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Do plants use root-derived proteases to promote the uptake
of soil organic nitrogen?
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Abstract
Aims The capacity of plant roots to directly acquire
organic nitrogen (N) in the form of oligopeptides and
amino acids from soil is well established. However,
plants have poor access to protein, the central reservoir
of soil organic N. Our question is: do plants actively
secrete proteases to enhance the breakdown of soil
protein or are they functionally reliant on soil microor-
ganisms to undertake this role?
Methods Growing maize and wheat under sterile hydro-
ponic conditions with and without inorganic N, we
measured protease activity on the root surface (root-

bound proteases) or exogenously in the solution (free
proteases). We compared root protease activities to the
rhizosphere microbial community to estimate the eco-
logical significance of root-derived proteases.
Results We found little evidence for the secretion of free
proteases, with almost all protease activity associated
with the root surface. Root protease activity was not
stimulated under N deficiency. Our findings suggest that
cereal roots contribute one-fifth of rhizosphere protease
activity.
Conclusions Our results indicate that plant N uptake is
only functionally significant when soil protein is in
direct contact with root surfaces. The lack of protease
upregulation under N deficiency suggests that root pro-
tease activity is unrelated to enhanced soil N capture.

Keywords Aminopeptidase . Peptidase . Plant
nutrition . Proteinase . Root exudation

Introduction

The rhizosphere represents a zone of intense competi-
tion for nutrient resources between plant roots and soil
microorganisms (Jones et al. 2009). This competition is
particularly intense for low molecular weight forms of
organic N such as amino acids, oligopeptides and urea
which can be taken up and assimilated by both plants
and microorganisms (Kuzyakov and Xu 2013; Moreau
et al. 2019). Conventionally, it is thought that high
molecular weight N held in soil organic matter is largely
unavailable to plants and that this resource needs to be
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hydrolysed to induce solubilisation and promote plant
availability (Schulten and Schnitzer 1997). This hydro-
lysis step has been shown to be a major bottleneck in N
cycling in many ecosystems (Jan et al. 2009). Of the
organic N held in soil organic matter, ca. 40% is typi-
cally present in the form of protein which enters soil
mainly from plant and microbial necromass.
Microorganisms release extracellular protease and de-
aminase enzymes into the soil to break down this protein
into oligopeptides, amino acids and NH4

+. The soluble
products can then a) be taken up and assimilated by the
microbial community and any excess NH4

+ excreted
back into the soil, or b) taken up directly by plant roots
and associated mycorrhizas (Schimel and Bennett
2004). However, some studies have reported that plant
roots can also release extracellular proteases into the soil
(Adamczyk et al. 2010). Although plant roots contain a
wide range of intracellular proteases (Tornkvist et al.
2019), the production of extracellular proteases by plant
roots has been hypothesised to have at least four distinct
functions: 1) enhancing availability of N for nutrition, 2)
defence against plant pathogenic organisms, 3) root cell
expansion, and 4) regulation of proteins and peptides in
response to developmental and environmental cues (i.e.
signal transduction; van der Hoorn 2008; Kohli et al.
2012). In addition, roots may unwittingly release prote-
ases into soil during apoptotic cell death (e.g. from
border cells or epidermal and cortical cell death) or
following lysis caused by mesofaunal damage or phys-
ical abrasion (e.g. root hairs) (Wen et al. 2007; Sun et al.
2015; Song et al. 2016). Theoretically, the use of root
proteases to promote organic N release may reduce
competition with microorganisms, given that only a
small proportion of the root surface is colonised by
microorganisms (Foster 1986). In addition, it may allow
the spatially targeted release of exoenzymes at sites
where the N demand is greatest (e.g. root tips). This
would be similar to the well-established mechanism of
phosphatase release from roots experiencing P limita-
tion (Ciereszko et al. 2011).

Evidence that plant root proteases can increase the
supply of N from the soil remains conflicting. For
example, Godlewski and Adamczyk (2007) report that
15 different agricultural and wild plant species have the
ability to release proteases. Also, their studies on
Triticum aestivum (Adamczyk et al. 2008) and Allium
porrum (Adamczyk et al. 2009; Adamczyk 2014) indi-
cate that these proteases may increases levels of free
amino acids in the soil. Paungfoo-Lonhienne et al.

(2008) have also observed that plants can secrete root
proteases but that they also have the potential to take up
exogenously supplied proteins intact via endocytosis. In
contrast, Chang and Bandurski (1964) and Vágnerová
and Macura (1974) both reported negligible root prote-
ase activity in cereals, while Eick and Stöhr (2009)
showed no change inmembrane-bound protease activity
under N deficient conditions. Similarly, Synková et al.
(2016) and Paungfoo-Lonhienne et al. (2008) have
shown that Nicotiana tabacum, Hakea actites and
Arabidopsis thaliana plants grow very poorly when
supplied just with protein. Lastly, an upregulation of
protease activity may occur under different nutritional
stresses (e.g. P deficiency) suggesting that the response
is not N-specific (Tran and Plaxton 2008). These differ-
ences in opinion could be attributed to the different
methods used to measure protease activity and plant
growth conditions (German et al. 2011). This is partic-
ularly the case when sampling the root secretome due to
(i) the release of intracellular proteases from roots dam-
aged during handling, (ii) contamination from seed ex-
udates known to be rich in proteases, (iii) and difficulties
in achieving or maintaining sterile conditions, particu-
larly the elimination of root endophytes (Sánchez-López
et al. 2018; Oburger and Jones 2018).

This study focuses on aminopeptidases (E.C.3.4.11)
which catalyse the cleavage of N-terminus amino acids
from peptide and protein substrates. They are involved
in fundamental plant cellular processes (e.g. mitosis,
meiosis, oxidative regulation) and in various aspects of
plant development via degradation of storage protein
(e.g. germination, senescence) (Oszywa et al. 2013;
Kania and Gillner 2015; Budic et al. 2016). Plants
typically encode many aminopeptidases (e.g.
Arabidopsis thaliana encodes at least 28) which can
have broad specificity (Ogiwara et al. 2005; Walling
2006). Scranton et al. (2012) found that leucine amino-
peptidase can moonlight as a molecular chaperone to aid
plant defence. In addition, aminopeptidases are induced
under both drought and metal stress in the plant roots
(Wang et al. 2011; Boulila-Zoghlami et al. 2011).
Importantly, aminopeptidases have also been implicated
in autophagy under N deficiency (Xia et al. 2012; Xu
et al. 2019), suggesting that they are a good candidate to
investigate for their role in protein-N mobilisation a
rhizosphere context.

Investigations of the role of plant proteases in N
acquisition have generally focused on proteases secreted
from roots (Vágnerová and Macura 1974; Godlewski
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and Adamczyk 2007). Proteomic studies of the apoplast
and cell wall, however, have revealed the presence of a
wide range of proteases, most of which have unknown
roles (Rodríguez-Celma et al. 2016; Calderan-
Rodrigues et al. 2019). Therefore, with a focus on
aminopeptidases, our aim was to determine: a) whether
plants release free proteases from their roots or if the
proteases remain root surface-bound, b) if proteins and/
or their breakdown products are taken up by the plant, c)
if root protease activity is up- or down-regulated in the
presence of inorganic N and, d) how root protease
activity compares to rhizosphere protease activity. We
hypothesise that plants will both secrete proteases from
their roots but also retain surface-bound protease activ-
ity to maximise protein-N capture from soils. We also
expect protease activity to be induced in the absence of
an inorganic N supply (Godlewski and Adamczyk
2007). Finally, we hypothesise that protease activity
from rhizosphere soil will be proportionally higher than
for roots as it is more energetically favourable for the
soil microbial community to use the products of protein
hydrolysis rather than inorganic N (Abaas et al. 2012).

Materials and methods

Growth of plants

Maize (Zea mays L.) and wheat (Triticum aestivum L.)
were chosen as the study species as both plants are
cereals with wide agricultural use but have different N
use efficiencies (Liang et al. 2013). Seeds were surface
sterilised by shaking with 70% ethanol for 5 min and
then with 10% sodium hypochlorite containing one drop
of Tween 20 for 5 min. The seeds were then rinsed four
times in sterile, deionised water. The seeds were germi-
nated and grown for up to two weeks in sterile
Phytatrays® (Sigma-Aldrich, Poole, UK) on autoclaved
agar with either inorganic N or zero N nutrient solution
added. Seedlings were grown at 20 °C, 12 h photoperiod
at 500 μmol photons m−2 s−1 PAR.

Nutrient solution

Seedlings were supplied with either a zero N nutrient
solution or inorganic N nutrient solution in the agar. The
zero N nutrient solution consisted of 1.5 mM MgSO4,
2 mM K2SO4, 4 mM CaCl2, 1.87 mM NaH2PO4,
0.13 mM Na2HPO4, 0.14 mM H3BO3, 0.02 mM

MnSO4, 0.002 mM ZnSO4, 0.003 mM CuSO4,
0.0002 mM Na2MoO4, 0.089 mM Fe(III)-citrate in
0.1 mM of MES buffer (pH 5.6) (Hewitt 1966). The
inorganic N solution consisted of 4 mM NaNO3 and
4 mMNH4Cl in addition to the zero N nutrient solution.

Extracellular root protease: Proteases in solution

After one-week, sterile seedlings (n = 8 for each treat-
ment per plant) of similar height and root length were
transferred from the Phytatrays® into a pre-autoclaved
hydroponic growth system. The plants were firstly
placed into a 1.5 ml Eppendorf tube with the bottom
removed. This was then placed into the top of a 50 cm3

polypropylene centrifuge tube containing nutrient solu-
tion and then into a larger sterile box. Nutrient solution
was injected into each centrifuge tube via silicone tubing
connected to a 0.22-μm filter located outside the box.
The nutrient solution in the centrifuge tube was contin-
ually aerated by passing 0.22-μm filtered air into the
solution via silicone tubing located outside the box. An
air outlet from the centrifuge tube was via silicon tubing
with a hydrophobic 0.22-μm filter (Supporting
information, Fig. S1). Weekly, nutrient solutions were
removed from the hydroponic system through a
0.22-μm filter and protease activity measured. Fresh
nutrient solution was then injected into each centrifuge
tube through a 0.22-μm filter. Nutrient solutions were
changed weekly to ensure nutrients were never limited
and provide a weekly time series of protease activity
over the seedlings growth. A negative control consisted
of nutrient solution with no plant present. All work was
carried out in a sterile, laminar flow cabinet. After four
weeks of growth, under the constant conditions outlined
previously, the experiment was stopped. The roots and
shoots were separated, the fresh weight recorded, then
oven dried at 80 °C for 24 h after which the dry weight
was recorded.

To ensure that the system was sterile, an open Petri-
dish with nutrient agar was placed at the bottom of the
hydroponic system. At the end of the experiment, nutri-
ent solution was plated onto nutrient agar. If no micro-
bial growth was observed after one week at 37 °C, the
system was considered sterile.

Protease assay

Leucine aminopeptidase activity was used as an exem-
plar to measure potential protease activity according to
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Vepsäläinen et al. (2001). The nutrient solution was
pipetted (100 μl) into a 96 well plate. Substrate
(100 μ l o f 500 μM L-leuc ine 7-amido-4-
methylcoumarin hydrochloride dissolved in sterile wa-
ter and passed through a 0.22-μm filter to ensure no
microbial contamination) was added to the sample
(pH 5.7). Standards were prepared for each sample by
adding 100 μl of 7-amido-4-methylcoumarin (7-AMC)
at different concentrations (0, 0.5, 1, 5, 10, 15, 25 and
50 μM) to 100 μl of sample for quench correction. After
a 3 h incubation at 20 °C, fluorescence was measured at
an excitation wavelength of 335 nm and emission wave-
length 460 nm on a Cary Eclipse Fluorescence
Spectrophotometer (Agilent Corp., Santa Clara, CA).
A calibration curve was then fitted for each sample.
Blank sample and substrate measurements were
subtracted from the assay reading.

Extracellular root protease: Proteases in the root

To determine surface bound root protease activity, we
carried out a protease assay in situ. After two weeks of
growth, plants (n = 4) were transferred into a sterile
50 cm3 centrifuge tube where the protease assay was
carried out as described above except the assay solution
consisted of 5 ml of sterile nutrient solution and 5 ml of
500 μM L-leucine 7-amido-4-methlycoumarin hydro-
chloride. Plants were incubated at 20 °C for 3 h in the
sterile laminar flow cabinet. The plants were removed
and 200μl of assay solution were pipetted into a 96-well
plate for fluorescence measurement. At the end of each
experiment, roots and shoots were separated and the
fresh weight recorded, then oven dried at 80 °C for
24 h and the dry weight recorded (Supporting
information, Fig. S2).

14C-protein uptake experiment

To determine whether plants use protein and/or its de-
rivatives as a sole N source we carried out a 14C-protein
uptake experiment. After two weeks of growth, plants
(n = 4) were removed from the nutrient agar and placed
in 10 mL sterile zero N nutrient solution in a 50 cm3

sterile centrifuge tube in a laminar flow cabinet. Each
plant was placed in a sterile plastic air-tight box.
Uniformly 14C-labelled protein fromNicotiana tabacum
L. leaves (1 ml; 0.064 mg C l−1; 0.0063 mg N l−1;
3.3 kBq ml−1; >3 kDa; custom produced by American
Radiolabeled Chemicals, St Louis, MO) was secondary

purified by ultrafiltration in an Amicon® stirred cell
using a 3 kDa Ultracel® cutoff membrane (Millipore
UK Ltd., Watford, UK) to remove any oligopeptides
and pipetted into the nutrient solution. To capture the
14CO2 evolved from plant respiration a 1 M NaOH trap
(1 ml) was added to the box. After 24 h the plants were
removed, and the roots washed in 0.1 M CaCl2. The
roots and shoot were separated, weighed and dried at
80 °C for 24 h. To measure the 14C in the root and shoot
biomass, the dried samples were oxidised on a Harvey
OX400 Biological Oxidiser (Harvey Instruments Corp.,
Hillsdale, NJ, USA) and 14CO2 captured in Oxysolve C-
400 Scintillant (Zinsser Analytic, Frankfurt, Germany)
and 14C determination using a Wallac 1414 scintillation
counter with automated quench correction (PerkinElmer
Inc., Waltham, MA). The amount of 14CO2 captured
was determined after addition of Optiphase HiSafe3
scintillation fluid to the NaOH traps and 14C determina-
tion using a Wallac 1414 scintillation counter with
automated quench correction (PerkinElmer Inc.). We
acknowledge that we do not know the forms of 14C that
were taken up into the plant (i.e. intact protein or hy-
drolysis products such as peptides or amino acids), but
we assume it is as an organic N compound.

Rhizosphere protease activity

To compare root protease activity to rhizosphere soil
protease activity, we collected an agricultural topsoil (0–
15 cm) from Abergwyngregyn, UK (53°14′29”N, 4°01′
15”W). The soil was characterised as a Eutric Cambisol
(pH 6.8; 27.8 g C kg; 3.4 g N kg). Soil was sieved
(<2 mm) and added to boxes (8 cm × 10.5 cm × 4 cm) to
achieve a dry bulk density of 1 g cm−3. Maize and wheat
seeds were germinated and densely planted in the soil (1
seed per 1 cm3) to maximise the rhizosphere effect and
grown at 20 °C, 12 h photoperiod at 500 μmol photons
m−2 s−1 PAR. Seedlings were watered daily. After
2 weeks, the rooting was dense and, therefore, all soil
was considered to be rhizosphere soil. Soil was sampled
and a soil slurry created by adding 0.2 g to 20 ml sterile,
0.1 mMMES buffer (pH 5.6) and shaking for 30 min at
250 rev min−1. Protease activity was also measured at
the native soil pH (6.8) in a soil slurry with sterile,
deionised water (1:100 soil:water ratio). Protease activ-
ity did not significantly differ between the two assay
pHs (unpaired t test: p = 0.21). Rhizosphere protease
activity was compared to extracellular root protease
activity under inorganic N treatment for each species.
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Wedetermined the volume of root to be 0.00785 cm3 for
maize and 0.00502 cm3 for wheat with 1 cm root length
and 1 mm and 0.8 mm diameter for maize and wheat,
respectively (Eq. 1).

Volume of root cm3
� � ¼ πr2h ð1Þ

We assumed the root density to be 1 g cm−3 and, thus,
the fresh root weight to be 0.00785 g and 0.00502 g for
maize and wheat respectively. Assuming, 90% water,
the dry roo t we igh t i s 0 .000785 cm3 and
0.000502 g cm−3 (Eq. 2).

Dry root weight ¼ 0:1
1 g cm−3

Volume of root cm3ð Þ ð2Þ

We determined the rhizosphere extent to be 2 mm
from the root surface. Therefore, the volume of soil
surrounding 1 cm of root would be 0.126 cm3 (Eq. 1).
The soil dry bulk density is 1 g cm−3, thus, the soil
weight would be 0.126 g. We then determined the final
soil weight surrounded by the root to be 0.118 g and
0.121 g of soil for maize and wheat respectively (Eq. 3).

Final soil weight gð Þ
¼ total soil weight gð Þ−dry weight of root gð Þ ð3Þ

Rhizosphere protease activity was then compared to
extracellular root protease activity (μmol AMC cm−1

root h−1).

Statistical analysis

All experiments were performed in quadruplicate. All
statistical analyses were performed on R version 3.5.0
(R Core Team 2018). Normality of the data was deter-
mined by Shapiro-Wilk test (p > 0.05) then visually
checked using qqnorm plots. Homogeneity of variance
of the data was determined by Bartlett test (p > 0.05)
then visually checked using residuals vs. fitted plots.
One-way ANOVAs were used to determine if there was
a significant difference (p < 0.05) between N treatment
for extracellular protease activity and 14C-labelled pro-
tein uptake for each species. Unpaired t-tests were used
to determine if there was a significant difference
(p < 0.05) between rhizosphere and extracellular root
protease activity.

Results

Root protease activity

We found no evidence of protease activity in the nutrient
solution that the seedlings were grown in (no significant
difference from the control, unpaired t-test: p = 0.84;
data not presented). However, we did observe measur-
able protease activity in the in-situ protease assay.
Extracellular root protease activity ranged from 2
to 5 μmol AMC mg−1 root h−1 in maize roots and
5–6 μmol AMC mg−1 root h−1 in wheat roots
(Fig. 1). We assume all protease activity measured
in situ to be extracellular root protease at or in the
root surface because we found no evidence when
protease activity was measured in the solution
only. Protease activity was not significantly differ-
ent between N treatments, but under the N-
addition treatments, protease activity was two
times higher for maize and ca. 14% higher for
wheat (F(1,6) = 6.4, p = 0.53 and F(1,6) = 0.13, p =
0.73, respectively).

14C-protein uptake

We measured plant uptake of 14C derived from labelled
protein to determine whether the breakdown prod-
ucts from proteolysis were utilised by the plant.
Mineralisation of 14C-protein to 14CO2 was similar
between N treatments for both maize and wheat
(p = 0.06 and 0.54 respectively) (Fig. 2). Root
uptake of 14C was ca. twice as high under the
inorganic N than zero N treatment in maize (p =
0.03) (Fig. 2). However, wheat root uptake of 14C-
protein was similar between treatments (p = 0.43).
Uptake of 14C-protein into the plant shoot was ca.
three times higher under inorganic N than zero N
for maize and ca. twice as high for wheat (p = 0.04
and 0.02 respectively) (Fig. 2).

Rhizosphere and root protease activity

We compared root protease activity to rhizosphere
protease activity to determine the potential ecolog-
ical significance of plant root protease activity.
Extracellular root protease activity contributed
15% and 19% of rhizosphere protease activity
(Fig. 3) (t-test: p = 0.006 and p < 0.0001 for maize
and wheat respectively).
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Discussion

Free versus surface bound root protease activity

Here we evaluated the possible importance of four dif-
ferent mechanisms for the use of protein-derived N by
plant roots, and their likely importance in plant N nutri-
tion: A) Proteases are released from the root into the
external medium where they diffuse away and encoun-
ter proteins on soil surfaces and/or free in solution and
the products released diffuse back to the root where they
can be taken up (Adamczyk et al. 2010); B) Proteins
come in direct contact with the root surface enabling
cleavage by outward facing cell wall bound proteases
and uptake of soluble products; C) Proteins diffuse
through pores in the cell wall, entering the apoplast
where plasma membrane or inward-facing cell wall
bound proteases break them into soluble products
(Chang and Bandurski 1964); and D) Small proteins
are taken up by the root cell via endocytosis (Carpita
et al. 1979) (Fig. 4). In this study we found no evidence
to show that root proteases are released into the external
medium in significant quantities (mechanism A), how-
ever, we did find strong evidence for root-bound prote-
ase activity (mechanisms B and C). In this study, it was
not possible to determine the direct contribution of
mechanism D as this can only be confirmed when
mechanisms A and B are absent using our methods.
Our findings are therefore consistent with studies of

plant proteomes which have revealed a high diversity
and proportion of proteases among cell wall proteins
(ca. 15% of the total; Albene et al. 2014; Canut et al.
2016). These proteases have been shown to be important
regulators of plant growth and development, however,
their potential role in N nutrition remains unclear (van
der Hoorn 2008). Their known functions include: (i)
breakdown of cell wall proteins to facilitate cell wall
re-organisation (e.g. at the root-symbiont interface), (ii)
removal of oxidised/damaged proteins (Takeda et al.
2009), (iii) the production of active peptides important
for plant defence responses (immune signalling; Plattner
and Verkhratsky 2015; Hou et al. 2018), (iv) the syn-
thesis of anti-microbial peptides (Schaller et al. 2018),
(iv) regulators of programmed cell death (phytaspases;
Chichkova et al. 2010), (v) cell wall loosening to enable
mucilage release (Rautengarten et al. 2008), and (vi)
potential salvage of C and N resources in senescing
tissues (Polge et al. 2009). To date, all the evidence
suggests that these events are highly spatially and tem-
porally co-ordinated in response to specific environmen-
tal stimuli and developmental cues (van der Hoorn
2008; Plattner and Verkhratsky 2015). The activity of
these proteases also appears to target specific protein
substrates, consistent with the view that they are not
generalist proteases involved in the breakdown of soil-
derived protein. Although there is a lack of evidence for
their direct involvement in N nutrition, it is clear that
many could have an indirect role on N nutrition; for

Fig. 1 Extracellular root leucine
aminopeptidase activity (μmol
AMC mg−1 root h−1 of maize and
wheat under inorganic N and zero
N treatments measured using the
in situ assay. Different letters
represent significant difference
between N treatments for each
plant (p < 0.05). Values represent
mean ± SEM (n = 4)
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example, through improved N recycling and N use
efficiency in the plant, reducing microbial growth and
competition for exogenous N, enhancing soil-root con-
tact, and promoting symbioses that promote N acquisi-
tion (e.g. N fixation, mycorrhizas). Of critical signifi-
cance is that many of these proteases are upregulated in
response to environmental stress (e.g. Jorda and Vera
2000; Golldack et al. 2003), a feature that was not seen

in our experiments when N was withheld from the
plants. This suggests that the degradation of exogenous
proteins at the root surface is either a constitutively
expressed trait, or more likely is just an indirect conse-
quence of foreign proteins adhering to the root surface
or entering the apoplast where proteolysis occurs. A
similar argument has been made for the indirect capture
of amino acids and peptides from soil as transporters for

Fig. 2 14C-labelled protein
respired, root and shoot uptake
rate (μg 14C plant−1 day−1) of
maize and wheat under inorganic
N and zero N treatments.
Different letters represent
significant difference between N
treatments for each plant
(p < 0.05). Values represent
mean ± SEM (n = 4)

Fig. 3 Comparison of leucine
aminopeptidase activity in the
rhizosphere and extracellular root
(μmol AMC cm−1 root h−1) of
maize and wheat. Different letters
represent significant difference
between N treatments for each
plant (p < 0.05). Values represent
mean ± SEM (n = 4)
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these solutes are also not up-regulated in cereals under N
deficiency (Jones and Darrah 1994). In this latter sit-
uation, the active uptake of amino acids and
oligopeptides at the epidermal surface and apoplast
is likely associated with the recapture of solutes lost
in root exudation by passive diffusion (Jones et al. 2009)
and not uptake of organic N from soil (Kuzyakov and
Xu 2013).

While cell wall proteases may indirectly lead to some
cleavage of proteins, further action of cell wall endo/
exopeptidases may still be required to transform larger
peptides into oligopeptides capable of active transport
into the cell. To date, there is no evidence suggesting
these enzymes are regulated by plant N status with most
implicated in the recycling of damaged proteins (e.g.
TPP(II) cell wall exopeptidase; Book et al. 2005; Polge
et al. 2009). Again, this indicates that while the root
possesses a full complement of enzymatic machinery
required for proteolysis and the uptake of soluble prod-
ucts, this may have no direct involvement in N
acquisition. One caveat we note is that our study
only focused on fluorescent substrates targeted at
aminopeptidases. Further studies are warranted on
other types of fluorescent substrates which can
target alterative proteases.

Are root proteases quantitatively important in nitrogen
uptake from soil?

Most studies on the direct uptake of exogenous proteins
by roots have been undertaken in the absence of soil and
at very high soluble protein concentrations, conditions
that might be viewed as ecologically unrealistic (White
et al. 2015). In addition, even when purified protein
forms are used these do not represent soil proteins and
can still contain substantial amounts of oligopeptide
impurities. In our study, we secondary-purified our
plant-derived protein to remove oligopeptides, however,
this was still added directly to the nutrient medium. In
these situations, proteins tend to be attracted to the
charged root surface where clumping can occur (White
et al. 2015). In soil, however, it is more likely that
soluble proteins will preferentially sorb to soil particles
and/or denature and precipitate, hampering their move-
ment and bioavailability (Fiorito et al. 2008). This im-
plies that soil-borne protein needs to be in close prox-
imity to the root surface for root-mediated, protein-
derived N uptake to occur. This is consistent with our
results and others showing that roots contain both

inward and outward facing cell wall proteases
(Figueiredo et al. 2018; Hou et al. 2018), indicating that
they can cleave large proteins outside the cell wall
(mechanism B) and either cleave or directly take up
smaller ones diffusing through the cell wall
(mechanism C and D; Fig. 4).

The 14C-labelled proteins used in this study
contained a range of molecular weights (3–100 kDa)
and therefore sizes. It is likely that this also affects their
potential for uptake. Conventionally, the cell wall rather
than the plasma membrane is thought to represent the
main barrier to protein uptake. This is due to the charged
nature of the wall which induces protein binding and
retention (Albene et al. 2014), but also due to the small
pores (4–5 nm diameter) in the wall which prevents the
inward movement of larger proteins (>30 kDa; Palocci
et al. 2017). This is consistent with the inward move-
ment and intact uptake of the highly stable, green fluo-
rescent protein (~27 kDa) from solution by Arabidopsis
roots (mechanism D; Paungfoo-Lonhienne et al. 2008).
However, Read and Bacic (1996) suggest that,
albeit less frequent, 6–9 nm diameter pores may
also exist, which would allow the ingress and
potential uptake of much larger proteins (65–
100 kDa), although the significance of this path-
way remains unknown. We hypothesize that at
least some of our 14C-labelled proteins would have
been capable of passing through the cell wall and
being available for root uptake. Unfortunately, the
molecular weight distribution of proteins in soil
solution remains virtually unknown. Based on the
root uptake of a wide range of synthetic nanopar-
ticles (up to 50 nm diameter) it also implies that
this is not a protein specific pathway (Lv et al.
2019). Consequently, although evidence exists for
low molecular weight protein uptake, it may not
necessarily mean that it is quantitatively important
in N nutrition.

A study, that investigated whether Arabidopsis could
use protein as a N source, found that growth was higher
in plants grown on a combination of organic and inor-
ganic N sources rather than protein alone (protein and
inorganic N > inorganic N > protein) (Paungfoo-
Lonhienne et al. 2008). It is therefore possible that plant
N limitation could inhibit protease synthesis. However,
we would also expect that if outward facing protease
activity was a preferred plant strategy under N limitation
that it would preferentially allocate N resources to this
function. By analogy, in the case of root C starvation, it
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is well established that a large proportion of intracellular
protein can be degraded to provide C skeletons for
respiration without a loss of basic metabolism
(Brouquisse et al. 1991). It is also possible that the
presence of proteins in the rhizosphere could induce
extracellular protease production which the absence of
proteins in our experiments would have prevented.
However, this mechanism has only been observed in
fungi so far (e.g. Hanson and Marzluf 1975; Boer and
Peralta 2000). In addition, when 14C-labelled protein
was added, the uptake of 14C-derived from protein into
the shoot was also higher under the inorganic N
treatment. This suggests that proteases are not
induced under N deficiency. We hypothesise that
the supply of inorganic N drives faster growth
which in turn leads to grea ter ce l l wal l
reorganisation, more plasma membrane vesicle fu-
sion events (facilitating protein internalisation) and
greater cell wall protease activity.

Root versus rhizosphere protease activity

Rhizosphere protease activity was higher than extracel-
lular root protease activity for bothmaize andwheat.We
expected rhizosphere protease activity to be high be-
cause the rhizosphere is a hotspot for microbial activity
(Kuzyakov and Blagodatskaya 2015). Soil microorgan-
isms are largely C limited and they produce proteases to
liberate both C and N from proteinaceous compounds,
with a large proportion of the protein-C subsequently
used in catabolic processes (Gonzales and Robert-
Baudouy 1996; Jan et al. 2009). Furthermore, they do
not favour the uptake of NO3

− as this is energetically
unfavourable (Abaas et al. 2012). This contrasts with
crop plants who often favour NO3

− as a source of N due
to its fast diffusion in soil and who are rarely C limited
(Iqbal et al. 2020). Previous reports for protease and
other enzymes (e.g. Badalucco et al. 1996; Gramss
et al. 1999; Brzostek et al. 2013) have shown that roots

Fig. 4 Schematic diagram for the
mechanisms of root protease
activity in order to obtain N for
nutrition
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contribute little to overall rhizosphere hydrolytic activ-
ity. In contrast, our study shows up to one-fifth of
rhizosphere protease activity is of root origin. In future,
it is important to consider the potential contribution of
plant root proteases in rhizosphere activity.

Conclusions

Although plants have the potential to contribute to rhi-
zosphere protease activity and possess the capacity to
take up and metabolise protein breakdown products,
current evidence suggests that this plays a minor role
in N nutrition. Our study found no evidence for the root-
release of proteases into the soil solution. In contrast, we
present strong evidence for root-bound protease activity
and breakdown of soluble proteins. However, our re-
sults suggest that the use of exogenous protein may be
an indirect by-product of other processes occurring in
the root. In particular, the lack of up-regulation in pro-
tease activity under N deficiency and low intrinsic rates
of protease activity in comparison to soil microbial-
derived protease activity suggests it plays a minor role
in overall plant N acquisition.
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