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computational resources, we essentially added a sto-
chastic component to the likelihood function, thereby 
turning the MCMC sampling into a form of approxi-
mate Bayesian computation (ABC).
Results A few zero-order root parameters: maxi-
mum length, elongation rate, insertion angles, and 
numbers of zero-order roots, with narrow posterior 
distributions centered around true parameter values 
were identifiable from soil core data. Yet other zero-
order and higher-order root parameters were not iden-
tifiable showing a sizeable posterior uncertainty.
Conclusions Bayesian inference of root architecture 
parameters from root density profiles is an effective 
method to extract information about sensitive param-
eters hidden in these profiles. Equally important, this 
method also identifies which information about root 
architecture is lost when root architecture is aggre-
gated in root density profiles.

Keywords Bayesian Inference · CRootBox · Root 
system architecture · Soil coring

Introduction

Root system architecture (RSA) describes the mor-
phology and topology of a root system, responsible for 
water and nutrient uptake, anchorage to soil and inter-
acting with soil biota. Plant functions, such as water 
and nutrient uptake, are strongly affected by root sys-
tem architecture (Hochholdinger 2016). The structure 

Abstract 
Background and aims Characterizing root system 
architectures of field-grown crops is challenging as root 
systems are hidden in the soil. We investigate the pos-
sibility of estimating root architecture model param-
eters from soil core data in a Bayesian framework.
Methods In a synthetic experiment, we simulated 
wheat root systems in a virtual field plot with the 
stochastic CRootBox model. We virtually sampled 
soil cores from this plot to create synthetic measure-
ment data. We used the Markov chain Monte Carlo 
(MCMC)  DREAM(ZS) sampler to estimate the most 
sensitive root system architecture parameters. To deal 
with the CRootBox model stochasticity and limited 
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of root systems is usually different under different 
soil-environmental conditions (Fan et al. 2016; Gorim 
and Vandenberg 2017; de Moraes et al. 2018).

During the last few decades, plant-breeding pro-
grams have improved crop production significantly 
by introducing new varieties based on architectural 
root traits. Del Bianco and Kepinski (2018) showed 
the potential benefits of developing phenotypes such 
as crops with deep root systems to capture deep water 
and nutrients with high efficiency. In a study based 
on the hypothetical maize ideotypes, which adapt 
architectural root traits, Lynch (2013) demonstrated 
the possibility of extracting deep water and Nitrogen. 
Therefore, characterization of root system architec-
tures is one of the highest interests in the root pheno-
typing community.

In comparison to field phenotyping, lab-based 
methods are widely used in root phenotyping due to 
a lack of accessibility and reliable methods to char-
acterize the RSA of plants grown in field conditions 
(Atkinson et  al. 2019; Meister et  al. 2014). Imag-
ing methods have been used successfully to recover 
RSA parameters of plants grown in soil (Bodner et al. 
2018; Topp et al. 2013; van Dusschoten et al. 2016), 
which were subsequently used in RSA models that 
extrapolate RSA from the seedling to mature plant 
stage (Zhao et  al. 2017). Methods for root sampling 
and for characterizing RSA traits and their limitations 
are summarized in Fang et al. (2012) and Judd et al. 
(2015).

However, the root traits of young plants grown in 
the controlled lab environment are not sufficient to 
determine traits of mature plants that grow in field 
soils subject to the real field soil and environmental 
conditions (Paez-Garcia et al. 2015). Therefore, field 
phenotyping methods are becoming increasingly 
popular to characterize RSA in real field conditions 
(Araus and Cairns 2014; Meister et al. 2014).

Root sampling methods are generally used to meas-
ure the root distribution with depth (as root length 
density) from soil cores (Wasson et  al. 2014), root 
intersection counting in trench profiles (Vansteenkiste 
et  al. 2014), root arrival curves (root length density 
varies with time in continuous measurement) using 
minirhizotron methods (Majdi 1996), and excava-
tion methods (Böhm 1979), to determine the total 
root mass distribution of plants. All these methods 
have traditionally been used to obtain some limited 
information about the root distribution in the soil. 

Nevertheless, the data may contain information about 
the detailed root system architecture or architectural 
root traits, i.e., number of primary roots, the distance 
between lateral roots, branching angles. However, 
obtaining RSA parameters from field data remains a 
challenge as they represent more aggregated infor-
mation about the root system. In addition to classi-
cal methods, innovative field sampling methods have 
been introduced to obtain more detailed information 
about the root system (Bucksch et  al. 2014; Wu and 
Guo 2014). Although field sampling methods provide 
limited information, it is of utter interest to study the 
possibility of retrieving the hidden information (3-D 
RSA) in field sampling data.

Few studies were conducted to estimate the root 
architecture parameters inversely; a density-based 
model of root image data of individual root systems was 
investigated to determine the root growth parameters 
(Kalogiros et  al. 2016). Although this study showed 
reasonable estimates with the measured root growth 
parameters, experiments were limited to short-lived 
root growth in filter papers that do not resemble real 
field conditions. Garre et al. (2012) used dynamic root 
growth data measured using minirhizotrons to calibrate 
a RSA model. The main limitation of this approach was 
that only a subset of the model parameters was esti-
mated inversely, and the posterior distribution of the 
parameter estimates was not derived. Trench profiles 
and soil core data were used by Vansteenkiste et  al. 
(2014) to estimate the trait information such as total root 
length and root distribution successfully from measured 
and simulated data, and this study did not consider the 
RSA parameters extensively. A study was conducted by 
Pagès et al. (2012) to show the possibility of retrieving 
some RSA parameters using field sampling methods. 
‘CPU and memory consumption, especially for big root 
systems, as well as algorithmic and numerical problems 
due to the stochastic characteristics of the RSA model 
during inversion’ (Pagès et al. 2012) motivated them to 
develop a metamodel that was based on a global sen-
sitivity analysis of the RSA model and that considered 
the main parameter effects as well as parameter inter-
actions. The authors showed the possibility of estimat-
ing some RSA parameters that are directly linked to the 
RLD of specific depths. Furthermore, a recent study 
presented the use of the approximate Bayesian com-
putation (ABC, e.g., Marjoram et al. 2003) framework 
to characterize root growth parameters from synthetic 
and experimental data that are limited to early stages of 
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root system development and that use directly observed 
RSA instead of aggregated field sampling data (Ziegler 
et al. 2019).

To represent the fact that root systems of two plants 
of the same variety or even with the same genotype 
differ, random factors or stochasticity are built in 
RSA simulation models. Even though simulated RSA 
differ for different parameter sets, these differences 
may be averaged out in the aggregated sampling data 
so that different sets of RSA parameters may produce 
the same aggregated output. Therefore, when estimat-
ing parameters, care must be taken to prevent overfit-
ting which is associated with parameter uncertainty. 
This randomness or stochasticity is averaged out in 
sampling data that aggregate information from differ-
ent plants. Nevertheless, since sampling data contain 
information of a finite number of plants, the stochas-
ticity or randomness of these individual plants is not 
averaged out completely but remains to some extent 
in the sampling data. This stochasticity or uncertainty 
in the sampling data is another source of parameter 
estimates uncertainty. Therefore, it is important to 
assess the uncertainty of the RSA parameters that are 
obtained from aggregated sampling data.

In previous work (Morandage et  al. 2019), we 
identified the most sensitive parameters of root 
systems of wheat and maize with respect to aggre-
gated data or root system measures derived from 
soil coring, trenching and minirhizotron root sam-
pling methods. In that same study, we showed how 
the sensitivity of the model output to the different 
root architectural parameters varies with the sam-
pling method and considered "root system meas-
ures" (such as root length density at different depths 
in the soil profile, maximal rooting depth, etc.). 
We indicated that the most sensitive parameters 
could be retrieved potentially by inverse estimation. 
Moreover, using a principal component analysis 
of parameter sensitivities, we identified parameter 
groups of which the effect of their changes on the 
simulated root system measures could be compen-
sated by changes of other parameters in that group.

Bayesian inference can be identified as a poten-
tial approach for estimating RSA parameters from 
aggregated field sampling data and their uncertainty 
encoded within the so-called parameter posterior 
probability density function (pdf). The application 
of Bayesian methods has been tested successfully 

in many fields (Hines 2015; Vrugt et al. 2009) and 
has been shown to be a robust approach to estimate 
parameters and their uncertainty, also when the 
model outcome depends non-linearly on the param-
eters and non-linear parameter interactions exist. 
Previous sensitivity analyses (Garre et  al. 2012; 
Morandage et  al. 2019; Pagès et  al. 2012) showed 
that this is the case for RSA models. In comparison 
to local and/or non-probabilistic optimization algo-
rithms, the main disadvantage of Bayesian methods 
is that sampling the posterior distribution typically 
requires a large number of forward model runs. In 
addition, simulation of many root systems in the 
field and their sampling incurs large computational 
costs. Therefore, Bayesian inversion can take a con-
siderable amount of time. Furthermore, an impor-
tant problem that arises for RSA models that have 
a stochastic component is that the simulated obser-
vations themselves are stochastic. As mentioned 
before, this stochasticity can be reduced by increas-
ing the number of plants that are simulated and used 
to calculate the aggregated root distribution. Unfor-
tunately, this can incur prohibitively large compu-
tational costs. Therefore, approaches must be found 
to deal with this model stochasticity in a Bayesian 
inversion framework.

In this work, we present an approach to inversely 
estimate stochastic root architecture model parameters 
and their uncertainty from field sampling data using 
Bayesian inference. The rest of this paper is organ-
ized as follows. Section 2 presents our proposed infer-
ence method and how its performance is evaluated 
using plot-scale simulation of root density. In section 3, 
we study which RSA parameters can be successfully 
retrieved from the inversion of soil coring data. This is 
followed by section  4, which discusses the feasibility 
and remaining challenges associated with the applica-
tion of our approach to real field conditions.

Materials and methods

Root architectural model and virtual root sampling 
data

The synthetic soil coring root sampling data analo-
gous to real field sampling data were obtained from 
simulated root systems in a virtual field plot using 
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known root architecture parameters. Using data from 
a virtual experiment instead of real data, we can eval-
uate how closely the inversely estimated RSA param-
eters match the known ‘true’ parameters. Based on 
this comparison, we can conclude which RSA param-
eters could be derived by inverse modeling.

We selected the stochastic root architecture model 
CRootBox (Schnepf et  al. 2018a, b) for root system 
simulations and root sampling. CRootBox, the suc-
cessor and C++ porting of the Matlab-based Root-
Box model (Leitner et  al. 2010), is a generic root 
system architecture model used to simulate realistic  
root systems taking root architecture parameters as 
model input. CRootBox is primarily used for func-
tional-structural root system modeling. Schnepf et al. 
(2018a, b) showed that the model could be used suc-
cessfully for simulation of both individual root sys-
tems as well as field-grown root systems and per-
formed a statistical characterization of CRootBox  
based on 18 characteristic root system measures includ-
ing root tip density, root length density, root surface 
area density or convex hull volume. As an example use 
of the CRootBox model, Landl et  al. (2018) showed  
that widely available 2D images of root systems can 
be used systematically and efficiently to parameter-
ize 3D root architecture models. CRootBox is further 
developed as CPlantBox to simulate the whole plant 
structures and more complex plant functions (Zhou 
et al. 2020). Please refer to (Schnepf et al. 2018a, b) 
for detailed information about the root architecture 
model CRootBox. The detailed root system simula-
tion, sampling, and the sensitivities of root system 
measures to parameters of each sampling scheme are 
discussed in (Morandage et al. 2019).

For the inversion, we selected the core sampling 
data obtained from winter wheat root sampling. Wheat 
plant root systems were simulated in a 72 cm*45 cm 
size plot that consists of seven rows with 16 plants in 
a row. The inter-row distance was 12 cm with 3 cm 
plant spacing within a row. Core sampling was per-
formed with monthly time intervals for eight months. 
We adjusted the sampling size similar to real field sam-
pling schemes. We chose 3 locations in-between rows 
for five different rows (15 core samples in a plot in 
total). To avoid boundary effects, zones of 20 cm from 
the borders of the plot were not considered for sampling 
(Fig. 1A). Cylindrical cores of 4.2 cm diameter and 160 
cm long were sampled and subsequently sliced hori-
zontally in 5 cm intervals to determine the RLD of each 

sampling volume (69.72  cm3). Thus, core root sampling 
data are written to a text file which consists of 15*8*32 
values of root length densities (see below) as the output 
of the model. Fig. 1B indicates the RLD’s of 15 cores 
separately (black-dashed lines) and the mean RLD of 
those 15 cores (solid green line), while Fig. 1C shows 
the mean of 32 repetitions (solid blue line) of mean 
RLD of 15 core samples to understand the stochastic 
nature of sampling data of simulated root systems.

Root length density of 5 cm segments of 160 cm long 
core samples were taken at monthly time intervals up to 8 
months (8-time step information for 32, 5 cm depth inter-
vals). We sampled 15 cores from the plot and calculated 
the mean and standard deviations of those 15 core sam-
ples. Therefore, RLD root sampling data consists of 256 
mean root length density values (MRLD (cm/cm3) (Eq. 1).

where n is the number of samples per depth (15), i is 
sampling depth index, j the sampling time index, and k 
is the sampling number index.  RLDi,j,k is a 3d matrix, 
which stores root length density (RLD) values obtained 
from 32 depth intervals (i), and 8 monthly intervals (j) 
in 15 core samples (k), n =15 (number of cores taken 
from the plot). Since the variability of the root length 
densities between the 15 soil samples that were col-
lected at a certain depth and time also contains infor-
mation about the root system architecture, we also cal-
culated standard deviation values for each of the 256 
time and depth observations (SRLD (cm/cm3) (Eq. 2).

Selection of the most sensitive parameters of root 
system architecture and their prior distribution

The CRootBox model was fitted against the synthetic 
soil coring data.”. We conducted a detailed analysis 
of sensitivities of 37 root architecture parameters in a 
previous study and found that the parameters of zeroth-
order roots have higher sensitivities on root length den-
sities obtained from soil cores (Morandage et al. 2019). 
Therefore, we selected numbers (NB), internodal dis-
tance (ln0 & ln0s) maximum length (maxl0 & maxl0s) 

(1)MRLDi,j
=

1

n

n∑
k=1

RLDi,j,k

(2)
SRLDi,j

=

�����
∑n

k=1

�
RLDi,j,k −MRLDi,j

�2

n

70 Plant Soil (2021) 467:67–89



1 3

elongation rate (r0 & r0s), tropism strength (tr0 & tr0s), 
insertion angle (theta0 & theta0s) of zero-order roots 
and length of apical zone (la1 & la1s), internodal dis-
tance (ln1 & ln1s), maximum length (maxl1 & maxl1s) 
of first-order laterals as inferred parameters. Primary 
roots, seminal roots, and crown roots are altogether 
referred to as "zero-order roots," and first-order laterals 
emerge from zero-order roots and second-order later-
als emerge from first-order laterals (Fig.  2). All these 
parameters (except NB) are stochastic in the model and 
parameter names ending with “s” refer to the standard 

deviation of the parameter. The stochastic parameter 
distribution was assumed to be a Gaussian distribu-
tion. Since the literature data does not provide a proper 
estimation for desired limits and distribution of the 
field derived RSA parameters, we defined the 50% and 
150% of true parameter values as the upper and lower 
bounds of the 17 inferred parameters and assumed that 
the priors are uniformly distributed within these limits. 
The true parameters were the same as the ones used in 
Morandage et al. (2019) to simulate RSA of wheat. The 
list of all RSA parameters of winter wheat and their 

Fig. 1  Top (A): Simulated 
winter wheat root systems 
in a virtual field plot until 
240 days after sowing 
(color scale indicates the 
appearance time of the root 
segments and the vertical 
transparent cylinders repre-
sent the soil cores). Bottom: 
RLD profiles of simulated 
core sampling data. Black 
dashed lines show the 
RLD of each core sample 
separately. The green line 
shows the mean RLD of 
15 core samples (B), the 
blue line in (C) indicates 
the mean of 32 sets of 15 
soil cores and the red line 
indicates the average of 15 
cores that was chosen and 
used as measured data for 
inverse estimation of RSA 
parameters (C)
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bounds used in this study are listed in Table 1 and illus-
trates the meaning of the parameters in Fig. 2.

Selection of the synthetic measurements

To create the synthetic measurements, we ran the 
CRootBox model once using the reference or “true” 
parameters presented in Table 1. Since the CRootBox 
model is stochastic (see section  2.6), this creates just 
one realization of 256 MRLD and 256 SRLD values (see 
(Eq. 1) and (Eq. 2)) associated with the true parameters. 
However, such a single synthetic dataset would repre-
sent repeated root sampling data of the same plants and 
at the same locations. Since in real field experiments, 
soil core sampling is a destructive method; cores taken 
at different times come from different locations and 
sample roots of different plants. Therefore, the synthetic 
dataset was constructed from 15 virtual soil cores at 8 
different times. For each of the 32 depths, and each time 
point, the virtual root length density data consist of a 
mean and a standard deviation, thus a total number of 
(32×8) + (32×8) = 512 values. In order to compute the 
standard deviations of the residual errors, σi, that are 
required by our likelihood function (Eq. 5), we gener-
ated this virtual data set 100 times and computed the 
standard deviation of each of the i=1, …, 512 simulated 
data points (i=1, …, 256: MRLD; i=257, .., 512: SRLD) 
across these 100 realizations.

Bayesian approach

In general, the output of a model F ( �), where � = 
( �1 , �2 …, �d ) is a d- dimensional parameter vector, is  
compared with observations y to estimate the model  
parameters:

where e is an error term that lumps measurement 
and model errors. When the process that is observed 
and the model that is used to describe the process is 
stochastic, i.e., when there is an unknown variability 
in the system that leads to different responses under 
the same external conditions, then e also comprises 
this stochasticity. Often, the parameters of the model 
are not known and are estimated by searching for 
the parameter values that minimize the norm of e. 
When using the Bayesian framework to acknowledge 
parameter uncertainty, the goal is to derive the pos-
terior probability density function (pdf) of the model 
parameters of interest, � , given the observations, y, as 
expressed by

where p(�|y) is the posterior pdf of � given y, p(y|� ) ≡ 
L(�|y) denotes the likelihood function of � , p(� ) is the 

(3)� = F(�) + �

(4)p(�|�) = p(�|�)p(�)
p(�)

Fig. 2  Description of 
wheat root system architec-
ture and the terminology of 
root types (modified after 
Morandage et al. 2019; 
Tang et al. 2011). Embry-
onic and post embryonic 
roots (crown roots, seminal 
root, brace roots, and pri-
mary roots) are represented 
and termed collectively as 
“Zero order roots”
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prior pdf of � , the normalization factor p(y) = ∫ p(y|�
)p(�)d � is obtained from numerical integration over 
the parameter space so that p(�|y) scales to unity. The 
quantity p(y) is generally difficult to estimate in prac-
tice but is not required for parameter inference. In the 
remainder of this study, we will focus on the unnormal-
ized posterior:

Moreover, in case of a uniform prior, (Eq. 5) sim-
plifies to p(�|y)∝ L(�|y). For numerical stability, it 
is often preferable to work with the log-likelihood 
function, � ( �|y), instead of L(�|y). If we assume 
the error e to be normally distributed, uncorrelated 
and heteroscedastic, the log-likelihood function can 
be written as

(5)p(�|�) ∝ L(�|�)p(�)

(6)

�(�|�) = −
n

2
log (2�) −

n∑
i=1

log
(
�i
)
−

1

2

n∑
i=1

[
yi − Fi(�)

]2
�2
i

where n is the number of measurement data and 
the �i are the standard deviations of the residual 
errors ei . Note that in our context, the subscript i 
refers to a combination of time and depth.

Markov chain Monte Carlo sampling

The inference aims to estimate the posterior distribution 
of the model parameters, � , given the available meas-
urements y: p(�|y). As an exact analytical solution of 
p(�|y) is not available, we resort to Markov chain Monte 
Carlo (MCMC) simulation to generate samples from 
this distribution. The basis of this technique is a Markov 
chain that generates a random walk through the search 
space and iteratively finds parameter sets with stable 
frequencies stemming from the posterior pdf of the 
model parameters (see, e.g., Robert and Casella 2004) 
for a comprehensive overview of MCMC simulation). 

Table 1  List of root architectural parameters of wheat used in 
root system simulations and the prior range of inferred param-
eters. Except for the number of zero-order roots NB, each 
parameter is a stochastic parameter with a mean and a stand-
ard deviation (values inside the brackets indicate the standard 

deviations of the parameters). Numbers in the parameter names 
refer to the root orders. Underlined values are the parameters 
used for inference and the others are fixed to true parameter 
values

Code Parameter
Name (root order)

Units Parameter values prior range of the 
inferred parameters

1) lb0 (std) length of basal zone (0) cm 0.8 (1.2)
2) la0 (std) length of apical zone (0) cm 4.2 (6.4)
3) ln0 (std) branch spacing (0) cm 1.2 (0.6) 0.6-1.8 (0.3-0.9)
4) maxl0 (std) maximum length (0) cm 130 (30) 65-195 (15-45)
5) r0 (std) initial growth rate (0) cm/day 1.2 (0.6) 0.6-1.8 (0.3-0.9)
6) tr0 (std) tropism (0) - 1.2 (0.2) 0.6-1.8 (0.1-0.3)
7) theta0 (std) branching angle (0) rad 1.4 (0.2) 0.7-2.1 (0.1-0.3)
8) lb1 (std) length of basal zone (1) cm 0.8 (1)
9) la1 (std) length of apical zone (1) cm 1.8 (2.4) 0.9-2.7 (1.2-3.6)
10) ln1 (std) branch spacing (1) cm 1.1 (1.5) 0.55-1.65 (0.75-2.25)
11) maxl1 (std) maximum length (1) cm 2.0 (1.0) 1.0-3.0 (0.5-1.5)
12) r1 (std) initial growth rate (1) cm/day 0.4 (0.12)
13) tr1 (std) tropism (1) - 1.0 (0.4)
14) theta1 (std) branching angle (1) rad 1.2 (0.4)
15) la2 (std) length of apical zone (2) cm 2.2 (0.4)
16) maxl2 (std) maximum length (2) cm 2.18(0.56)
17) r2 (std) initial growth rate (2) cm/day 1.0 (0.2)
18) tr2 (std) tropism (2) - 0.1 (0.6)
19) theta2 (std) branching angle (2) rad 1.12 (0.4)
20) NB number of zero-order roots (0) nos 20 10-30
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The MCMC sampling efficiency largely depends on the 
proposal distribution used to generate candidate solu-
tions in the Markov chain. In this study, the state-of-the-
art  DREAM(ZS) (Laloy and Vrugt 2012; ter Braak and 
Vrugt 2008; Vrugt 2016) algorithm is used to retrieve 
posterior samples. The  DREAM(ZS) scheme evolves dif-
ferent interacting Markov chains in parallel. A detailed 
description of this sampling scheme, including conver-
gence proof, can be found in the cited literature and is 
thus not reproduced here.

The convergence of the MCMC sampling to the pos-
terior distribution was monitored by means of the poten-
tial scale reduction factor of Gelman and Rubin (Gelman 
and Rubin 1992), R̂ a value of R̂ smaller than 1.2 for every 
parameter was considered as indicating official conver-
gence of the sampling to a stationary distribution.

The mean acceptance rate (AR %) of the proposed 
transitions in the Markov chains is an important sampling 
property and is thus also reported. A too small fraction 
of accepted moves points out poor mixing of the chains 
due to a too wide proposal distribution. In contrast, an 
overly large acceptance rate suggests a too narrow pro-
posal distribution, causing the Markov chains to remain 
in the close vicinity of their current locations. The opti-
mal AR value depends on the proposal and target pos-
terior distributions, but a range of 10–40% generally 
indicates a good performance of  DREAM(ZS) (Laloy and 
Vrugt 2012; Ter Braak 2006; Ter Braak and Vrugt 2008).

Dealing with model stochasticity and 
non-independent data errors

To represent the random nature of the root distribution 
in real field conditions, root architecture models inter-
nally draw realizations of some of their parameters from 
prescribed probability distributions (Tron et al. 2015). In 
other words, many of the parameters that are internally 
used in a given forward simulation by the model are ran-
domly drawn from prespecified probability distributions. 
The parameters of these distributions (e.g., mean and 
standard deviation in case of a Gaussian distribution) 
are the actual RSA parameters and are to be set by the 
model user. Consequently, repeatedly using the same set 
of RSA parameter values leads to an ensemble of dif-
ferent outputs (such as RLD in soil core samples). With 
increasing size of the output (i.e., with an increasing 
number of soil cores that are taken), the variability of the 
ensemble in terms of MRLD and SRLD (see Eqs. 1, 2) will 
asymptotically converge to zero.

When using MCMC for Bayesian inference, the 
forward model is typically considered as determinis-
tic and a given input parameter set thus always corre-
sponds to the same log-likelihood. Hence,  DREAM(ZS) 
requires the log-likelihood for a given parameter set not 
to vary. To deal with model stochasticity, we therefore 
averaged the simulated data corresponding to a given 
input parameter set over a certain number of realiza-
tions before computing the log-likelihood. Using the 
true model parameters, we studied how many realiza-
tions, i.e., sets of 15 soil cores, are needed to obtain a 
relatively stable log-likelihood estimate (red curve in 
Fig. 3). It is observed that from 150 realizations (or rep-
etitions of 15 soil cores), the computed log-likelihood 
based on the true parameters given the used measure-
ments becomes approximately stable (red curve in 
Fig. 3). Such averaging of the log-likelihood falls within 
the so-called likelihood ratio approximation method 
(Diggle and Graton 1984) which in a probabilistic set-
ting is a form of ABC (Marjoram et al. 2003).

Nevertheless, a short preliminary MCMC trial 
using 150 simulated data realizations to calculate 
the log-likelihood led to a substantial overfitting of 
the measurement data, with the MCMC returning 
only log-likelihood values in the approximate 1030 
- 1040 range after some 3000 iterations, whereas 
the true parameter set has a log-likelihood of about 
950 for the simulated data (red curve in Fig. 3). We 
hypothesize that this overfitting is mainly due to 
unknown data error dependencies (correlations and 

Fig. 3  Evolution of the log-likelihood as a function of the 
number of repetitions, i.e., sets of 15 soil cores, used to average 
the simulated data before calculating the log-likelihood. The 
red line indicates changes in the classical log-likelihood while 
the blue line denotes changes in the inflated log-likelihood
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higher-order dependencies) that are not accounted for 
by our classical uncorrelated Gaussian log-likelihood 
formulation that assumes independent data errors 
(Eq.  6). Models of data errors correlations could be 
included in the formulation of the log-likelihood 
functions. But these models require extra parameters 
that need to be estimated (e.g. parameters of spatial 
correlation functions) and these correlation functions 
may change over time and may also be dependent on 
the RSA parameters. We therefore used a simple and 
pragmatic approach to overcome this overfitting prob-
lem and ‘inflated’ the used log-likelihood function by 
multiplying the standard deviations of the data errors 
by a constant factor. We obtained the value of this 
inflation factor as follows. We computed two distribu-
tions of log-likelihoods, distributions I and II, always 
using the true parameter set and our classical uncor-
related Gaussian log-likelihood formulation:

• Distribution I is the distribution of 200 log-likelihoods 
that are calculated from 200 white noise realizations 
used to corrupt the mean log-likelihood (over 150 sim-
ulated data realizations). The white noise distribution 
has a diagonal covariance matrix that contains the 512 
variances of the data errors computed in section 2.1(for 
this calculation, the error term, 

[
yi − Fi(�)

]
 was there-

fore randomly drawn from the assumed measurement 
error distribution). This distribution of log-likelihoods 
thus corresponds to the distribution that would be 
expected if the data errors were truly independent

• Distribution II is the distribution of 200 log-
likelihoods using each time a different realiza-
tion as "observations" and the ensemble mean 
over 150 simulated realizations of RSA simu-
lation model as the forward model simulation. 
This distribution of log-likelihoods thus some-
how encodes the effect of dependencies between 
the data errors. In addition, this distribution is 
“wider”, i.e., has a larger 95% uncertainty inter-
val and interquartile range (IQR).

Based on the comparison between distributions I 
and II (see Fig. 4), one can estimate what the effect 
of the unknown data error dependencies on our clas-
sical uncorrelated Gaussian log-likelihood function 
is. More specifically, it can be derived that for distri-
bution I to have the same IQR as distribution II, the 
standard deviations of the data errors used to derive 
distribution I need to be multiplied by a value of 2. 

Therefore, in the remainder of this study, we inflated 
the log-likelihood function by multiplying the stand-
ard deviations of the data errors by 2.

The inflation strategy described above was found to 
prevent overfitting, but the required averaging of the 
simulated data over 150 realizations makes it unfortu-
nately too computationally-demanding for the MCMC 
to converge within a reasonable amount of time, given 
our available computational resources. In our case, 
each simulation model run takes about 1-12 minutes, 
depending on the parameter combinations. When using 
 DREAM(ZS) with the required minimum of 3 interact-
ing Markov chains together with parallelizing the 150 
realizations per proposed parameter set over 32 CPUs, 
it still incurs a computational cost of about 9-10 days 
to perform 500 MCMC iterations (that is, to achieve 
167 transitions in each of the used 3 Markov chains). 
To make the MCMC sampling affordable given our 
available 32 CPUs, we therefore decided to perform 32 
realizations only. Averaging the simulated data over 32 
realizations instead of 150 makes that the log-likelihood 
remains stochastic to some extent. To deal with this 
remaining stochasticity, we proceeded as follows.

The likelihood for a certain parameter set � for 
a given dataset y is calculated from [Eq. 6], where 
F(� ) is the prediction by the model of the data. The 
problem now is that F(� ) is stochastic and should 
be written as F(�,� ) where � represents a vector of 
zero-mean random numbers that varies from reali-
zation to realization. We can write F(�,� ) = <F(�
)> + δ where < > represents the expected value 
of F(�,� ) and δ is the deviation from the expected 

Fig. 4  Distributions I and II used to compute the used infla-
tion factor (see main text for details)
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value for a certain set � . As we average F(�,� ) for a 
given � over an increasingly large number of � reali-
zations, F(�,� ) converges to <F(�)> and ||δ|| to 0. 
The problem is that it may require a prohibitively 
large number of F(�,� ) simulations to reach a suf-
ficiently small ||δ|| for the MCMC inference not to 
be disturbed. Let us define ε as the stochastic term 
that represents the random nature (or stochasticity) 
of the root growth after averaging over a number 
R of � realizations: F(�,� ) = 1

R

∑R

i=1
F
�
�, �i

�
 with 

� =
[
�1,… , �R

]
 . For a certain observation dataset � , 

we can define the log-likelihood of the combination 
of a given � and a certain realization ε as �(�, �|�).

In order to investigate the variation with � of the 
log-likelihood �(�, �|�) of a certain parameter set � 
and a limited set of � for a certain observation data-
set y, the likelihood of the ‘true’ parameter set was 
evaluated for 20 observation datasets y and 15 sets 
of � where each � corresponded with stochastic for-
ward simulations of 32 realizations of 15 soil cores. 
This was done for 9 different ‘true’ parameter sets 
(Table  2). The parameter sets were chosen by sys-
tematically increasing the parameter values from 
the lower bounds to the upper bounds of 17 selected 
parameters for the inference, i.e., P1 indicates the 
likelihoods of the lowest values (50% of the true 
parameter), while P9 indicates the highest values 
(150% of the true parameter) of each parameter. 
This means that for each considered parameter set, 
�(�, �|�) was evaluated for 15 different ε vectors 

and 20 y observation vectors. From this data set of 
300 �(�, �|�) values we calculated the overall mean, 
the mean standard deviation of the �(�, �|�) values 
that were obtained for a given y but for different ε, 
stdev �_� , and the standard deviation of �(�, �|�) 
values that were averaged over ε, stdev �_� . The 
stdev �_� thus reflects the impact of the differences 
between different observation datasets on � due to 
the noise on the experimental data (which in turn is 
caused by the random nature of the root growth pro-
cess). In contrast, stdev �_� represents the impact 
on � of the stochastic noise associated with the sim-
ulation results due to the finite number of samples 
that are simulated. In Table  2, mean � , stdev �_� , 
and stdev �_� are shown for 9 parameter sets �.

Since the total number of RLD samples that is simu-
lated for each log-likelihood evaluation is 32 times larger 
than the number of RLD samples in an observation data-
set, stdev �_� is smaller than stdev �_� . Table  2 also 
shows that the noise of the simulation results depends on 
the parameters. The parameter sets with a smaller log-
likelihood have a larger standard deviation of the root 
growth parameters, which leads to more stochasticity 
and therefore to a larger variation in the log-likelihood.

As written above, the log-likelihood for a given 
observation dataset does not depend only on the param-
eter set � but also on the set of random numbers, ε. The 
combination of � and ε that jointly lead to the best match 
between the simulation results and observations will be 
selected by the MCMC. As sampling in the MCMC 
goes on, the algorithm always finds higher �(�, �|�) for 
the same � due to the forward simulation model chang-
ing ε. The chance of finding a new (or the same) param-
eter set � for a new ε with sufficiently high �(�, �|�) and 
accepting the new proposal decreases. This will cause 
the MCMC to get ‘stuck’ around a certain �.

To avoid this problem, we propose to change the 
Metropolis acceptance rule of candidate parameter sets. 
The underlying idea is that we express the log-likelihood 
of the large ensemble �(�|�) = �(�, � → ∞|�) as the 
sum of the current log-likelihood �(�, �|�) and a random 
number, κ, that is drawn from a distribution N(0, stdev 
�_�2 ) (Eq. 7):

For a deterministic model and a uniform prior distri-
bution of � , the Metropolis rule accepts a new param-
eter set �2 with probability

(7)�(�|�) = �(�, �|�) + �

Table 2  Mean of log-likelihoods � for the true parameter set 
that are obtained from a combination of 20 different observa-
tions and 15 sets of forward simulations (each consisting of 
32 realizations of 15 soil cores), standard deviation of the log-
likelihoods due to observation dataset noise stdev �_y , and due 
to stochastic simulation noise stdev �_� for 9 different param-
eter sets. See the main text for the calculation details of stdev 
�_y and stdev �_�

Mean � stdev �_� stdev �_�

P1 1211 6.8 2.2
P2 1128 8.6 2.6
P3 1046 8.7 2.7
P4 953 10.3 2.4
P5 780 13.2 3.8
P6 615 19.7 3.7
P7 526 16.1 3.5
P8 468 24.7 4.6
P9 429 20.1 6.5
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For a stochastic model, our proposed probability of 
acceptance is thus:

Based on the analyses reported in Table 2, we sug-
gest to set stdev �_� = 4.

The pseudo-code of our modified MCMC approach 
for generating samples from p(�|�) in case of a sto-
chastic likelihood, L(�, �|�) , reads as follows.

Algorithm A

A1. If now at �1 , propose a move to �2 according to a 
transition kernel q

(
�1 → �2

)

A2. Calculate P = min
(
1,

L(�2,�2|�)p(�2)q(�2→�1)exp(�2)
L(�1,�1|�)p(�1)q(�1→�2)exp(�1)

)

A3. Move to �2 with probability P , else remain 
at �1 ; go to A1.

Under suitable regularity conditions and for a deter-
ministic likelihood, L(�, |�) , and �1 = �2 = 0 , the so-
derived p(�|�) is the stationary and limiting distribu-
tion of the chain. For a stochastic likelihood, L(�, �|�) , 
algorithm A will provide an approximation to p(�|�) 
of which the convergence properties still need to be 
studied. Yet we numerically show in section 2.7 that 
it can provide an unbiased estimate of the posterior 
mean and mode, with overestimated uncertainty.

Illustration of our approach for a simple toy problem

Before applying our method to our actual stochastic 
RSA model, this section illustrates the caveats associ-
ated with inference of stochastic models together with 
our proposed solution. For this toy problem, we con-
sider a simple 2-dimensional linear stochastic forward 
model (toy model). This forward toy model, which 
has nothing to do with CRootBox simulation model 
except that both models are stochastic, is of the form:

where �o is a vector of n observations (observed 
responses), �o =

[
wo
0
,wo

1

]
 contains a “true” intercept, 

P = min
(
1, exp

(
�
(
�2|�

)
− �

(
�1|�

)))

P = min
(
1, exp

(
�
(
�2, �2|�

)
− �

(
�1, �1|�

)
+ �2 − �1

))

(8)�o = �o�
T + �o

(9)�m = �m�
T + �m

wo
0
 , and a “true” slope, wo

1
 , � is a matrix of input (or 

predictor) variables: � =

⎡⎢⎢⎣

1 x1
⋮ ⋮

1 xn

⎤⎥⎥⎦
 , T is the transpose 

operator, �o ∝ N(0, �2
o
�) is the observational error with 

standard deviation �o , �m is the n-dimensional vector of 
modelled variables, �m =

[
wm
0
,wm

1

]
 contains the two 

model parameters and �m ∝ N(0, �2
m
�) is the stochastic 

component of the model with standard deviation �m . 
For such a linear problem with Gaussian errors, if the 
inferred model parameters, �m , are assigned a normal 
prior then the true posterior distribution of �m : 
p
(
�m|�o

)
 , takes the closed form of a Gaussian density 

in �m . Using a zero-mean normal prior �m ∝ N(0,�w) 

with �w =

[
�2
w0

0

0 �2
w1

]
 , p

(
�m|�o

)
 is given by

with

where �2
w0

 and �2
w1

 are the prior variances of wm
0

 and 
wm
1

 , �p is the standard deviation of the measurement 
errors and the posterior mean vector is given by

Note that �p = �o in case of a deterministic model. 
For our stochastic model in (Eq. 9), �p =

√
�2
o
+ �2

m
 . In 

other words, the noise in the residual errors is the sum 
of the measurement noise with the forward model noise.

We used a 100-dimensional � vector (given by 
the first feature from the well-known iris dataset: 
https:// archi ve. ics. uci. edu/ ml/ datas ets/ iris) and cre-
ated some synthetic measurements, �o , using wo

0
= 2 

(intercept) and wo
1
= 1 (slope), and �o = 0.5 . We set 

�w0
= �w1

= 10 , �m = 0.5 and performed two sam-
pling-based inference of p

(
�m|�o

)
 with  DREAM(ZS): a 

first one using regular MCMC and a second one using 
our proposed approach. In both cases, we allowed 
a total of 500,000 forward model evaluations of toy 
model, which we deem to be huge, given the fact that 

(10)p
(
�m|�o

)
= N

(
�m;�

−1�,�−1
)

(11)� =
1

�2
p

�T� + �w
−1

(12)� =
�T�o

�2
p

(13)�−1� =

(
�T� + �2

p
�w

−1
)−1

�T�o
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we only sample two parameters in a linear setup. Here 
the true posterior means, �−1�  (Eqs.11 and 12), are 
w
m

0
= 0.959 and wm

1
= 1.174.

Sampling results for the regular MCMC run are dis-
played in Fig.  5a, b as posterior (gray-colored) histo-
grams, together with the true posterior distribution for 
�p = �o (red curve) and for  �p =

√
�2
o
+ �2

m
 (blue 

curve). Clearly, the MCMC-derived posterior distribution 
differs very much from the true one as it is quite erratic. It 
underestimates the true uncertainty a lot, it has com-
pletely wrong means and it does not encapsulate the true 
posterior means or modes (denoted by the red crosses). 
This pathological behavior of the MCMC is caused by 
the stochasticity in the forward toy model ( �m in (Eq. 9)).

For our proposed approach, we take for this toy 
problem � ∝ N(0, �2

t
) . Denoting by �t the mean of 

the log-likelihood of the true posterior means, wm

0
 

and wm

1
 , we test with coefficients of variation, 

CV =
�t

�t

 , of 10% (Fig.  5c, d) and 5% (Fig.  5e, f), 
respectively. It is seen that our approach estimates 
the true posterior means rather accurately. For the 
considered problem, this nevertheless comes with a 
substantial overestimation of the true posterior 
width for the case with CV = 10% (Fig. 5c, d). For 
CV = 5%, the derived posterior resembles the true 
posterior distribution (blue curves in Fig. 5e, f) a bit 
better, but some overestimation is still present. Yet 
�t can of course not be decreased indefinitely. Still 
for this particular toy problem, our approach seems 
to keep providing accurate posterior means until CV 
becomes smaller than about 4% (not shown). As �t is 
further decreased, the derived posterior becomes 
increasingly biased (not shown). Note that, unfortu-
nately, the optimal value for �t is very much prob-
lem-dependent, as it depends on the characteristics 
of both the stochasticity of the considered forward 
toy model and the used likelihood function. Overall, 
this toy problem demonstrates that our solution can 
dramatically improve MCMC sampling of a stochas-
tic model, at the cost of overestimating uncertainty.

Results

MCMC sampling and convergence

We ran our Bayesian approach using a Python version of 
 DREAM(ZS) (Laloy et al. 2017) in parallel over 32 CPUs 

for a total of 30,000 iterations (log-likelihood evalua-
tions). The R̂-convergence was satisfied for every param-
eter from iteration 13620 on and we thus discarded the 
first 6810 samples as burn-in. Fig. 6 presents the evolu-
tion of the acceptance rate and variation of log-likelihoods 
throughout sampling. The final mean acceptance rate is 
about 14%. Moreover, the distribution of likelihoods after 
burn-in points to the mean value of 793 with a standard 
deviation of 7.

The number of zero-order roots (NB) parameter in 
the CRootBox model is considered as a plant param-
eter that determines how many primary roots emerge 
from the seed or next to the seed. This parameter is cru-
cial in determining the total root length density of the 
sampling data. The tracer plot in Fig. 7a shows that the 
three chains equilibrated around the true NB value after 
some 3000 iterations. The posterior uncertainty associ-
ated with NB is however relatively large (Fig. 7b).

Fig. 8 shows the evolution of three Markov chains for 
the 16 remaining parameters (each chain coded with a 
different color). The black horizontal lines show the true 
parameter values. It is noticeable that the sampled maxi-
mum length of zero-order roots (maxl0) parameter val-
ues stabilize within the first 200 iterations and narrowly 
fluctuate around the true value. In addition, the sampled 
elongation rate of zero-order roots (r0) , insertion angle of 
zero-order roots (theta0), and standard deviation of elon-
gation rate of zero-order roots (r0s) values also converge 
to their true counterparts, but with larger fluctuations. 
The other sampled parameters show higher posterior var-
iations, especially the higher-order root parameters.

Fig.  9 shows the marginal posterior probability 
distribution. The blue markers represent true values. 
The probability distributions of the maximum length 
of zero-order roots (maxl0), elongation rate of zero-
order roots (r0), standard deviation of elongation rate 
of zero-order roots (r0s), internodal distance of zero-
order roots (ln0), and insertion angle of zero-order 
roots (theta0) parameters are normally distributed 
and approximately centered around the corresponding 
true values. Unlike the other zero-order parameters, 
standard deviation of internodal distance of zero-
order roots (ln0s), standard deviation of maximum 
length of zero-order roots (maxl0s) , tropism strength 
of zero-order roots (tr0), and standard deviation of 
tropism strength of zero-order roots (tr0s) param-
eters are not resolved and display a wide posterior 
uncertainty. This is also the case for the higher-order 
parameters.
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Fig. 5  True marginal posterior distributions (blue and red 
curves) and their MCMC-derived counterparts (gray his-
tograms) for the two inferred parameters of our toy prob-
lem. Subfigures (a–b) display the results obtained by regular 
MCMC, while subfigures (c–d) and (e–f) depict the results of 
our proposed approach for two different values of �

t
 . The red 

curves denote the true posterior distributions obtained for a 
deterministic (linear) model. The blue curves represent the true 
posterior distributions obtained if the (linear) model is stochas-
tic (see Eq. 9 and associated text). The m̂ symbol signifies the 
estimated posterior mean. The true posterior means are 0.959 
and 1.174 for wm

0

 and wm

1

 , respectively
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Parameter correlations

A principal component analysis of parameter sensi-
tivities was conducted before the Bayesian inference 
to have insights of parameter combinations that inter-
act and could produce problematic inversion results. 
According to that previous study (Morandage et  al. 
2019), the first two principal components explained 
92.5 % of the total variability in the sensitivity of the 
soil coring data obtained at the end of the growth 
period (Fig.  10). The scatter plots in Fig.  11 high-
light some important parameter correlations, while 
Appendix presents a detailed description of param-
eter correlations. The posterior correlations observed 
between the parameters (Fig.  11) are in agreement 
with the PCA analysis of sensitivities, especially 
with the first and second principal components. The 
parameters having high loadings in the PCA corre-
spond with the parameters that were best resolved 
by the inversion (number of zero-order roots (NB), 
maximum length of zero-order roots (maxl0), inser-
tion angle of zero-order roots (theta0)). Since meas-
ured data from different time intervals are used in the 

inversion while the performed PCA relied on the last 
observation time, elongation rate of zero-order roots 
(r0) parameter, which did not have a strong influence 
in the PCA, could also be inversely estimated with 
relatively high accuracy.

The internodal distance of the zero-order roots 
(ln0) parameter is related to the internodal distances 
of first-order roots on the zero-order roots and thus 
controls how many lateral roots (first-order later-
als) emerge from the zero-order roots. An increasing 
number of zero-order roots (NB) and decreasing inter-
nodal distance of zero-order roots (ln0) both increase 
the root density. This implies that an increase in NB 
can be compensated by an increase in ln0 (Fig. 11A), 
which is reflected in a higher positive correlation of 
the parameter estimates of the number of zero-order 
roots (NB) and internodal distance of zero-order 
roots (ln0) as was also indicated by the PCA analysis 
(Fig. 10).

The insertion angle of zero-order roots (theta0) 
indicates the angle between the starting point of the 
root trajectory and the vertical (towards the gravity) 
direction. Wider insertion angles lead to a broader 

Fig. 6  The trajectory of 
Log-likelihood and the 
MCMC acceptance rate 
throughout the sampling

Fig. 7  Sampling trajectory 
of the NB parameter in each 
of the 3 Markov chains (a). 
Each chain is coded with a 
different color (green, blue, 
orange) and the true value 
is denoted by the horizontal 
black dashed line.  Corre-
sponding marginal posterior 
density plot computed after 
discarding the first 6810 
samples as burn-in (b)
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spreading of the root system, while narrower angles 
reduce the lateral spreading of roots. The insertion 
angle interacts with the tropism strength of zero-
order roots (tr0), which determines how much the 
gravitational force influences root trajectory, i.e., 
higher values of tropism strength apply higher force 
on root tips to grow vertically towards the direction of 
the gravity. The higher gravitational force turns root 
tips towards the downward direction and reduces the 
lateral spreading of the root system. Consequently, 
insertion angle (theta0) and tropism strength of zero-
order roots (tr0) show a relatively high positive linear 
correlation with R = 0.83 (Fig. 11B).

Fig. 11C shows a negative correlation between elon-
gation rate of zero-order roots (r0) and standard devia-
tion of elongation rate of zero-order roots (r0s). The 
negative correlation indicates the effect of the combi-
nation of parameter mean and its standard deviations. 
The correlation between insertion angle of zero-order 
roots (theta0) and standard deviation of insertion angle 

of zero-order roots (theta0s) shows the same effect 
(Fig. A. 1). The well resolved maximum length of zero-
order roots (maxl0) parameter (Fig. 9c) determines the 
rooting depth of the entire root system. As shown in 
Figs. 11D and 1A, the maxl0 parameter is moderately 
correlated with the other parameters. As discussed pre-
viously, the tropism strength of zero-order roots (tr0), 
and maxl0 parameters influence the root distribution 
deeper in the soil profile. These two parameters show a 
moderate negative correlation in both the PCA analysis 
test and the joint correlation plots (Fig. 11D). Further-
more, the parameter pairs, elongation rate of zero-order 
roots (r0) - number of zero-order roots (NB) (R=-
0-44), and elongation rate of zero-order roots (r0) - 
insertion angle of zero-order roots (theta0) (R=-0.41), 
show higher negative correlations, while maxl0-tr0s 
(R=0.51), number of zero-order roots (NB) - standard 
deviation of internodal distance of first-order laterals 
(ln1s) ((R=0.47), and internodal distance of first-order 
laterals (ln1)- standard deviation of internodal distance 

Fig. 8  Tracer plots of MCMC sampling trajectories of inferred 
parameters of the three parallel Markov chains (panels: a to p). 
Each chain is coded by one different color. The dashed black 

lines show the true parameter values, and the y-axis indicates 
the lower and upper bounds of the uniform prior parameter dis-
tributions
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of first-order laterals (ln1s) (R=0.33) higher positive 
correlations (Fig. 1A).

Validation of inferred RSA parameters

We randomly selected hundred sets of parameters 
from the posterior and ran our simulation model with 
those parameters to compare the differences among 
RLD profiles that were derived from the true param-
eter set, measurement data, and estimated parameter 
sets. The left panel in Fig.  12 shows the simulated 
mean RLD profile (solid blue line) based on 32 reali-
zations of 15 soil cores using the true parameter set. 
The shaded blue area represents the standard devia-
tion of the RLD profiles among the different realiza-
tions. The solid black line and the gray shaded area 
represent the mean RLD profile and the standard 
deviation of RLDs for 100 randomly selected param-
eter sets from the posterior, respectively. For each 
selected parameter set, 32 realizations of 15 cores 

were simulated to obtain the RLD profile for that set. 
The right panel shows the profiles of simulated stand-
ard deviations of RLDs among the 15 soil cores. Note 
that the shaded areas here refer to standard deviations 
of standard deviations.

The red line indicates the measurement data used 
for this study. The posterior samples slightly overes-
timate the RLD predicted with the true parameter set 
between -10 cm and -60 cm depth, which is in agree-
ment with the used measured data that also showed 
higher RLDs than predicted by the true parameter set 
in the largest part of this depth range. The widths of 
the shaded areas around the ‘true’ RLDs, which rep-
resent the variability or uncertainty of the measured 
RLDs that are derived from 15 soil cores, and around 
the mean posterior predictions, which represent the 
prediction uncertainty, are similar. The overlap of 
the shaded areas indicates that there is no overfit-
ting and that the posterior parameter and prediction 
distributions do not underestimate the parameter and 

Fig. 9  Marginal posterior probability density functions of sixteen parameters  (panels a  to p). The horizontal x indicates the prior 
range of parameter values, and the y-axes present the probability. The blue marker represents the true parameter value

82 Plant Soil (2021) 467:67–89



1 3

prediction uncertainty. For non-correlated measure-
ment errors, one would expect a smaller posterior 
prediction uncertainty than the uncertainty of the 
observations or measurements. However, the analysis 
of likelihoods of different realizations demonstrated 
that errors were not independent (see Fig.  4) which 
we accounted for by ‘inflating’ the log-likelihood. 
Secondly, the stochasticity of the simulation model 
leads to wider posterior parameter distributions (see 
Fig. 4) which translates into larger prediction uncer-
tainty. Since we could not obtain an estimate of the 
posterior parameter uncertainty for the deterministic 
simulation model, due to limitations in computational 
resources, we could not quantify the effect of the 
forward simulation model stochasticity of the RSA 
model on the posterior parameter distribution as we 
could for the simple toy model.

Next to fitting the mean RLD of 15 soil cores, also 
the standard deviation of root length densities among 
soil cores was used as information to estimate the 
RSA parameters. The right panel in Fig 12. demon-
strates that the standard deviations predicted for the 
true parameter set (blue line) and for selections from 
the posterior parameter distribution (black line) match 
closely. They underestimated the measured stand-
ard deviation (red line) near -20 cm depth, but the 

uncertainty of the standard deviation that is obtained 
from 15 soil cores (shaded areas) is quite large. Simi-
lar to the mean root length densities, the uncertainty 
of the standard deviation ‘measurements’ (blue 
shaded areas) and of predictions of the standard error 
(gray shaded area) are similar. These results illustrate 
that also variability of root length densities can be 
predicted by RSA models and that RSA parameters 
that are estimated from RLD measurements consist-
ently predict this variability. The information content 
of this variability was not analyzed in this study but 
this can be done in future studies by comparing pos-
terior parameter distributions that are obtained from 
data sets that include and do not include the measured 
standard deviations.

Discussion

In this study, we identified potential challenges asso-
ciated with the inference of RSA parameters from 
field sampling data using inverse modeling.

MCMC inversion run time for RSA parameter 
estimation

The requirement of higher computational demand and 
computing resources is one of the main drawbacks of 
the Bayesian approach (van de Schoot et  al. 2014). 
Since the simulation of the root distribution in one 
virtual field plot requires simulating several root sys-
tems, our simulation model takes 1 to 12 minutes in 
total for one forward simulation model run. Addition-
ally, we used 32 repetitions to reduce the stochastic-
ity of the model and given our available computing 
resources, the inversion algorithm completed only 
about 500 iterations per day. Thus, the total sam-
pling run time for 30000 iterations was approximately 
60 days on our 32 computing nodes with 4 x AMD 
Opteron 6300 (Abu Dhabi) 2.3GHz CPU and 8.00 Gb 
RAM per each node. Although parallel implementa-
tion reduces the inversion time significantly, comput-
ing cost is still a limiting factor.

Fixing problematic and highly correlated parameters 
from field observations

We highlighted that one of the main obstacles in 
inference is that the correlation of parameters leads 

Fig. 10  Biplot of principal component analysis of parameter 
loadings for the 1st and 2nd PCs of soil coring data (modified 
after (Morandage et al. 2019))
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to difficulties in resolving parameters separately. 
Therefore, we propose to fix some parameters that 
can be measured directly in field experiments to 
improve the prediction uncertainty of the inferred 
parameters. Previous studies indicate that the num-
ber of zero-order roots (NB), can be estimated from 
field sampling techniques (Arifuzzaman et  al. 2019; 
El Hassouni et al. 2018) and therefore can be used as 
a fixed parameter in inference. This will improve the 
accuracy of the other parameter estimates because NB 
parameter is one of the most sensitive parameters that 
determine the total root length density of soil core 
data. The influence of higher gravitropism strength 
compensates for the influence of a larger insertion 
angle. Therefore, it is difficult to estimate the parame-
ters independently, and fixing one of these parameters 
would estimate the other with higher accuracy. The 
insertion angle and its variability can be measured 
directly from exposed root systems (Landl et al. 2018; 
Wu and Guo 2014). This indicates that improving 
field methods to extract information about parameters 

helps reduce the uncertainty of the inversely esti-
mated parameters.

Fig 9 shows that some of the fitting parameters are 
well-constrained and close to their true values, these 
include lmax0, r0, r0s, ln0 and theta0, i.e., the primary 
root parameters. However, the remaining parameters 
were poorly constrained. There are two possible rea-
sons that can explain the excellent agreement with the 
simulated data shown in Fig 12. One reason is that the 
poorly-constrained parameters “neutralize” each other  
because of parameter compensation, the other reason 
would be that they don’ t influence much the simulated 
RLD and thus aren’t really necessary. As our previous 
sensitivity analysis revealed all the parameters we fit-
ted as at least moderately sensitive and without high 
nonlinear effects, neutralization is more likely. To dou-
ble-check this, we included two scenarios in Fig 12, in 
which we simulated root systems architectures by fixing 
parameter values of higher-order roots to two extremes 
that produce the highest and lowest root length densi-
ties (only within the range of selected lower and upper 

Fig. 11  Marginal prob-
ability distributions and 
joint distribution of strongly 
correlated parameter pairs 
with respective correlation 
factors (panels A, B, C 
and D)
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bounds of the prior parameter distributions). The green 
curve corresponds to the lowest, and the purple curve 
indicates the highest RLDs, and both are well outside 
the grey shaded are. These two curves demonstrate that 
higher-order roots significantly affect RLDs. Therefore, 
using arbitrary parameter combinations leads to highly 
deviated RLDs compared to the RLD profile simulated 
based on the true parameter set. Parameters need to be 
drawn from the collected set of posterior samples, 100 
of those are provided in the supplementary material.

An alternative approach to constrain better the 
higher-order root parameters could be to use early 
stages of root systems to retrieve parameters of lower 
orders and systematically add resolved parameters to 
the inversion. Another approach would be categorizing 
root orders based on diameters and including them in 
the likelihood function of the inversion algorithms to 
resolve root orders based on diameter classes

Possibility of application on real field root sampling 
data

Our approach was tested on synthetic root sampling 
data, derived from root architecture parameters and 

root system simulation model. The main advantage 
of a synthetic experiment is that the influence of soil 
environmental conditions is neglected and inversely 
estimated parameters and true parameters are inde-
pendent of growth medium. Thus, we assumed that 
the soil is homogeneous, and the soil moisture, pen-
etration resistance, and other chemical and biologi-
cal conditions did not vary in the soil. Therefore, in 
our simulations, RSA of the plant and sampling data 
are independent of varying soil conditions. How-
ever, these assumptions are not valid for root growth 
in real field conditions. Therefore, root architecture 
models used in root simulations should account for 
the effects of spatial and temporal variations in soil 
conditions and weather influence on root growth. 
Current root system architecture models are capa-
ble of incorporating soil information. However, the 
models should be tested with experimental field 
data to implement the functions or effects, which 
are specific to both plant type and soil conditions. 
Notably, most commonly used root growth func-
tions, i.e., linear or exponential growth, should be 
adjusted to account for C allocation and shoot-root 
communications.

Fig. 12  Root length density profiles (left: RLD-mean and 
right: RLD-std) simulated using the parameter sets of the pos-
terior distribution (black), using the true parameter set (blue), 
and the measurement data (red). Shaded areas represent the 
standard deviations of the root length density profiles obtained 
from the true parameter set (blue and standard deviations of 

predictions using parameters sampled from the posterior distri-
bution (gray). The lines with "+" markers represent the low-
est (green) and the highest (Purple) RLD profiles derived by 
fixing higher-order root parameters to their lowest and high-
est extremes, respectively, without changing the true values of 
lower-order root parameters
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In this study, we focused on root length density 
depth profiles regardless of root diameter classes 
or the relationship between diameter classes and 
root type. However, soil coring data provide addi-
tional information such as root diameter or num-
ber of root tips. Adding such information could 
improve the accuracy of estimated parameters. 
Moreover, the CRootBox simulation model is used 
to test the Bayesian inversion approach, which is 
independent of the specific simulation model. 
Therefore, similar models could also be used with 
this inversion approach

As indicated in the materials and methods sec-
tion, selecting prior width and distribution of 
RSA parameters is challenging due to the scar-
city of measured parameters. We considered uni-
form prior distributions and assumed that there 
was no prior information available about the 
parameter distribution within the defined param-
eter range. Setting this range is of course sub-
jective and stating that parameter values outside 
this range are impossible presumes in fact strong 
prior knowledge about the parameter distribu-
tion. In order to set this range properly, a bal-
ance between the width of the parameter space 
in which the posterior distribution is determined 
and an improper exclusion of possible param-
eter values that fall outside of the range must be 
sought. As an alternative to bounded uniform dis-
tributions, unbounded prior distributions could 
be used. Selecting wider priors could result in 
a broad posterior distribution of non-sensitive 
parameters which is accompanied by a large com-
putational cost. When strong parameter correla-
tions exist, the algorithm needs to find a narrow 
region with high posterior probability density that 
stretches across the entire parameter space which 
may also lead to complications when prior param-
eter ranges are wide. Prior information about one 
of the correlated parameters that narrows the prior 
distribution of this parameter could constrain 
the width of the posterior distributions of other 
parameters and help to improve the accuracy of 
inferred parameters. Therefore, prior knowledge is 
highly influential when applying this approach for 
field-derived core sampling data.

Conclusions

In this study, we demonstrated using a synthetic experi-
ment that soil core sampling data may contain enough 
information to inversely retrieve a few parameters (maxi-
mum length of zero-order roots (maxl0) , number of 
zero-order roots (NB), elongation rate of zero-order roots 
(r0) , insertion angle of zero-order roots (theta0)) of 
wheat root system architectures based on a RSA model 
that simulates root growth in a field plot. Although the 
inferred parameters of the higher-order roots show a 
large posterior uncertainty, we argue that our proposed 
approach is an important step towards retrieving RSA 
parameters by probabilistic inversion of field root sam-
pling data. The Bayesian framework can extract infor-
mation that is hidden in field observations and can be 
used to infer some parameters of RSA models. It also 
identifies parameters that cannot be extracted and for 
which information is lost in the field observations.

This work also provides useful insights about the chal-
lenges associated with the inverse estimation of RSA 
parameters by Markov chain Monte Carlo (MCMC) 
sampling, such as the mode stochasticity and high subse-
quent computational demand that requires to reduce the 
stochasticity. Challenges associated with the RSA model 
stochasticity were addressed by averaging the simulated 
data associated with each parameter set over multiple 
forward simulations. Since performing enough repeti-
tions to get a fully stable likelihood was found intracta-
ble given our available computational resources, we pro-
posed a modification of the Metropolis acceptance rule 
in the MCMC to account for the remaining likelihood 
stochasticity. Before using it for sampling the RSA model 
parameters, the impact of this modification is studied for 
a simple toy problem for which it is shown to allow for 
accurate recovery of the true posterior means, though 
at the cost of overestimating their uncertainty. Moreo-
ver, the observed overfitting problem could be solved by 
appropriately inflating the error variances in the likeli-
hood. Importantly, we found that correlated parameters 
cannot be well resolved and therefore, care must be taken 
for selecting and fixing correlated parameters. Since our 
simulations assume that roots grow in a homogenous soil 
under optimal conditions, future work should investigate 
our inversion approach by considering site-specific soil 
and environmental conditions.
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