to explore the effect of load sharing rules on
the mobilisation of root reinforcement.

To systemically explore how root biomechanical
properties, root diameter distributions and load shar-
ing rules affect the peak root reinforcement predicted
by both the FBMc and FBMcw, k′′ was analysed for a
large combination of dimensionless coefficients ζ1, ζ2
and κ .

The current practice of discretising root diameters
into a finite number of root diameter classes prior to
calculating reinforcements will result in two sources
of errors when using fibre bundle models:

1. The tensile strength for the average diameter in
a root diameter class is generally not equal to
the average tensile strength of all roots within a
diameter class;

2. Using a finite number of root diameter classes
results in a sawtooth-like strain versus reinforce-
ment response, corresponding with the (sudden)
tensile failure of roots in each diameter class (for
a graphic example of this, see Fig. 8 in the results
section). This will result in overestimations of
reinforcement.

These two types of errors can be mathematically
separated. For the FBMc:

cr,u,FBM

cr,u,FBMc︸ ︷︷ ︸
1+Discrete diameter classes error

(expressed as a fraction)

= cr,u,WWM

cr,u,WWMc︸ ︷︷ ︸
1+Tensile strength error

(expressed as a fraction)

cr,u,FBM/cr,u,WWM

cr,u,FBMc/cr,u,WWMc︸ ︷︷ ︸
1+Sawtooth strength error

(expressed as a fraction)

(57)
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where cr,u,FBM and cr,u,WWM are the peak reinforce-
ment predictions obtained by using the traditional
fibre bundle model approach of first separating all root
diameters into a discrete number of diameter classes
nc. Similarly, for the FBMcw:

cr,u,FBMw

cr,u,FBMcw︸ ︷︷ ︸
1+Discrete diameter classes error

(expressed as a fraction)

= cr,u,WWM

cr,u,WWMc︸ ︷︷ ︸
1+Tensile strength error

(expressed as a fraction)

cr,u,FBMw/cr,u,WWM

cr,u,FBMcw/cr,u,WWMc︸ ︷︷ ︸
1+Sawtooth strength error

(expressed as a fraction)

(58)

where cr,u,FBMw is the peak reinforcement pre-
dictions obtained using a discrete number of root
diameter classes and Weibull survival functions.

For each source of experimental data, these errors
were quantified by varying the number of equal-width
diameter classes between nc = 1 and 200.

Model validation

Predictions for the peak root reinforcement were made
for all experimental data sets, using both the FBMc
and FBMcw solutions and the various existing and
proposed load sharing rules.

A choice has to be made with respect to what
shape parameter κ to use in the FBMcw solution to
reflect the intra-diameter variation in root properties
and architecture. This parameter was chosen based on
the experimentally measured intra-diameter variation
in root tensile strength (so κ = κt ). These mea-
surements are less susceptible to errors compared to
tensile strain to peak measurements (κε , which may be
affected by root tortuosity or slippage in clamps, for
example).

The RBMw load sharing rule requires a root length
power coefficient βL. Root lengths were unknown for
the experimental data analysed, and therefore separate
analyses were conducted assuming βL = 0 (assuming
all roots have the same length) or βL = 0.575 (value
for Norway spruce roots used by Schwarz et al. 2013).

Results

Fitting root biomechanical properties

Biomechanical fitting parameters obtained for the
experimental data are presented in Table 2. Tensile
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strength and tensile strain to peak fitting is presented
in Figs. 1 and 2 respectively. As discussed in the
original publications, most power-law trends are weak
(power coefficients close to zero).

Continuous distributions of root area ratio over root
diameters

Curve fitting results for the cumulative root area ratio
versus root diameter data verified the feasibility of
power-law fitting (Fig. 3).

For most data series, the fitted power law coeffi-
cient βφ was negative, indicating that smaller diameter
roots contribute more to the root area ratio than larger
diameter roots. However, a significant positive rela-
tion (p < 0.001) between the width of the root
diameter range (expressed as the ratio dr,max/dr,min)
and βφ was found (Fig. 4). This suggests that when
thicker roots are present (e.g. in the case of oak),
their contributions become increasingly important and
should not be ignored.

Model simulations

Example plots of the predicted reference strain ver-
sus root reinforcement traces (Fig. 5) graphically
show how the load sharing parameter βF substan-
tially changes both the mobilisation and magnitude of
the peak root reinforcement in both the FBMc and
FBMcw models.

The exact analytical solution for the peak root
reinforcement predicted by the FBMc (Table 1) is
visualised in Fig. 6.

These solutions shows some interesting features of
the general behaviour of fibre bundle models:

– Fibre bundle models are very sensitive to the
choice of load sharing parameter βF . Theoreti-
cally, any value 0 < k′′ ≤ 1 can be achieved
depending on the choice of βF ;

– The closer βF is to 2 + βt , the closer the FBMc
solution approximates the WWMc solution (ζ1
approaches zero, and therefore k′′ approaches 1);
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Fig. 1 Tensile strength (tr,u) versus root diameter (dr ). First,
a power law is fitted to all data (solid blue line). Subse-
quently, a Weibull distribution is fitted to the normalised data

(tr,u/tr,u,f it ). Gray, dashed lines indicate the proportion of (fit-
ted) root strengths that fall below each line (5%, 25%, 50%,
75% and 95%)
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Fig. 2 Tensile strain to peak (εr,u) versus root diameter (dr ).
First, a power law is fitted to all data (solid blue line). Subse-
quently, a Weibull distribution is fitted to the normalised data

(εr,u/εr,u,f it ). Gray, dashed lines indicate the proportion of (fit-
ted) tensile strain to peak values that fall below each line (5%,
25%, 50%, 75% and 95%)

– Larger diameter ranges (larger values of
dr,max/dr,min, and therefore larger values of ζ1
and ζ2) always result in a decrease in reinforce-
ment. The narrower the diameter range, the closer
the the FBMc solution approximates the WWMc
solution (k′′ approaches 1);

– More skewed distributions of root strength
towards either thin roots (ζ2 moves towards −∞)
or thick roots (ζ2 moves towards ∞) increases the
magnitude of k′′. This effect is less pronounced
than the influence of load sharing factor βF .

Figure 7 provides solutions for the peak reinforce-
ment calculated with the FBMcw for a large number of
combinations of ζ1, ζ2 and κ . It shows that the addition
of intra-diameter variation (by means of a Weibull sur-
vival function) further reduces the predicted reinforce-
ment, especially if there is no or little inter-diameter
variation (i.e. ζ1 is near 0). With increasing values of
ζ1 the inter-diameter sequential mobilisation becomes
dominant and the effect of adding intra-diameter vari-
ation diminishes rapidly.

Figures 6 and 7 can be used to rapidly estimate
k′′ without the need for any additional computations
when root strength, root diameter distributions and
load sharing parameters are known.

The sawtooth error — the error introduced by bin-
ning roots into a finite number of diameter classes
prior to root reinforcement calculations — can be
reduced by increasing the number of classes (Fig. 8).
Sawtooth-type errors were smaller when also incor-
porating intra-diameter variation (FBMw) rather than
inter-diameter variation only (FBM). Using Weibull
survival functions provides additional smoothing of
the strain–root reinforcement response, but significant
sawtooth-type errors still remain (Fig. 8b).

Analysing these errors for the experimental data
shows that, for most species apart from festulolium
grass, the tensile strength error was relatively small
(Fig. 9c) as values of βt were close to zero. Sawtooth-
type errors were substantial, especially when values
of k′′ were small, i.e. when sequential mobilisation
has a large effect on the predicted reinforcement.
Using the FBM (Fig. 9a), when 5 root classes, the
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Fig. 3 Example experimental and fitted root diameter distribu-
tion data for various species at different depths. Cumulative root
area ratios are normalised by the total root area ratio measured.

Red points indicate experimental data, and blue lines the best fit
according to Eq. 8

sawtooth effect caused an overestimation of 14 (fes-
tulolium grass) to 66% (blackcurrant). When using 10
classes, errors were reduced to 9 to 45% respectively.
Adding Weibull survival functions (FMBw) reduced

but not removed the sawtooth errors (nc = 5: 1%
(festulolium grass) and 22% (blackcurrant); nc =
10: 1% (festulolium grass); 12% (blackcurrant); see
Fig. 9b).
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Fig. 4 All results for root
diameter distribution
parameter βφ as function of
species and width of the
root diameter range

βφ = − 1.8 + 0.371 ln(dr,max dr,min)
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1 10 100 1000
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]

Species
Blackcurrant

Festulolium grass (TL)

Gorse (DB)

Gorse (TL)

Pedunculate oak

Sitka spruce (HH)

Sitka spruce (QEFP)

Willow (DB)

Willow (TL)

To reduce the sawtooth error to below 5% in the
FBM, at least 24 (festulolium grass) to 135 (blackcur-
rant) diameter classes were required. In the FBMw,
these numbers were are reduced to 1 and 22, respec-
tively.

Model validation

Evaluation of load sharing parameters βF for each
species in the experimental data set showed a wide
range (−0.55 ≤ βF ≤ 2.36), see Table 3. This
wide range in load sharing corresponds with widely
ranging predictions for the peak root reinforcement
(Fig. 10). On average, root reinforcement predictions
using the load sharing rule resulting in the largest

predictions were 4.59 times larger than those using the
load sharing rule resulting in the smallest prediction
when using the FBMc, and 2.80 times larger when
using the FBMcw.

These results confirm that the predicted reinforce-
ment is very sensitive to the load sharing rule adopted.
Addition of Weibull survival functions reduced the
predicted reinforcement but only when predictions for
k′′ were not already small before adding the survival
functions.

The developed models performed well for gorse,
festulolium grass and willow. These specimens were
grown in tall tubes in lab conditions, thus forcing the
roots to grow primarily vertically and cross the shear
plane at right angles. In contrast, tests on all other
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Fig. 5 Example of different mobilisation of root reinforcement
as function of strain εr,0, depending on load sharing parame-
ter 2 + βt − βF . The reinforcement is normalised by the peak
reinforcement according to the (continuous) WWM model.

Example generated using parameters for gorse measured at 400
mm depth. Weibull survival parameter κ was assumed equal
to κt = 2.13, the fitted Weibull shape parameter for tensile
strength for gorse
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Fig. 6 FBMc peak root reinforcement reduction factor k′′ due to sequential mobilisation, as function of load sharing parameter βF ,
root diameter range dr,min ≤ dr ≤ dr,max , tensile strength power coefficient βt and root area ratio distribution power coefficient βφ

species were conducted under field conditions where
root orientations will have varied more widely, provid-
ing an explanation for why experimentally measured
reinforcements are lower than model predictions.

Discussion

Figure 11 shows a schematic representation of each
model, graphically showing the different assumptions

in each model as well as the effect of using con-
tinuous diameter distribution and/or Weibull survival
functions.

This study showed that all existing root reinforce-
ment calculation procedures that rely on a fibre bundle
approach are part of the same ‘family’, with different
assumptions for load sharing parameter βF , despite
the different names used to identify these models.
While previously recognised by Meijer et al. (2018a)

Fig. 7 FBMcw peak root
reinforcement reduction
factor k′′ due to sequential
mobilisation, as function of
Weibull surival function
shape parameter κ and
FBMc parameter groups ζ1
and ζ2. κ = ∞ corresponds
with the FBMc solution.
When ζ2 < 0, the correct
value for k′′ can be obtained
by assuming ζ1 = −ζ1 and
ζ2 = −ζ2

∞
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Fig. 8 Example of the effect of using a finite number of
root diameter classes nc on root reinforcement in models with
(FBMw) or without Weibull survival functions (FBM). The
dashed lines indicate the continuous FBMc and FBMcw solu-
tions respectively. Results are normalised by theWWM solution
using the same root diameter classes. Note that even when 20

diameter classes were used, a significant overestimation was
made compared to the continuous solutions. Example generated
using parameters for blackcurrant measured at 60 mm depth
with Waldron load sharing. For FBMw/FBMcw predictions,
κ = κt was assumed

for FBMs assuming βF = 0, βF = 1 and βF = 2, this
has now been proven in systematic fashion.

This systematic investigation of fibre bundle-type
models raises a fundamental question: given that load
sharing parameter βF has such a strong effect on the
root reinforcement calculated (as previously observed
by Mao et al. (2012) and others) but may can take
any value, which value for βF is most appropriate?
The validity of the mechanisms behind existing FBM
approaches, such as equal force (βF = 0), equal stress

(βF = 2) or equal displacement in each root (RBMw),
have not been proven by dedicated experiments that
investigate the individual responses of roots within a
block of rooted soil, and therefore the choice of βF

currently involves a degree of arbitrariness.
This study proposed to base load sharing on the

root reinforcement mobilisation mechanism proposed
by Waldron (1977), which has been validated by
experiments, by using βF = 1.5 + 0.5βE . Select-
ing a physics-based value for βF results in a testable

Sawtooth error (FBM) Sawtooth error (FBMw) Tensile strength error

1 10 100 1 10 100 1 10 100
−50
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50
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150

Number of discrete diameter classes [−]
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]

Species
Blackcurrant

Festulolium grass (TL)

Gorse (TL)

Pedunculate oak

Sitka spruce (HH)

Sitka spruce (QEFP)

Willow (TL)

Fig. 9 Sawtooth and tensile strength error when using fibre
bundle models with a discrete number of root diameter classes,
either without (FBM) or with Weibull survival functions

(FBMw). Lines indicate the average error for each species while
shaded areas indicate the range in errors measured at different
depths for each species
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Fig. 10 Comparison between experimental results and model
predictions for the reinforcement reduction factor k′′ associated
with sequential mobilisation. Large black hollow bars indicate
experimental results while coloured bars indicate model results

with varying load sharing assumptions. Experimental reinforce-
ment data for gorse, festulolium grass and willow originally
measured by Liang et al. (2017) were re-analysed as part of this
study. No shear tests were performed on Pedunculate oak

hypothesis for future experiments, and prevents the
pitfall of manipulating a model to fit the data. Dedi-
cated experiments to validate this, and in fact any, load
sharing rule are however required.

Sequential mobilisation was shown to be driven by
both inter-diameter variation (governed by load shar-
ing parameter βF ) and intra-diameter variation (gov-
erned by Weibull shape parameter κ). Both reduced
the peak-reinforcement compared to the WWM. Both

effects however do not stack: intra-diameter varia-
tion is primarily reducing reinforcements when reduc-
tions in predicted reinforcement due to inter-diameter
effects are small.

Evenwith our best assumptions (Waldron load sharing,
adding intra-diameter variation based on experimen-
tally measured variations in root strength), predicted
reinforcements still overestimated experimentally
measured values for some species. This highlights

Table 3 Load sharing parameters βF associated with various proposed load sharing mechanisms for each species in the experimental
data set

Species RBMw (βL = 0) RBMw (βL = 0.575) FBM-WN FBM-WDia FBM-WS Waldron

Festulolium grass (TL) 1.25 0.67 1.72 2.22 2.72 1.12

Gorse (TL) 1.99 1.42 2.07 2.57 3.07 1.50

Willow (TL) 2.12 1.55 1.97 2.47 2.97 1.56

Blackcurrant 2.07 1.50 1.98 2.48 2.98 1.54

Sitka spruce (HH) 1.97 1.40 2.18 2.68 3.18 1.49

Sitka spruce (QEFP) 2.25 1.67 2.09 2.59 3.09 1.62

Pedunculate oak 1.93 1.35 2.05 2.55 3.05 1.46
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Fig. 11 Schematic representation of the various root reinforce-
ment models, as function the (reference) strain εr,0. Each fill
colour indicates the reinforcement contribution by a particu-
lar root diameter class. ‘c’ indicates inclusion of continuous
root diameter distributions, in which case the fill colours form

a smooth gradient since a continuous distribution corresponds
with using an infinite number of diameter classes. ‘w’ indicates
intra-diameter variation by means of Weibull survival functions
was included

some of the limits of FBM-type models, which only
account for two sources of sequential mobilisation
(inter- and intra-diameter effects) but not for any
sequential mobilisation due to root slippage or —
perhaps more importantly — root orientation effects.
It may be perhaps be possible to incorporate (some
of) these effect through careful adjustment of the
Weibull parameter κ . Future research should aim to
explicitly account for these effects in order to obtain
more accurate models.

The models developed in this study assumes the
root tensile strength, stiffness and root area ratio distri-
bution all vary as function of root diameter according
to a power law. They may be less suitable if experi-
mental data substantially deviates from these assump-
tions. Validation against a wider range of root data is
therefore necessary.

The proposed power-law relationship describing
how the root area ratio is distributed across the range
of root diameters will greatly simplify existing root
reinforcement calculations. The range of root diame-
ters can be captured simply by establishing the diame-
ter of the smallest and thickest root (easily established
from a representative sample), estimating the total
root area ratio φr,t (e.g. by using correlations with

total root mass) and assuming or measuring βφ . Thus
the cumbersome process of measuring the diameter
of every single root may be avoided. The only addi-
tional parameters required for subsequent predictions
of peak root reinforcement are the root diameter–
tensile strength power law coefficients (tr,u,0 and βt ,
which can be obtained by tensile testing), a choice for
load sharing parameter βF , and an optional Weibull
survival function shape parameter κ in case intra-
diameter variation is considered.

The power-law fitting of the root area ratio as func-
tion of root diameter was suitable for the large range
of plant types investigated (including grass, shrubs and
tree species). Future work should aim to establish βφ

parameters for a larger number of species and grow-
ing conditions to see whether it is feasible to obtain
‘averaged’ values for power coefficient βφ , in a sim-
ilar fashion to those established by Mao et al. (2012)
for the tensile strength power law coefficients βt .

Using continuous root diameters furthermore elim-
inates any errors caused by discretising root diame-
ters into a limited number of root classes (e.g. the
‘sawtooth’ effect). Given that in this study for some
species over a 100 diameter classes were required
to push the error below 5%. This ‘sawtooth’ effect
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may be partially responsible for FBMs overestimat-
ing experimentally-measured root reinforcement as
the number of classes used in practice is relatively
small, e.g. 4 (Genet et al. 2008; Mao et al. 2012; Ji
et al. 2020), 15 (Schwarz et al. 2010; Moos et al. 2016)
or 20 (Comino et al. 2010). Adding Weibull survival
functions reduces but not eradicates this error. This
error may also be reduced by artificially distributing
the root diameters within each class, for example by
using probabilistic functions (e.g. Ji et al. 2020). Using
the continuous approach eliminates the need for iter-
ative calculation algorithms which may a source of
additional (numerical) errors.

The proposed generic fibre bundle framework
reduces rather than increases the number of root rein-
forcement models. It greatly simplifies calculations,
exchange of data and comparisons between models
without losing exactness or losing sight of underlying
model assumptions as it contains no ‘fudge factors’ that
may be site or species-specific. This standardisation
will greatly help the root reinforcement community.

Conclusions

This paper set out to formulate a generic form for
fibre bundle models. It systematically investigated the
effect of various mechanisms for load sharing between
roots on root reinforcement calculations. A continu-
ous distribution of root diameter was implemented,
allowing investigation of the effect of discretising
root diameters into diameters classes prior to root
reinforcement calculations. Key conclusions are:

– All existing fibre bundle models (including the
Root Bundle Model) are essentially iterations of
the same generic FBM but with different assump-
tions for load sharing parameter βF ;

– A new, physics-based load sharing law was pro-
posed based on Waldron (1977)’s model for
mobilisation of root stresses;

– The distribution of the root area ratio over the
range of root diameters can be accurately cap-
tured using a continuous distribution based on
the smallest and largest root diameter and a
power law coefficient. Once these are known, the
time-consuming process of measuring the diame-
ter of every root may no longer be required;

– An exact, analytical solution for the peak root
reinforcement was derived for any combination

of root parameters and load sharing rule (FBMc).
When Weibull survival functions are added to
this model, values for the peak reinforcement can
directly be determined using a simple design chart
(FBMcw, Fig. 7);

– Including Weibull survival functions only sub-
stantially reduced the predicted reinforcement
when the effect of inter-diameter load sharing is
limited. Otherwise, the influence of load sharing
βF is dominant;

– The common practice of using discrete root diam-
eter classes in traditional fibre bundle model
calculations may result in a substantial overes-
timation of peak root reinforcement. These are
caused by sawtooth-like effects associated with
(sudden) failure of discrete roots. These can
be avoided by using continuous root diameter
distributions;

– The generic fibre bundle model approach pro-
vides clear insight into how these models operate,
allows to make a rapid estimation of peak rein-
forcements w ithout the need for iterative proce-
dures, and simplifies comparison between models
in future work.
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