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Abstract
Aims The carnivorous Utricularia (Lentibulariaceae)
has an anatomically simple and seemingly rootless veg-
etative body. It occupies a variety of wetlands and
inland waters and shows a broad range of life forms.
Here, we aimed to elucidate structural and functional
traits in various hydric conditions. Furthermore, we
intended to evaluate morpho-anatomical adaptations in
correlation with life forms.
Methods Morpho-anatomical characteristics typical for
hydrophytes of all life forms were investigated by light
microscopy on 13 Utricularia taxa, compared to one
Pinguicula and two Genlisea taxa, and assessed by
multivariate analyses.
Results Vegetative structures of Utricularia and
Genlisea showed reduced cortical, supporting, and

vascular tissues. With increasing water table, leaves
were thinner, and narrower or dissected, and submerged
organs tended to contain chloroplasts in parenchymatic
and epidermal cells. In some main stolons, an endoder-
mis with Casparian strips was visible. Large gas cham-
bers, including a novel ‘crescent’ and a special ‘hollow’
aerenchyma pattern, were found in amphibious to free-
floating taxa.
Conclusions The evolutionary transfer of carnivory
from aerial to subterranean organs inGenlisea, and even
more in Utricularia, coincides with a highly simplified
anatomy, which is adapted to a broad variety of hydric
conditions and compensates for structural innovations in
the uptake of nutrients.
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Introduction

Life forms of hydrophytes

Hydrophytes are plants living “in water or on a substrate
that is saturated at a frequency and duration during the
growing period sufficient to affect plant occurrence”
(Tiner 2017). Water plants constitute about 1–2% of
the angiosperms today, while vascular hydrophytes
(macrophytes) evolved from terrestrial plants of hun-
dreds of families and genera at several points in time
(Cook 1999; Chambers et al. 2008).
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The life forms (habits) of aquatic plants range from
terrestrial but occasionally inundated taxa, with anchor-
age in the substrate and with leaves and reproductive
organs exposed to the air, to unattached, free-floating
taxa with all parts under water. Between the extremes,
gradually different forms exist, contingent upon water
regimes and adaptive responses of the plants to environ-
mental changes such as flooding and unflooding, pre-
cipitation, or evaporation (cf. Sculthorpe 1967;
Braendle and Crawford 1999; Tiner 2017). Many hy-
drophytes have adapted to various habitats and hence
show more than just one life or growth form (cf.
Sculthorpe 1967; Cook 1999).

Classification of hydrophytes

Authors engaged in the research of carnivorous plants
and the Lentibulariaceae in particular (e.g. Taylor 1989;
Guisande et al. 2007; Reut and Płachno 2020) designate
most species within the Lentibulariaceae as “terres-
trials”, although the majority colonizes wet, water-
logged or temporarily submerged habitats. According
to Taylor (1989), “terrestrial” plants are those flowering
when the soil is humid or saturated but being submerged
in wet periods, which coincides with Cook’s (1999)
definition of ‘tenagophytes’. Taylor (1989) delimits
“terrestrials” from affixed aquatics and (freely)
suspended (inflated) aquatics but in some instances also
from subaquatics. Affixed aquatics are mostly anchored
in the substrate (Guisande et al. 2007) and possibly
represent a transition towards suspended (free-floating)
hydrophytes (Jobson et al. 2003). Subordinating sub-
aquatic in “terrestrial” habits (e.g. Guisande et al. 2007)
or subaquatic in affixed aquatic habits (e.g. Jobson et al.
2018) leads to results which are difficult to compare.
This attempt of a classification of life forms in carnivo-
rous plants does not seem to be suitable for a classifica-
tion of hydrophytes in general and needs to be adjusted.

In the current paper, we follow a simple classification
of habits of wetland and aquatic plants as outlined by
Sculthorpe (1967) and Hutchinson (1975), differentiat-
ing between ‘anchored hydrophytes’ (encompassing
‘emergent hydrophytes’, ‘floating-leaved hydrophytes’,
and ‘submerged hydrophytes’) and ‘free-floating hydro-
phytes’. However, since ‘amphiphytes’ are adapted to a
terrestrial as well as a (periodically) submerged life, i.e.
to aerobic and anaerobic conditions, we rank this group
among anchored hydrophytes. They are often found in
the transitional zone between land and water where

flooding and unflooding occur (Braendle and
Crawford 1999; Crawford 2008). Extending the scope
of hydrophytes by adding amphiphytes enables the
identification of ecological and evolutionary transects
(i.e. various grades and combinations of morphological
and anatomical specializations) within hydrophytic
plants, and the concurrent delimitation of this group
from purely terrestrial plants (Barrett et al. 1993).

Morpho-anatomical characters

Early anatomical works on hydrophytes provide in-
sights into structural characteristics of species and gen-
era across various plant families (e.g. Schenck 1886;
Arber 1920). In his book on aquatic vascular plants,
Sculthorpe (1967) connects morpho-anatomical traits
with physiological and functional aspects. Experimental
and observational studies, mainly at the species level,
led to the conclusion that the life in a transitional zone
between land and water, and in fluctuating water condi-
tions entails a variety of adaptive responses, and hence a
greater phenotypic plasticity, especially in amphibious
and emergent hydrophytes (Barrett et al. 1993;
Crawford 2008; Lusa et al. 2011). In these groups,
heterophylly is widespread, exhibiting submerged and
aerial leaf forms adapted to the respective milieu
(Sculthorpe 1967; Mommer et al. 2005; Li et al.
2019). In the relatively stable and homogeneous envi-
ronment of the water column, however, the diversifica-
tion of obligate hydrophytes is generally low (Barrett
et al. 1993; Hidalgo et al. 2015). Overall, hydrophytes
show heterogeneous combinations of morphological,
anatomical, and functional traits (Table 1) that differ
from those of strictly terrestrial plants.

Comparing species of various life forms within one
genus may uncover adaptations to habitats and hence
also evolutionary aspects rather than just phenotypic
responses to changes in the environment. However, to
date, a comparative morpho-anatomical study on a hy-
drophytic plant genus with a broad range of life forms is
missing. One reason may be that only few aquatic
genera offer a large variety of life forms (cf. Cook
1999). One of these is the carnivorous Utricularia L.

Lentibulariaceae

Members of the bladderwort family (Lentibulariaceae:
Lamiales) with its three genera Pinguicula L.,
Genlisea A.St.-Hil. and Utricularia L. are among the
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most interesting herbaceous angiosperms because of
their carnivorous nature, unique vegetative bodies,
small genome sizes, and several more biological pecu-
liarities (cf. Ibarra-Laclette et al. 2013; Rutishauser
2020; Silva et al. 2020a).

Rosulate and rhizomatous growth forms are general-
ly found in terrestrial or amphibious species of the
Lentibulariaceae, while stolonifery occurs within all
habits. In the current paper, we use the terms ‘rhizome’
and ‘stolon’ group-specifically. Both are generally hor-
izontally growing shoots, while rhizomes tend to be
shorter, often having storage function and giving rise
to roots. Stolons are considered to have longer inter-
nodes. ‘Anchor stolons’ (‘rhizoids’, Taylor 1989) of
several Utricularia species are assigned to unbranched
and much shorter organs that grow geotropically posi-
tive and generally into the soil (Reut and Płachno 2020).

The rosulate butterworts (Pinguicula) contain around
100 species of which most of them are mesophytes,
amphiphytes and lithophytes, and only a few are true

epiphytes (Fleischmann and Roccia 2018; Casper
2019). Insects are trapped on the foliage leaves of
homophyllous butterworts above ground throughout
the year, while heterophyllous species are effectively
carnivorous only during wet periods (e.g. Legendre
2000; Fleischmann and Roccia 2018). Pinguicula spe-
cies have rhizomes (Casper 2019) or short stems
(Legendre 2000), and few produce runner stolons.

The corkscrew plants (Genlisea) comprise 31 spe-
cies of amphiphytes and few emergent hydrophytes
(Fleischmann 2012, 2018; Silva et al. 2020b).
Genlisea is considered being heterophyllous, having
non-carnivorous rosettes of green leaves above
ground and subterranean “rhizophylls” that function
like an eel-trap (Reut 1993; Fleischmann 2018;
Płachno and Muravnik 2018). Genlisea shows short
vertical stems or horizontal rhizomes (Fleischmann
2018). Since the rhizomes in G. repens are elongated
(Reut 1993), they will hereafter be called stolons in
accordance with Fleischmann (2018).

Table 1 Common morphological and anatomical characters and their functions in herbaceous hydrophytes

Morphological / anatomical adaptation Function

1) Reduced or absent roots in some (submerged) species BIO

2) Tendency to develop narrow leaves (submerged form) or dissected leaves (in
several submerged or free-floating aquatics) increasing the ratio of surface
to volume

ABS, FLE, LIG

3) Thin leaves without palisade parenchyma, and with reduced or no
mesophyll, losing dorsiventrality

FLE, LIG

4) Epidermis of submerged organs/leaves with chloroplasts LIG

5) Delicate submerged organs with a thin cuticula ABS

6) Reduced xylem elements BIO

7) Prominent intercellular spaces (between spongy parenchyma in leaves) or
lacunar / aerenchymatous anatomy

GAS

8) Occurrence of hydropotes or glandular types of trichomes in the epidermis,
e.g. in submerged species of Potamogeton, Ceratophyllum, and
Cryptocoryne

ABS

9) Reduced or absent supporting tissue (sclerenchyma, collenchyma) FLE

10) Limitation of the vascular strand to a central cylinder in roots (and stems);
endodermoid layer, channelizing the flow of water through reduced xylem

BAR, BIO

11) Reduction, inactivity, or absence of stomata (especially in submerged
leaves); in some plants replaced by secretory structures

BIO, STO

12) Development of adventitious roots STA, ABS

Abbreviations of functions: ABS = Enhancement of absorption of nutrients, and dissolved CO2 and O2; GAS = Passage for an increased
diffusion of gases, responding to gaseous pressure; buoyancy; BAR = Barrier to restrict radial oxygen loss (ROL) to the soil; BIO =
Optimization of biomass investment (alternative structures for the uptake or transport of nutrients and dissolved gases); FLE = Flexibility in
water movements; LIG = Enhancement of the collection of light in lower light conditions and in every organ orientation; STA = Stabilization
of the plant (rosette) position in the water; STO =Redundancy of stomata (gas exchange in the air) in submerged organs; hydathodes for
guttation (water secretion by root pressure) on floating leaves

Summarized from overviews by Sculthorpe (1967), Wetzel (1988), Wiegleb (1991), Jung et al. (2008), Colmer et al. (2011), Krähmer
(2016), and Tiner (2017)
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Finally, the bladderworts (Utricularia) are the most
diverse within the Lentibulariaceae. They consist of
about 240 species and show the widest range of life
forms within the family, from mesophytes to free-
floating aquatics, in addition to rheophytes, lithophytes,
and epiphytes (cf. Guisande et al. 2007; Jobson et al.
2018; Jobson and Baleeiro 2020). Like Genlisea, “ter-
restrial” Utricularia species have leaves for photosyn-
thesis and subterranean leaf-like organs for carnivory. In
Utricularia, the prey is actively captured by tiny suction
bladders, functioning like a mousetrap, while the tubular
trap of Genlisea is considered being passive. However,
abundant water is required for an effective operation of
both trap types (Guisande et al. 2007; Jobson et al. 2018;
Płachno et al. 2019a, b). Most species ofUtricularia are
stoloniferous (Taylor 1989; Jobson et al. 2003). The
term “stolon” has established inUtricularia and prevails
for reasons of consistency (Taylor 1989), also because
in some species it grows above ground and up to several
meters in length.

Anatomy of vegetative organs in the Lentibulariaceae

Early anatomical examinations of vegetative parts of
carnivorous plants were done e.g. by Kamieński
(1891), Lang (1901) and Merl (1915), but they largely
failed to imply comparative discussions on functional
aspects in a broader context of e.g. carnivory or adapta-
tions to aquatic habitats. Later anatomical studies on
vegetative organs in the Lentibulariaceae were mainly
focusing on trap tissues (e.g. Lloyd 1942; Płachno et al.
2014; Płachno et al. 2017) and the functional ultrastruc-
ture of digestive glands (e.g. Płachno and Jankun 2004;
Płachno et al. 2019a). Most recently, Płachno et al.
(2020b) described structures of tubers in one Genlisea
and two Utricularia species showing adaptation to abi-
otic stress (e.g. seasonal drought or fire). Reut and
Płachno (2020) examined the anatomy of stolons, blad-
der stalks and leaves ofU. dichotoma sensu lato clones,
originating from five amphibious to emergent popula-
tions of Australia and New Zealand, and found simple
and lacunate characters, which are basically homoge-
nous throughout the subterranean/submersed organs
and across the sources.

Aims of the study

In the current study, we useUtricularia (Lentibulariaceae)
as model genus to investigate differences and

commonalities of morpho-anatomical characters between
species of several hydrophytic life forms, as this genus
yields probably the greatest richness of habits amongst
hydrophytes. We aim to elucidate by which structural
means Utricularia handles water, nutrients, and gases in
various hydric conditions. By applying multivariate anal-
yses, we assess the clustering of life forms and the grade
of adaptations to the level of submergence, in correlation
to combinations of morpho-anatomical characters of veg-
etative organs of several amphibious, submerged, and
free-floating taxa of Utricularia and chosen taxa of
Pinguicula andGenlisea. Results are discussed in relation
to functional aspects of traits, the carnivorous syndrome,
and the evolution of the Lentibulariaceae.

Materials and methods

Plant material and preparation

In our morpho-anatomical investigation, we selected a
total of 16 species from the Lentibulariaceae genera
Pinguicula, Genlisea and Utricularia (see Table 2 for
a full description, including taxonomic ranking, growth
form and sources).

The plant material was studied with respect to several
morpho-anatomical characters as outlined in Table 1.
Examinations were performed on leaves, roots
(Pinguicula only), trap stalks, and several types of sto-
lons (where present). The anatomy of leaves was inves-
tigated on P. gigantea, G. hispidula, U. volubilis,
U. paulineae, U. uniflora, U. delicatula, and U. stygia.
Detailed data of all investigated Lentibulariaceae spe-
cies with traits of leaves, stolons, roots, anchor stolons,
and trap stalks is provided in the Supplementary Infor-
mation (Online Resource) 1.

Plant samples used for light microscopywere fixed in
a mixture of 2.5 % glutaraldehyde and 2.5% formalde-
hyde in a 0.05 M cacodylate buffer (Sigma; pH 7.2)
overnight or for up to four days. After fixation, the
material was washed three times in a 0.1 M sodium
cacodylate buffer followed by post-fixation in 1% os-
mium tetroxide solution at room temperature for 1.5 h.
The samples were dehydrated in graded ethanol series to
95%, infiltrated and embedded using an epoxy embed-
ding medium kit (Fluka). After polymerisation at 60 °C,
sections were cut using a Leica Ultracut UCT ultrami-
crotome. Semi-thin sections (0.9-1.0 μm thick) were
prepared and stained with aqueous methylene blue /
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Table 2 Plant material used for anatomical examinations

Genus
Subgenus
Section

Species Habit,
growth

Source

Pinguicula

Isoloba

Agnata Pinguicula gigantea Luhrs t (l), sto Ex origin Oaxaca, Mexico1*

Genlisea

Genlisea

Genlisea Genlisea hispidula Stapf a, ros Ex origin Africa1**

Genlisea repens Benj. a, sto Ex origin South America2**

Utricularia

Polypompholyx

Polypompholyx Utricularia multifida R.Br. a, ros Ex origin Western Australia3*

Pleiochasia Utricularia volubilis R.Br. (e-)s, ros Ex origin SWWestern
Australia4***

Utricularia paulineae A.Lowrie a, sto Ex origin SWWestern Australia5**

Utricularia oppositiflora R.Br.† a(-e), sto Ex origin Newcastle, New South
Wales, Australia4**

Utricularia dichotoma subsp. aquilonia
R.W.Jobson†

a, sto Ex origin Katoomba, New South
Wales, Australia1**

Utricularia tubulata F.Muell. f Ex origin Australia6****

Lasiocaules Utricularia uniflora R.Br. a, sto Ex origin Australia5**

Bivalvaria

Australes Utricularia delicatula Cheeseman a, sto Ex origin Whangamarino wetlands,
New Zealand5**

Utricularia

Foliosa Utricularia tricolor A.St.Hil. a, sto Araraquara, São Paulo State, Brazil7

Utricularia Utricularia stygia Thor s, sto Treboň, Czech Republic8

Utricularia breviscapa Wright ex Griseb. f, sto, flo Araraquara, São Paulo State, Brazil7

Vesiculina Utricularia cucullata A.St.Hil. & Girard f, sto a) Itirapina, São Paulo State, Brazil;
b) Delfinópolis, Minas Gerais
State, Brazil9

Utricularia purpurea Walter (s-)f, sto Ex origin unknown4****

The taxonomy of genera, subgenera, sections and species follows Cieslak et al. (2005), Fleischmann (2012), Jobson et al. (2018), and Jobson
and Baleeiro (2020)

†Treated as U. dichotoma sensu Taylor (1989) in Reut and Płachno (2020), but subsequently underwent taxonomic revision by Jobson and
Baleeiro (2020)

Habit of sample (alternative/usual life form in situ in brackets): amphiphyte (a); emergent hydrophyte (e); free-floating (suspended)
hydrophyte (f); lithophyte (l); submerged hydrophyte (s); terrestrial plant (t). Growth form: with floats (flo); rosulate (ros); stoloniferous (sto)

Sources, ex situ: 1 Cultivation in the Botanic Garden of Jagiellonian University in Kraków, Poland. 2 Cultivation in the Department of Plant
Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Poland. 3 Collection of Kamil Pásek, Ostrava,
Czech Republic, http://www.bestcarnivorousplants.net. 4 Collection of Dr. Lubomír Adamec, Institute of Botany of the Czech Academy
of Sciences at Treboň, Czech Republic. 5 Collection of Nigel Hewitt-Cooper, UK, http://www.hccarnivorousplants.co.uk. 6 Collection of
Corin Gardiner, New Zealand. *Grown in humid soil. **Grown in wet to saturated soil. ***Grown under water in an aquarium, anchored in
soil. ****Grown free-floating

Sources, collected in situ: 7 Farm near Araraquara, São Paulo State, Brazil; Fazenda Palmeiras, swamp c. 50m from the road; V.F.O.Miranda
et al. 2856. 8 Near Treboň, Czech Republic. 9 From two populations: (a) road Itirapina-Brotas, São Paulo State, Brazil; swamp c. 10 m from
the road; V.F.O.Miranda et al. 2859; (b) Delfinópolis, Minas Gerais State, Brazil; flooded area c. 250 m from the road; V.F.O.Miranda et al.
2877
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azure II (MB/AII) for 1–2 min (Humphrey and Pittman
1974). Additional material was fixed as above, embed-
ded in Technovit 7100 (Kulzer, Germany) and proc-
essed as in Lustofin et al. (2020). Sections were exam-
ined and photographed using a Nikon Eclipse E400
microscope with a Nikon DS-Fi2 camera and NIS-
Elements D 4.00.00 4.0 software (Nikon, Tokyo, Japan)
and using an Olympus BX60microscope with an Olym-
pus XC50 digital camera and cellSens Standard Soft-
ware (Olympus, Tokyo, Japan).

Multivariate analyses

To quantitatively evaluate morpho-anatomical characters
and their correlationwith life forms in theLentibulariaceae,
we selected characters 1–9 from Table 1, as only those
provided variability across the chosen taxa. The traits were
recorded from 14 species with comparable organs (leaves
for the morphological and stolons for anatomical data
collection). To visualize how the species can be optimally
clustered, if life forms can be suitably grouped, and which
morpho-anatomical features contribute most to the group-
ings, the data dimensionality was reduced through several
computing techniques while maintaining the most impor-
tant information. We created three sets of variables for
multivariate analyses on the 14 taxa. Dataset I contained
‘life forms’ and ‘location of stolons’ in addition to the

morpho-anatomical characters 1–9. The trait ‘life forms’
was selected to assess correlations of life forms with all
other traits. ‘Location of stolons’ was included in dataset I
to evaluate how far the stolon related traits were influenced
by the location of the stolons in the respective substrate. In
dataset II we excluded ‘life forms’, and dataset III
contained the morpho-anatomical traits only. All biometric
traits and their values used in the analyses are presented in
Table 3.

We ran a graph-based clustering with BioVinci
(BioTuring Inc) version 3.0.9 to calculate the “best fit”
dimensionality reduction method with highest Silhou-
ette Score [-1, 1]. In addition, the tool identified suitable
traits supporting the evaluated hierarchical clusters in a
decision tree by applying cost complexity pruning
criteria such as Gini index and Entropy. The same
methods were used when clusters were validated ac-
cording to life forms (‘life form clustering’). We ran
Principal Component Analyses (PCA) by exclusion vs.
inclusion of pre-processing with scaling, and by apply-
ing singular value decomposition (SVD) with imputa-
tion to calculate principal components. Some PCA scat-
ter plots were overlayed with vectors (traits), adding
information on the correlations of traits (direction of
vectors) and the influence of traits (lengths of vectors).
PCA statistics were taken from BioVinci (BioTuring
Inc) version 1.1.5. The computing and illustration of

Table 3 Biometric traits and their values used in multivariate analyses

Trait (variable) Value

L) Life form terrestrial plant (1), amphiphyte (2), submerged hydrophyte (4), free-floating
(suspended) hydrophyte (5)

0) Stolon location above ground, aerial (1), subterranean, few mm to few cm in the soil (2),
submersed, few cm under water - in soil or floating (3)

1) Anchoring organs roots present (1), anchor stolons (rhizoids) present (2),
roots/rhizoids absent (3)

2) Leaf form large-fleshy obovate (1), small spathulate-circular (2), (small) narrow-linear (3),
dissected (4)

3) Leaf thickness mesophyll layers: > 10 (1), 8–10 (2), 4–7 (3), < 4 (4)

4) Stolon chloroplasts none identified (1), in parenchyma (2), in parenchyma and epidermis (3)

5) Stolon diameter thickness, in mm: > 0.56 (1), 0.41–0.56 (2), 0.25–0.40 (3), < 0.25 (4)

6) Stolon xylem Xylem tracheary element (vessel), diameter in µm: > 20 (1), 14–20 (2),
< 14 (3), none identified or xylem lacuna only (4)

7) Stolon intercellular spaces nil (1), slight intercellular spaces (2), moderate/extensive intercellular spaces to
wheel-shaped aerenchyma (3), crescent to hollow aerenchyma (4)

8) Stolon external glands absent (1), present (2)

9) Stolon supporting tissue present (1), absent (2)
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confidence ellipses (CI = 95%) of clusters in PCA were
done with ClustVis (Metsalu and Vilo 2015).

Results

Morpho-anatomy of leaves and main stolons

We characterized the anatomical traits of leaves and
main/runner stolons (see Table 4 for a full
description, including references to figures).

Additional data can be found in Table 5, which was
used for multivariate analyses.

Morpho-anatomy of other vegetative organs

The stoloniferous P. gigantea showed adventitious roots
arising from a short vertical stem, without branching or
root cap, but with unicellular hairs. Vegetative organs of
Genlisea and Utricularia did not exhibit external root
structures and adventitious roots. SomeUtricularia spe-
cies developed other anchoring organs (so called anchor

Table 4 Summary of morpho-anatomical characters of leaves and stolons

Leaves (Fig. 1a-e) Stolons (Figs. 1f-h and 2)

Organization Simple Simple

Cross-section Dorsiventral (but circular in trap bearingU. volubilis
leaves)

Circular

Epidermis Uniseriate Uniseriate

Cuticle* Cuticularized Cuticle seemingly thin (e.g. Figs. 1f and g and 2e)
but somewhat thicker in U. volubilis (Fig. 2d)

Stomata Stomatous (except for submersed leaves) No stomata found

Glands P. gigantea: Stalked and sessile glands
Genlisea and Utricularia: button-like glands

Genlisea and Utricularia: button-like glands abun-
dant (Fig. 2e) with generally one head cell (but
with two head cells in U. breviscapa)

Mesophyll (leaf) /
cortex (stolon)

Palisade parenchyma absent.
P. gigantea: prominent water storage tissue
Genlisea and Utricularia: Spongy parenchyma
Intercellular spaces or lacunae present (Fig. 1c-e)

Pentagonal to polygonal, thin-walled and unlignified
parenchymatic cells (more irregular cell shapes in
P. gigantea, Fig. 1g).

Intercellular spaces: none (P. gigantea, Fig. 1g),
small (e.g. G. repens, Fig. 1f), or
frequently aerenchymatic (Fig. 2a, c-i),
predominantly lysigenous

No hypodermis/exodermis found

Chloroplasts P. gigantea: adaxially in mesophyll, abaxially in
patches, and in bundle sheaths; occasionally
with amyloplasts

Genlisea andUtricularia: in spongy parenchyma; in
submerged and free-floating Utricularia species
also in the epidermis (Fig. 1e)

None or very few to numerous in parenchyma; in
some species also in the epidermis (Fig. 2i)

G. repens. Occasionally with amyloplasts (Fig. 1f)

Vascular tissue P. gigantea: bundle shape almost a closed circle,
with 3 to >13 lignified xylem tracheary elements
(vessels) scattered towards the centre and 3 to >13
phloem groups towards the abaxial side
(Fig. 1a, b)

Genlisea and Utricularia: 1–2 xylem tracheary ele-
ments (vessels) and 1–3 phloem groups (e.g.
Fig, 1c), but occasionally no xylem found
(Fig. 1d, e)

Ectophloic central cylinder with unlignified pith
cells and without pericycle. ≤4 lignified xylem
tracheary elements and ≤12 or more phloem
groups (Figs. 1f-h and 2). Xylem vessels not
found in some stolons of U. stygia and
U. breviscapa, or central (xylem) lacuna occa-
sionally present (Fig. 2a, g). Phloem generally
present but not identifiable in U. uniflora (Fig. 2
f).

Supporting tissue Absent Generally absent, but present internal to parenchyma
sheath / endodermis in G. repens and U. tricolor
(Fig. 1f, h)

*not conclusively demonstrated by the applied methods
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stolons or “rhizoids”) with geotropically positive growth
(see also Table 5).

In the root of P. gigantea, parenchyma was densely
packed. Except for U. volubilis, all examined trap stalks
and the anchor stolon of U. multifida showed spacious
(‘hollow type’) aerenchyma, occupying nearly the
whole interior of the organ, and leaving only a bridge
of parenchyma between the vascular strand and the
epidermis.

Anatomy of the central cylinder

The central cylinder was generally bordered by a
uniseriate parenchyma sheath in roots and in main sto-
lons (Figs. 1f and 2d, e, g and i), in which an endodermis
(Fig. 1h, 2a-c, h) with Casparian strips (Fig. 2b, h) was
visible in U. tricolor, U. oppositiflora, U. delicatula,
and U. stygia. The parenchyma sheath and the thin-
walled endodermis with Casparian strips did not differ
greatly in shape from cortex parenchyma. In the runner

stolon of P. gigantea, the sheath structure was less
apparent but implied by smaller parenchyma cells irreg-
ularly surrounding and interlacing the vascularized cen-
tral zone (Fig. 1g).

Multivariate analyses

The results of cluster analyses of datasets I-III are pre-
sented in Table 6, showing Silhouette Scores, clusters of
species, and decisive traits for the branching (clustering
of species) for selected dimensionality reduction and
clustering methods. A selection of multivariate analyses
of datasets I-III is visualized in Fig. 3, illustrating cor-
relations (distances) and clusters of species.

Even though UMAP is not an ideal method for
cluster analysis, as the data tend to be uniformly
distributed, the separation of two clusters (terrestri-
al-amphibious and submerged-free-floating) with
graph-based clustering of dataset I was distinctive
and received support by PCA (Table 6; Fig. 3a). The

Table 5 Data matrix of species and their values of biometric traits used in multivariate analyses

Dataset I

Dataset II

Dataset III

Species L 0 1 2 3 4 5 6 7 8 9

PGI 1 1 1 1 1 1 1 2 1 1 2

GRE 2 2 3 2 2 3 1 2 2 2 1

UVO 4 3 2 3 3 2 2 3 3 2 2

UPA 2 2 2 2 3 1 3 3 4 2 2

UOP 2 2 2 3 3 2 1 2 4 2 2

UDI 2 2 2 2 3 3 3 3 4 2 2

UTU 5 3 3 3 4 3 3 4 3 2 2

UUN 2 2 2 2 3 1 4 3 4 2 2

UDE 2 2 2 3 2 1 4 3 3 2 2

UTR 2 2 2 2 3 2 2 1 3 2 1

UST 4 3 2 4 4 2 2 2 3 2 2

UBR 5 3 3 4 4 3 1 4 3 2 2

UCU 5 3 3 4 4 3 3 3 3 2 2

UPU 5 3 3 4 4 3 2 3 3 2 2

Species (samples): G. repens (GRE); P. gigantea (PGI); U. breviscapa (UBR); U. cucullata (UCU); U. delicatula (UDE); U. dichotoma
subsp. aquilonia (UDI);U. oppositiflora (UOP);U. paulineae (UPA);U. purpurea (UPU);U. stygia (UST);U. tricolor (UTR);U. tubulata
(UTU); U. uniflora (UUN); U. volubilis (UVO)

Traits (variables, further defined in Table 3): Life form (habit) (L), stolon location (0), anchoring organ (1), leaf form (2), leaf thickness (3),
stolon chloroplasts (4), stolon diameter (5), and stolon xylem (vessels / diameter) (6), stolon intercellular spaces (7), stolon external glands
(8), stolon supporting tissue (9)
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Fig. 1 Cross sections through foliage leaves and stolons of
Lentibulariaceae. Main vascular strand of P. gigantea with (a)
xylem tracheary elements (vessels) (x) arranged in an arc and
bordered by phloem (arrowheads) and (b) occasionally grouped
together. (c) Genlisea hispidula showing the general anatomy of
leaves of Genlisea and Utricularia with upper (UE) and lower
(LE) epidermis, spongy parenchyma (sp), intracellular spaces (is),
and vascular bundles with xylem tracheary elements and phloem.
(d) Vascular bundle inU. paulineae with three phloem groups but
no visible xylem elements. (e) Leaflet of dissected leaves in the
submerged U. stygia containing chloroplasts in single layered
parenchyma and epidermal cells. In the vascular bundle, only

phloem but no xylem is apparent. (f) Runner stolon of G. repens
exhibiting abundant amyloplasts and an ectophloic central cylin-
der within a sclerenchyma ring (sc), surrounded by a parenchyma
sheath (ps). (g) Runner stolon of P. gigantea showing a uniseriate
epidermis (E), irregularly shaped parenchyma cells (pa) and nu-
merous phloem groups around several vessels in the centre. (h)
Main stolon of U. tricolor with an epidermis covered by mucilage
(mu), radially developing lysigenous aerenchyma (ae), and a cen-
tral cylinder characterized by large vessels and phloem groups and
bordered by 2–3 layers of conspicuous sclerenchyma cells within
an endodermis (en). Scale bars = 0.1 mm in a-d, f, g; 0.05mm in h;
0.02 mm in e
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primary branching leading to these clusters were,
however, mainly influenced by the two non-
morpho-anatomical traits ‘life form’ and ‘stolon lo-
cality’ (Table 6). While ‘life form’ as trait is obvi-
ously a bias of life form clustering, ‘stolon location’
has an affinity to the life form (by the milieu) but

also to growth and consequently to morphology. As
shown by the biplots (Fig. 3a, c), ‘stolon location’
correlated to some extent to stolon related traits,
namely to ‘chloroplast occurrence’ and ‘xylem di-
ameter’, while the contribution of ‘occurrence of
external glands’ was weak (Fig. 3a, c). Hence, in
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submerged and free-floating species, main stolons
tended to develop chloroplasts in parenchyma and
epidermis, and smaller xylem tracheary elements.

The exclusion of the traits ‘life form’ and ‘stolon
location’ led to a certain decrease of distances of
clusters in PCA (compare Fig. 3a, c, d), which be-
came also evident by lower Silhouette Scores
(Table 6). The correlation of species was not ex-
tremely altered by excluding these traits from the
datasets, especially because ‘anchoring organ’, ‘leaf
form’ and ‘leaf thickness’ were directly correlated to
‘life form’ and ‘stolon location’ and, therefore, like-
wise contributed to the same (PC1) direction of dis-
tribution. In the PCA of all datasets, this approxi-
mately horizontal distribution followed a “life form
transect” from free-floating to submerged to amphib-
ious species towards the terrestrial P. gigantea.

By considering the decisive characters across the
PCA of datasets I-III, it appeared that the separation of
free-floating and submerged species (with or without
U. volubilis) from other clusters was strongly influenced

by ‘stolon location’ or ‘leaf thickness’, and that free-
floating species split from submerged species mainly
driven by ‘anchoring organ’ and ‘chloroplast occur-
rence’ (Table 6).

The vertical (PC2) distribution was generally relat-
ed to ‘stolon thickness’ with some assistance from
‘stolon intercellular spaces’ (Fig. 3a, c). This was
mainly apparent in the amphibious group and reflected
in the direction of the corresponding confidence ellip-
se in Fig. 3d. Being transversal to the horizontal
transect, stolon thickness was not correlated to life
forms. The vertical scattering of amphibious species
represented a gradient of species with thin main sto-
lons containing crescent to hollow aerenchyma (e.g.
U. uniflora) to species with thick main stolons (e.g.
G. repens). However, using graph-based clustering
with datasets II and III generated a separation of a
group around U. delicatula from a diffuse group
around U. tricolor (Fig. 3b-d; Table 6). The split
was diminished when a few theoretical terrestrial spe-
cies similar to P. gigantea were added and ‘stolon
thickness’ was omitted from the datasets. In the PCA
scatter plot of the accordingly modified dataset III,
U. tricolor was much closer to U. delicatula, and
U. oppositiflora was between U. dichotoma and
U. paulineae/U. uniflora (not shown here).

By applying Kernel PCA (KPCA) in dataset II and III,
the correlations of species in the datasets differed mainly
in the cluster assignment of U. volubilis (Table 6), which
affiliated with U. stygia and the free-floating group or
with the terrestrial-amphibious group (Fig. 3b), respec-
tively. When data were pre-processed by unit variance
scaling (leading to more or less equally strong traits), the
density of clusters was increased andU. oppositiflorawas
much closer to the submerged taxa than to U. tricolor
(e.g. Fig. 3d vs. a and c).

Discussion

Morpho-anatomical traits support life form clustering
of species in Lentibulariaceae

The applied multivariate analyses show that life form
clustering is acceptably supported by adding some
terrestrial species and discarding the interfering char-
acter ‘stolon thickness’, even though the submerged
group (U. stygia, U. volubilis) tends to overlap with
the free-floating and/or the amphibious group. The

�Fig. 2 Anatomical structures of stolons of Utricularia. a Main
stolon ofU. delicatulawith a uniseriate epidermis (E), aerenchyma
(ae) between shrinking parenchyma cells (pa), and an endodermis
(en) encompassing a vascular strand with two adjacent xylem
tracheary elements (x) and a central lacuna (cl) in a phloem ring
(arrowheads). b Close-up of the central cylinder of a, showing
lignified Casparian strips (black arrowheads) in the endodermis.
c Runner stolon of U. oppositiflora with half-moon shaped aeren-
chyma in one sector, representing a unique distribution, designated
as “crescent” pattern. d Main stolon of U. volubilis containing
moderate intracellular spaces (is) and a central cylinder with the
appearance of a two-part parenchyma sheath (ps), accommodating
a double vascular strand with one xylem tracheary element and 4
phloem groups each. e Utricularia dichotoma subsp. aquilonia
showing extensive tangentially lysigenous aerenchyma dominat-
ing the interior of the runner stolon. f Main stolon of U. uniflora
exhibiting an advanced decay of cortex cells, forming ‘hollow
type’ aerenchyma. In the vascular tissue, phloem is indistinct and
only one xylem tracheary element is visible. g Main stolon of
U. tubulata with schizogenous aerenchyma and a central xylem
lacuna (xl) in the vascular strand. Thick-walled cells are abundant
within the pith. h Detailed view into the stele of a main stolon of
U. stygia revealing an endodermis with Casparian strips encircling
the vascular cylinder. i Main stolon of U. cucullata showing
plastids in the epidermis and in scanty parenchyma. The aeren-
chyma pattern is wheel-shaped. The vascular bundle exhibits one
xylem tracheary element and a sieve tube (arrowhead). Scale
bars = 0.1 mm in a, c, f; 0.05 mm in d, e, g, i; 0.02 mm in h;
0.01 mm in b
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datasets do not contain any emergent species. How-
ever, U. volubilis and U. oppositiflora occur as
emergent hydrophytes in some natural habitats
(Taylor 1989; Jobson and Baleiero 2020). As expect-
ed, both species show a strong correlation and have
affinities with the amphibious as well as with the
submerged habit.

Leaf traits

Our results demonstrate that leaves tend to be thinner
and narrower from terrestrial to free-floating taxa. On
one end of the transect, the anatomy of the fleshy
P. gigantea leaf is largely consistent with the succulent
leaves of several Mexican Pinguicula species of

Table 6 Cluster analyses of datasets

Dataset (variables) Method (Silhouette Score) Decision tree (cluster branching)
Clusters (c)

Decisive traits for
cluster separation

I (L, 0, 1–9) Graph-based clustering:
UMAP (0.7), PCA (0.5)

Branching 1:
S+F (c0),
A+PGI (c1)

L (Gini or Entropy≤0.04) or 0 (Entropy>0.04)

Life form clustering:
PCA (0.4)

Branching 1:
S+F (c0),
A+PGI (c1)
Branching 2:
S (c0a), F (c0b),
A (c1a), PGI (c1b)

L/0

L/1/4
Several

II (0, 1–9) Graph-based clustering:
KPCA (0.7),

PCA (0.5)

Branching 1:
S+F (c0),
others (c1+c2)
Branching 2:
PGI, GRE, UTR, UOP (c1),
UDI, UDE, UPA, UUN (c2)

0

5/6

Life form clustering:
PCA (0.2)

Branching 1:
S+F (c0),
A+PGI (c1)
Branching 2:
S (c0a), F (c0b),
A (c1a), PGI (c1b)

0

1/4
Several

III (1–9) Graph-based clustering:
KPCA (0.6),

PCA (0.5)

Branching 1:
F+UST (c1),
others (c0+c2)
Branching 2:
PGI, GRE, UTR, UOP, UVO (c0),
UDI, UDE, UPA, UUN (c2)

3

5

Life form clustering:
PCA (0.1)

Branching 1:
F+UST (c1),
others (c0+c2)
Branching 2:
F (c1a), UST (c1b),
PGI (c0a), A+UVO (c0b)

3

1/4/6
Several

Abbreviations: Kernel PCA (KPCA); Uniform Manifold Approximation and Projection (UMAP); Principal Components Analysis (PCA)

Species: G. repens (GRE); P. gigantea (PGI); U. delicatula (UDE); U. dichotoma (UDI); U. oppositiflora (UOP); U. paulineae (UPA);
U. stygia (UST); U. tricolor (UTR); U. uniflora (UUN); U. volubilis (UVO)

Plant groups with the same life forms: amphiphytes (A); free-floating hydrophytes (F); submerged hydrophytes (S)

Clusters after branching, e.g.: S + F (c0) = S and F build together cluster 0. S (c0a), F (c0b) = S and F are two subclusters (a and b) of cluster 0

Decisive traits (further defined in Table 3): Life form (habit) (L), stolon location (0), anchoring organ (1), leaf thickness (3), stolon
chloroplasts (4), stolon diameter (5), and stolon xylem (vessels / diameter) (6)

Traits, e.g.: 1/4 = traits 1 and 4 are more or less interchangeably decisive on the branching
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Fig. 3 Visualization of multivariate analyses with graph-based
clustering of stoloniferous Lentibulariaceae species. a PCA biplot
of dataset I, showing two clearly separated clusters. The sub-
merged UST and UVO are between amphibious and free-
floating species. Variances PC1 = 58.71%, PC2 = 20.01%, PC1-
3 = 86.4%. b Scatter plot of species according to KPCA (best fit)
of dataset III with three clusters. c PCA biplot of dataset III with
the same clusters as in b. PC1 = 44.38%, PC2 = 28.30%, PC1-
3 = 82.64%. d PCA scatter plot of dataset II with unit-variance
scaling as pre-processing. Amphiphytes (amph) and free-floating
hydrophytes (free) are circumscribed by confidence (prediction)
ellipses (CI = 95%). Both submerged species are imbedded in the

amphibious group. PC1 = 47.89 %, PC2 = 21.00 %, PC1-3 =
82.61 %. No scaling was applied to analyses a-c. Species:
G. repens (GRE); P. gigantea (PGI); U. breviscapa (UBR);
U. cucullata (UCU); U. delicatula (UDE); U. dichotoma subsp.
aquilonia (UDI); U. oppositiflora (UOP); U. paulineae (UPA);
U. purpurea (UPU); U. stygia (UST); U. tricolor (UTR);
U. tubulata (UTU); U. uniflora (UUN); U. volubilis (UVO).
Traits (vectors, further defined in Table 3): Life form (habit) (L),
stolon location (0), anchoring organ (1), leaf form (2), leaf thick-
ness (3), stolon chloroplasts (4), stolon diameter (5), and stolon
xylem (vessels / diameter) (6), stolon intercellular spaces (7),
stolon external glands (8), stolon supporting tissue (9)
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subgenera Isoloba and Pinguicula that occupy wet and
periodically dry habitats and may use C4 carbon fixation
(cf. Studnička 1991). On the other end, in line with e.g.
Sculthorpe (1967) and Colmer et al. (2011), our obser-
vations on Lentibulariaceae confirm that obligate hydro-
phytes differ distinctively from emergent, amphibious
or terrestrial herbaceous plants by having thin leaves.

Free-floating aquatics are limited to sections
Utricularia and Vesiculina (both of subgenusUtricularia)
and U. tubulata of subgenus Polypompholyx (Taylor
1989). The two former sections carry leaves (if present)
divided into capillary segments, whilst the morphologi-
cally unique U. tubulata shows verticillate and undivided
leaves (Taylor 1989), reminding of e.g. the submerged
and freely suspended Hydrilla verticillata (cf. Yeo et al.
1984) or the carnivorous free-floatingAldrovanda
vesiculosa with terminal traps on its leaves (cf. Adamec
2018). A combination of dissected leaves and a verticillate
phyllotaxy is known from e.g. the free-floating (rarely
submerged) Ceratophyllum, which is also considered to
be rootless (Sculthorpe 1967; Cook 1999).

Our results corroborate that narrow and thin leaves
are common features in amphibious and emergent plants
as adaptive response to submergence, as shown in e.g.
Rumex palustris (Mommer et al. 2005) and Melaleuca
cajuputi (Tanaka et al. 2011). In the aquatic environ-
ment, the absorption of light and dissolved gases is
enhanced by an increased surface area to volume ratio,
which is accomplished by thinner, lobed, and dissected
leaves (e.g. Sculthorpe 1967; Colmer et al. 2011).

Chlorophyllous tissues

In accordance with our results, simple anatomical struc-
tures without a palisade layer are a common character-
istic of submerged leaves (e.g. Wiegleb 1991; Catian
and Scremin-Dias 2015; Krähmer 2016), indicating or-
gan flexibility and/or reduced light conditions (cf.
Sculthorpe 1967; Gotoh et al. 2018). A diminished
photosynthesis rate is partly compensated by chloro-
plasts occurring in both parenchymatic and epidermal
cells of submersed organs (Catian and Scremin-
Dias2015), as indicated in our study by e.g. U. stygia
and U. cucullata. Results of our multivariate analyses
corroborate that aquatic life forms relate to a higher
abundance of chloroplasts in tissues of submerged run-
ner stolons (cf. Sculthorpe 1967; Wetzel 1988; Colmer
et al. 2011). However, responding to (periodic) submer-
gence or shady habitats, chloroplasts are occasionally

observed in the epidermis of leaves (Genlisea sp.; Lang
1901) or in runner stolons (e.g. G. repens) of amphibi-
ous species, although inG. repens, plastids may develop
into amyloplasts under drier conditions. In Pinguicula,
the absence of a chloroplast-rich palisade parenchyma
may provide more flexibility to the leaf for carnivorous
mechanisms (Heslop-Harrison 2004).

Anchoring organs

In the Lentibulariaceae, Pinguicula still shows “typical”
roots (although partly reduced in some species such as
P. gigantea). InUtricularia, “rhizoids” (anchor stolons)
seem to take on the anchoring function from roots. Our
analyses show that the presence/absence of anchor sto-
lons is a delimitation between submerged and free-
floating life forms in Utricularia. However, the base of
peduncles in some suspended Utricularia species (e.g.
U. australis, U. gibba) develop rhizoids (Taylor 1989),
which may anchor the plant when flowering.

Structures of absorption and secretion

In the absence of an effective root system, the surfaces
of other organs adopt the uptake of water and nutrients
(cf. Schenck 1886; Adlassnig et al. 2005; Babourina and
Rengel 2010). As in most submerged hydrophytes, the
cuticle of organs of the examined species seems to be
generally thin, since the mechanical protection is of less
importance in the water. On the outer surface of all
vegetative organs across the examined Genlisea and
Utricularia species, we found numerous button-like
trichomes, which were considered being hydropotes
(Lloyd 1942; Płachno et al. 2005) with absorptive and/
or secretory function, depending on their ontogeny
(Fineran 1980). On traps of Utricularia and Genlisea,
mature external glands seem to expel water to the sub-
strate (Fineran 1985; Fineran and Reut unpublished
data), while some glandular trichomes on leaves and
subterranean organs of Genlisea and Utricularia pro-
duce mucilage, e.g. to protect from drying, as defensive
compound against herbivores, as source of nutrients for
micro-organisms, or as lubricant for penetrating the soil
(cf. Lang 1901; Płachno et al. 2005; Rivadavia et al.
2013). Since only Pinguicula lacks external bottom-like
trichomes on vegetative organs, the occurrence of these
glands does only marginally contribute to the life form
clustering in the present study.
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Further histochemical and ultrastructural work (in-
cluding tracers) on the epidermis, cuticle, and external
glands of Genlisea and Utricularia of various habits
would be helpful to increase the knowledge on perme-
ability and the various functions of external glands in
relation to their position on the organ and their devel-
opmental stages.

Conductive tissues

A general simplification of xylem tissue in subterranean
and submersed organs was evident in the species stud-
ied. However, in the aquatic environment, the reduction
of xylem and lignified elements does not necessarily
impede the acropetal flow of water and nutrients
(Sculthorpe 1967; Pedersen and Sand-Jensen1993; Lusa
et al. 2011). Moreover, in some main stolons of
Utricularia, we were able to identify an endodermis
with Casparian strips (CS), which directs and controls
the passage of water and minerals (cf. Barberon 2017).
Although an endodermis with CS mainly occurs in
roots, it is not uncommon in aerial shoots and leaves
(Lersten 1997; Seago 2020) but more often established
in subterranean or submersed stems (Dalla Vecchia et al.
1999). In the “rootless” bladderworts, the conductive
function of the endodermis has been seemingly trans-
ferred from roots into stolons that manifest dynamic
developmental processes for roots, shoots, and leaves
(Rutishauser 2016, 2020; Reut and Płachno 2020).

Due to the thin cell walls of the parenchyma sheaths,
the capability to visualize the CSwas limited. Therefore,
even if the CS could not be detected, the presence of CS
cannot be conclusively ruled out for the remaining spe-
cies of the study. Other staining and fluorescence tech-
niques should be applied to improve the identification of
CS and to gain insights into their composition (see e.g.
Dalla Vecchia et al. 1999; Naseera et al. 2012; Seago
2020).

Aerenchyma

To enhance the exchange of gases within and between
roots, stems, and leaves, plants develop intercellular
cavities or chambers of various sizes (Takahashi et al.
2014), whereby the enlarged space is called ‘aerenchy-
ma’ (Seago et al. 2005; Jung et al. 2008), which addi-
tionally facilitates buoyancy (Krähmer 2016). Although
aerenchyma is typical for hydrophytes, it is also known
from some terrestrial plants caused by several forms of

stress (Evans 2003; Jung et al. 2008). The morpho-
anatomical differences between emergent and sub-
merged taxa studied reflect a big step from slight or
periodic inundation to complete and permanent submer-
gence. Colonization of habitats with standing water (e.g.
swamps, pools, lakes) has evolved with the abundance
of large air cavities in submerged organs, supporting an
efficient diffusion of gases (cf. Wetzel 1988).

Lysigenous aerenchyma results from programmed
cell death and cell collapse, which can be induced by
hypoxia, nutrient deficiency and/or ethylene accumula-
tion (Evans 2003; Striker 2012). Since lysigenous aer-
enchyma formation is dominant in the material studied,
these factors may all be present in the preferred habitats
of Genlisea and Utricularia, in which their carnivorous
strategy (partly) compensates the limited availability of
certain nutrients (cf. Adamec 1997). Lysigenous aeren-
chyma was also reported by Schweingruber et al. (2020)
from stems of submerged Utricularia species and the
carnivorous free-floatingAldrovanda vesiculosa.

Our results indicate that the ‘wheel-shaped’ aeren-
chyma pattern is abundant in main stolons of submerged
and free-floatingUtricularia species, which is supported
by earlier observations on shoots of U. tenuicaulis (syn.
U. australis) and U. gibba of section Utricularia by
Jung et al. (2008) and Chormanski and Richards
(2012), respectively. Within the same order Lamiales,
it was reported from the submerged Limnophila
sessiflora by Jung et al. (2008).

The unique ‘crescent’ type aerenchyma, observed in
runner stolons ofU. oppositiflora, seems to be due to the
dorsiventral symmetry of these stolons with organs aris-
ing on nodes on the upper side of the runner (cf. Reut
and Płachno 2020). The continuing decay of
parenchymatic cells (seemingly by tangential lysigeny)
leads to a special ‘hollow type’ aerenchyma, which is
evident in several subterranean organs of the examined
amphibious species of Genlisea (see also Lloyd 1942)
and Utricularia subg. Polypompholyx.

Schizogeny, as visible in main stolons ofU. volubilis
and U. tubulata of section Pleiochasia, is developed by
cell differentiation, but molecular mechanisms substan-
tial for this formation type are not yet known (Yamauchi
et al. 2018).

Supporting tissues

Our results confirm earlier observations on Genlisea
(Merl 1915) andUtricularia (Schenck 1886; Kamieński
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1891), whereupon the anatomy of thicker stems is char-
acterized by a central cylinder and by an increasing
number of vascular elements and the occurrence of
supporting tissue, as indicated by sclerenchyma around
the pith in runner stolons of G. repens and U. tricolor.
Sclerenchyma was also reported below the epidermis of
adhesive anchor stolons of the rheophyticU. neottioides
by Płachno et al. (2020a). However, since only two
amphibious species in our dataset showed sclerenchyma
around the pith in runner stolons, this trait did not
contribute greatly to the delimitation of life forms in
the multivariate analyses.

Evolutionary aspects of the Lentibulariaceae

With respect to the morpho-anatomical features, our
findings reveal that the reduction of roots and conduc-
tive tissues (especially xylem) are taxonomically com-
mon characteristics of all genera of the Lentibulariaceae,
which points to an ancestor that was adapted to at least
seasonally wet and/or periodically inundated habitats.
The more free water is abundant, the less protection and
stability of organs is required, which is apparently
reflected in a loss of the root cap in some Pinguicula
species (cf. Rutishauser 2016, 2020), the palisade layer
in leaves, and supporting tissues in subterranean/
submersed organs within the Lentibulariaceae.

Apart from an abandonment of several developmen-
tal processes for roots, Genlisea and Utricularia share
other more hydrophilic features, such as (in general)
more delicate organs with reduced cuticle and button-
like glandular trichomes on the surface of leaves and
subterranean/submersed organs, indicating a next level
in the adaptation to submergence but also a shift of the
carnivory from aerial leaves (in Pinguicula) to under-
ground leaf-like organs (in Genlisea-Utricularia). In
other words, costs for innovative structures used for
the uptake of nutrients are compensated by less invest-
ment in other structures (e.g. cortex, vascular elements
and supporting tissue), which seems to be facilitated in a
watery milieu.

Most of the plants in our study were kept ex situ in
their preferred conditions, and hence revealed more
adaptive rather than reactive morpho-anatomical
features. We recommend that future research on
hydrophytes with a comparable plasticity takes the dif-
ferentiation of emergent and submerged life forms into
consideration. An experimental approach with variable
settings (e.g. water levels, light) could unlock which

morpho-anatomical changes are adaptations and which
ones are responses.

Morpho-anatomical and functional adaptations to a life
between land and water

The key findings of our study are:

– Life forms along the hydric transect in the
Lentibulariaceae correlate directly to the location
of the stolon in the substrate and to the shape and
thickness of leaves, which aims at enhancing the
absorption of sparse light, nutrients, dissolved gases
as well as the flexibility of leaves with increasing
depth of submergence of vegetative organs.

– Submerged and free-floatingUtricularia species
tend to develop chloroplasts in parenchymatic and
epidermal cells of suspended main stolons, which
supports the collection of light.

– Life forms in the Lentibulariaceae correspond with
the reduction of the typical root morphology and
with the presence and type of anchorage.

– Buoyancy and gas exchange are enhanced by large
intercellular cavities that are abundant in stems and
shoots of amphibious to free-floating taxa studied.
Novel ‘crescent’ to special ‘hollow’ aerenchyma
patterns develop in dorsiventrally organized stems
and shoots of amphibious Genlisea and Utricularia
species.

– Morpho-anatomical characters in vegetative organs
of Genlisea and Utricularia strongly show adapta-
tions to the hydric environment, which they share
with many other aquatic plants. However, some of
these features may have been partly driven by the
evolutionary shift of carnivory from aerial to sub-
terranean organs and hence by an alternative uptake
of certain minerals in nutrient-poor and submerged
habitats.
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