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Abstract
Aims Extensive knowledge of perennial forage root
systems is essential, given their critical role in below-
ground C input.
Methods Root length and diameter were quantified pe-
riodically from 2016 to 2018 with minirhizotrons in a
field experiment with three forage management sys-
tems: mixture of timothy (Phleum pratense L.) and tall
fescue (Festuca arundinacea Schreb.) fertilized with (i)
dairy cattle slurry or (ii) calcic ammonium nitrate, and
(iii) mixture of timothy, tall fescue, and alfalfa
(Medicago sativa L.) without N fertilization. Root bio-
mass was measured yearly by coring.
Results Management systems with the two fertilization
sources did not differ in root elongation, but the man-
agement system with alfalfa resulted in a slower root
elongation after the first defoliation and a lower root
mortality in the fall. Root length turnover was greater in

the topsoil with dairy cattle slurry than with calcic
ammonium nitrate. Fine roots dominated the surface
soil and coarse roots the deeper soil layers.
Conclusions Root growth and mortality were more
contrasted between systems that differed by the pres-
ence of alfalfa than by fertilizer source. As many root
characteristics are drivers of soil C storage, the choice of
perennial species in mixtures appears as a key manage-
ment factor for sustainable farming systems.
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Abbreviations
DM Dry matter

Introduction

Root-related ecosystem services provided by perennial
forage crops are fundamental to the sustainability of
modern farming, especially for livestock-based systems
(Gregory et al. 2013; Ojeda et al. 2017; Soussana et al.
2014). In particular, well-managed grasslands and
perennial-based cropping systems can maintain and ac-
cumulate soil C and hence contribute to climate change
mitigation (Poeplau et al. 2018). The trait-based ap-
proach is usually favoured by plant ecologists to assess
functions, changes, and shifts in plant tissues in re-
sponse to environmental gradients in ecosystems and
to estimate the effect of these changes on ecosystem
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functioning. This approach is also well-suited for
agroecosystems in order to understand how manage-
ment practices influence ecosystem processes such as
soil C storage and nutrient cycling (Bardgett et al. 2014;
De Deyn et al. 2008; Martin and Isaac 2015), and thus
promote sustainable agricultural intensification (Faucon
et al. 2017).

Research on root systems and the resulting C inputs
from perennial crops are usually based onmeasurements
of total root mass at a given time (Bolinder et al. 2012).
However, total root biomass might not be the best
predictor of root-derived C, since it combines all types
of roots, regardless of their functions. Indeed, root bio-
mass combines two “functional compartments”, namely
the acquisitive fine, short-lived, and absorptive roots,
and the conservative thick roots and rhizomes dedicated
to water transport and resource storage (Klimesova et al.
2018). These two types of roots could contribute in
different ways to below-ground C input (Freschet et al.
2017; Poirier et al. 2018). Moreover, root turnover is
proposed as the main driver of C storage potential (Goss
and Watson 2003). Turnover, i.e. root growth and mor-
tality fluxes, is likely to be more significant in perennial
crops than in annual crops. Recent studies have set the
groundwork of trait-based approaches for herbaceous
perennials. Legumes and grass-legume mixtures were
overlooked, while they are thought to induce different
rooting patterns than grasses (Hernandez and Picon-
Cochard 2016).

High nutrient availability in shallow soil layers tends
to trigger intense soil exploration by fine roots, resulting
in high specific root length and root length density
(Mommer et al. 2011; Prieto et al. 2015). In addition,
roots developing in nutrient-rich soils are expected to be
short-lived and characterized by a high N concentration
(Kramer-Walter and Laughlin 2017; McCormack and
Guo 2014). Roots in deeper soil layers have lower tissue
density and are generally coarser (Fort et al. 2016, 2017)
and longer-lived (Wu et al. 2013). Rooting depth was
recently identified as a key driver of soil organic matter
stabilization, as deep roots are better protected from
decay due to their proximity to mineral particles and
their inclusion within stable soil aggregates (Rasse et al.
2005; Poirier et al. 2018).

Root traits exhibit strong seasonal patterns (Chen
et al. 2016), which are likely to be modulated by soil
depth and management practices (Fan et al. 2016;
Lazicki et al. 2016) and, hence, to influence root-
derived soil C fluxes (Poirier et al. 2018). Defoliation

in perennial grass pasture species was shown to increase
root turnover, while also inducing a smaller root system
(McInenly et al. 2010; Reid et al. 2015). Ensuing defo-
liation and under high N conditions, root architecture of
grasses showed a reduced average root diameter
(Dawson et al. 2004).

Nitrogen amendment is known to enhance below-
ground productivity, while also increasing soil organic
C stock through greater use efficiency of C inputs for
microbial growth (Ghafoor et al. 2017; Poeplau et al.
2018). Whether an organic or an inorganic source of N
is used might modify soil conditions. Over the long-
term, organic amendments have been shown to enhance
soil organic C and P contents, and microbial biomass
(Chen et al. 2018). Thus, as soil conditions differ under
organic vs. inorganic N, root lifespan and responses for
productivity also are presumably dissimilar, especially
near the soil surface (Baldi et al. 2010; Fort et al. 2016),
but evidence for this is scarce. Ultimately, based on
symbiotic N fixation by legumes and on the mutual
stimulatory effects on N acquisition by grasses and
legumes (Nyfeler et al. 2011), growing grass-legume
mixtures is an advocated cropping strategy to decrease
synthetic N fertilizer dependency and improve soil qual-
ity and C storage (Jensen et al. 2012; Lüscher et al.
2014).

Refining our knowledge of the seasonal rooting pat-
tern of perennial forage crops at different soil depths and
over multiple growing seasons could reduce uncer-
tainties related to the influence of management practices
at the plant community level. Through an in situ, non-
destructive trait-based approach, we aimed (i) to moni-
tor and quantify root growth dynamics and root length
turnover of different perennial forage mixtures through
successive defoliations and growing seasons and (ii) to
test whether spatial and temporal root deployment were
responsive to distinct forage management systems vary-
ing in plant species composition and N source.

Materials and methods

Site description

This study was conducted at the Laval University Ag-
ronomic Research Station in Saint-Augustin-de-
Desmaures (Quebec, Canada, Lat. 46°43′N; Long.
71°30′W) from 2016 to 2018. The soil, a Tilly silty clay
(fine, mixed, non-acid, frigid Aquic Haplorthod),
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contained 107 g clay kg−1 and 406 g sand kg−1, while
pH was 6.7 (0–15 cm). Soil organic C and total N
concentrations (dry combustion) were 22.1 and
2.6 g kg−1, respectively, and the cation exchange capac-
ity was 18.2 molc kg

−1. Mehlich-3 available P and K
were respectively 39 and 487 kg ha−1. Long-term mean
annual air temperature and precipitation (1981–2010)
were 4.2 °C and 1190 mm, respectively (Environment
Canada 2018).

Experimental set-up and crop management

Species sown in the study included timothy (Phleum
pratense L. ‘AC Alliance’, Sollio Groupe Coopératif,
QC, CA), tall fescue (Festuca arundinacea Schreb.
‘Carnival’, DLF Pickseed Canada, ON, CA), and alfalfa
(Medicago sativa L. ‘Calypso’, Sollio Groupe
Coopératif, QC, CA). These selected cultivars are wide-
ly used and recommended in eastern Canada (CRAAQ
2016).

The experimental treatments consisted of three for-
age management systems commonly used in eastern
Canadian dairy farms: (i) SLU: a mixture of timothy
and tall fescue fertilized with dairy cattle slurry, (ii)
CAN: a mixture of timothy and tall fescue fertilized
with calcic ammonium nitrate, and (iii) ALF: a mixture
of timothy, tall fescue, and alfalfa unfertilized during
post-seeding years. In the grass-only mixtures (SLU and
CAN), timothy and tall fescue were seeded at rates of 7
and 10 kg ha−1, respectively. For the grass-alfalfa mix-
ture (ALF), seeding rates were 6, 8, and 9 kg ha−1 for
timothy, tall fescue, and alfalfa, respectively. The forage
species were broadcast seeded on 12 May 2016 in a
randomized complete block design with three replica-
tions, and were immediately underseeded with barley
(Hordeum vulgare L. ‘Oceanik’, Synagri, QC, CA,
123 kg seeds ha−1, 18 cm between rows). Plot size
was 6.0 m × 10.0 m.

To ensure good forage establishment and barley
growth, all plots were fertilized in 2016 with 100 kg
available N ha−1, either with calcic ammonium nitrate
(for CAN and ALF) or dairy cattle slurry (for SLU).
Information about N application rates and timing is
summarized in Table 1. For the post-seeding years
(2017 and 2018), the ALF treatment did not receive
any N fertilization, while the SLU and CAN treatments
received 150 kg available N ha−1 as a split application
(Table 1). Available N in the slurry was estimated to be
70% of total N in mineral and organic forms (CRAAQ

2010). Selected characteristics of the slurry are present-
ed in Table 2. The P and K requirements of the CAN and
ALF management systems were met as per local recom-
mendation (CRAAQ 2010).

Forages were harvested once in 2016 (2 Sept.) and
three times in 2017 and 2018, at a 7-cm height with a
self-propelled flail forage harvester (Carter Mfg. Co.,
Brookston, IN). Forages were harvested when tall fes-
cue reached the late boot/early heading stage at the first
cut (6 June 2017 and 2018), and with an interval of
approximately 35 days between the following cuts. No
cuts were taken in the fall to favor winter survival.

Root measurements

Minirhizotron system

Before seeding forage crops in spring 2016, three
minirhizotrons consisting of transparent cellulose
acetate butyrate tubes with a 5.1-cm interior diam-
eter and a 120-cm length were installed in each
plot (9 plots × 3 tubes = 27 tubes). They were
inserted into the soil at an angle of 30° to the
vertical and to a vertical depth of 60 cm. The
tubes were sealed at the lower end, and protected
from rain and sunlight entry by an opaque white
plastic cap at the upper end.

Minirhizotrons allowed for continuous non-
destructive root observation, except during the winter
periods when the field was snow-covered from Decem-
ber to April. Root images were taken once in 2016 on 4
Oct. In 2017, images were collected weekly from 4May
to 6 Sept., and every 2 weeks from 21 Sept. to 30 Nov.,
for a total of 24 photo sessions. In 2018, images were
collected weekly from 25 Apr. to 6 June (first defolia-
tion), and then on 12 July (second defoliation) and on 18
Oct. (fall), for a total of seven photo sessions. Images
were collected using a video camera (Model BTC-
100X, Bartz Technology Corporation, CA, USA) at-
tached on the upper end of the tubes. The attachment
system allowed the camera to slide down the tube from a
reference point, thus ensuring the same soil depths at
each photo session. Images (1.35 cm high by 1.80 cm
wide, magnified 15.0X) were taken every 1.35 cm down
to a 60-cm depth, resulting in a complete image of the
soil profile in each tube. Thus, approx. 1500 images
were taken in every photo session, resulting in 36,000
images in 2017 and 10,500 in 2018.
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Image analysis

Images were analyzed using the WinRhizoTRON MF
2018a (Regent Instruments, QC, CA) software. The soil
profile was divided into four layers from the soil surface:
0–15, 15–30, 30–45, and 45–60 cm. For all images, all
roots were hand traced using a 2.0X magnification level.
Length and diameter were directly measured for live roots.
Over such a long project (3 years), four research assistants
were involved in root tracing. To minimize the operator
effect (Ingram and Leers 2001), the same person trained all
operators and supervised them in their work.Moreover, the
hand-traced images were randomly validated visually and
appropriate corrections were made when necessary.

Calculations

Daily elongation of live roots was computed by
performing piecewise linear regressions (SAS
9.4 2013), using root length as a function of the number
of days between sampling dates of pre-determined pe-
riods. Spring periods started with the first N amendment
and stopped at the first defoliation; subsequent post-
defoliation periods were the 5 weeks ensuing a defolia-
tion, while the fall period covered the rest of the growing
season until 30 Nov. in 2017. Photo sessions prior to the
first N fertilization are referred to as early spring (4 May
to 12 May 2017, and 25 Apr. to 7 May 2018). Precise
dates and the number of photo sessions used for the

Table 1 Nitrogen fertilization summary for the three forage man-
agement systems (SLU, a mixture of timothy and tall fescue
fertilized with dairy cattle slurry; CAN, a mixture of timothy and

tall fescue fertilized with calcic ammonium nitrate and; ALF, a
mixture of timothy, tall fescue, and alfalfa unfertilized during post-
seeding years) in 2016, 2017, and 2018

SLUa CANb ALFb

kg available N ha−1

2016 Springc 11–12 May 67 60 60

1st defoliationd/fall 2 Sept. 40 40 40

2017 Spring 16 May 89 90 0

1st defoliation 12 June 66 60 0

2018 Spring 10 May 94 90 0

1st defoliation 11 June 60 60 0

aAvailable N from dairy cattle slurry (Table 2) was considered to be 70% of total N (CRAAQ 2010);
b Applied as calcic ammonium nitrate;
c Incorporated by harrowing before seeding;
d N fertilizers were applied 5 to 6 days following the first defoliation every year

Table 2 Selected characteristics of dairy cattle slurry in 2016, 2017, and 2018

Application pH DM a C:N b Total N c NH4-N
d NO3-N

d P

Year Timing Rate
L m−2 g L−1 g kg−1 DM

2016 Spring 4.0 6.8 59.5 10.4 4.0 2.1 0.06 0.8

1st defoliation 2.5 7.3 70.1 12.5 3.3 1.3 0.03 0.7

2017 Spring 5.0 7.1 66.3 10.9 3.8 1.6 0.05 0.7

1st defoliation 3.5 8.4 68.2 10.6 3.9 1.7 0.05 0.8

2018 Spring 5.8 7.0 43.9 14.0 5.3 2.7 0.03 0.3

1st defoliation 3.8 7.3 40.8 14.6 5.6 3.0 0.05 0.3

a DM, dry matter;
b C:N, carbon-to-nitrogen ratio;
c Determined by acid digestion;
d Determined by KCl extraction
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calculation of root elongation rates are presented in
Table 3A.

Total root length was distributed into 10 diameter
classes with 100–μm increments. Root length in each
class was then expressed as a proportion of total root
length. This variable is referred to as root length distri-
bution (Table 3B).

Root mortality, assessed by the decline in root length,
was estimated in 2017 as the difference between the
maximum live root length observed at end of summer
(see Table 3C for exact dates) and minimum values
observed either in early fall when root biomass was also
assessed by soil coring, or in late fall with the last photo
session. Root mortality was calculated for each tube and
averaged for each treatment. Root length turnover was
calculated as the root mortality divided by the minimum
live root length observed in either early or late fall.
Details about these periods are provided in Table 3C.
Overwinter changes in root length and diameter were
calculated for the 2016–2017 winter and for the 2017–

2018 winter with either the early or late fall measure-
ments in 2017 (Table 3D). Finally, a distribution of root
length over four soil layers of the soil profile was cal-
culated (Table 3E).

Root biomass

Root biomass was assessed by soil coring to a 45-cm depth
in the falls of 2016, 2017, and 2018 (Table 3E). Three 7.5-
cm soil cores per plot were taken and divided into three soil
layers: 0–15, 15–30, and 30–45 cm. Roots were separated
from the soil with a hydropneumatic elutriation system
(Smucker et al. 1982) using a 760-μm primary sieve and
a 290-μm secondary sieve following a 16-h pre-soaking in
a sodium hexametaphosphate solution (100 g L−1). Sepa-
rated roots were dried at 55 °C until constant weight and
analyzed for total N and C concentration by dry combus-
tion (LECO CNS-1000, Leco Corp., St. Joseph, MI). Ash
content was determined by heating root subsamples to
600 °C until a constant weight using a thermogravimetric

Table 3 Periods and dates of measurements, and number of photo sessions used in five root analyses (A to E)

Analysis Year Period Dates Number of photo sessions

A Root elongation rates 2017 Spring 16 May to 6 June 3

2017 Post-defoliation 1 7 June to 12 July 5

2017 Post-defoliation 2 18 July to 16 Aug. 5

2017 Post-defoliation 3 24 Aug. to 5 Oct. 5

2017 Fall 18 Oct. to 30 Nov. 4

2018 Spring 10 May to 6 June 3

B Root length distribution by
diameter classes

2017 All 24

C Root mortality and turnover 2017 End of summer to early fall [25 July - 6 Sept.] to
[5 Oct. - 1 Nov.]

7 and 3

2017 End of summer to late fall [25 July - 6 Sept.] to
[15 Nov. - 30 Nov.]

7 and 2

D Overwinter changes in root
length and diameter

2016 to 2017 4 Oct. and 4 May 2

2017 to 2018 Late fall to early spring 30 Nov. and 25 Apr. 2

2017 to 2018 Early fall to early spring 18 Oct. and 25 Apr. 2

E Fall root length and biomass
distribution over soil depth

2016 Early fall 4 Oct. a, 5 Oct.b 1

2017 Early fall 5 Oct. a, 19 Oct.b 1

2018 Early fall 18 Oct. a, 12 Oct.b 1

a Date of root length measurement;
b Date of root biomass measurement
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analyzer (TGA701, Leco Corp., St. Joseph, MI), and ash-
free biomass was calculated (Bolinder et al. 2002).

Plant aboveground measurements and analyses

Forage dry matter (DM) yield was measured on
each defoliation by cutting an area of 4.6 m2 to a
7-cm height using a self-propelled flail-type Car-
ter™ harvester (Carter MGF Co., Inc., Brookston,
IN). A fresh forage sample of approximately 500 g
was taken from each plot, weighed, dried at 55 °C
to determine DM concentration, and then ground
using a Wiley mill (standard model 4, Arthur H.
Thomas Co., Philadelphia, PA) to pass through a 1-
mm screen. Nitrogen in ground forage samples was
extracted using a method adapted from Isaac and
Johnson (1976), and N was quantified using an
automated continuous-flow injection analyzer
(QuickChem 8000 FIA+, Lachat Instruments, Love-
land, CO). The plant species composition was
assessed in each plot at all cuts by hand-
separating a subsample of approximately 100 g into
four categories: timothy, tall fescue, alfalfa, and
others, and calculating the proportion of each
species.

Statistical analyses

Statistical analyses were performed in SAS 9.4
(2013). Analyses of variance were performed using
the MIXED procedure for all listed dependent
variables: root length, root diameter, and biomass.
Blocks and minirhizotron tubes were considered
random effects, while management systems
(CAN, SLU, and ALF), soil depth, and photo
sessions were considered fixed effects. Photo ses-
sions and soil depth were considered as repeated
measurements. Structure of the covariance was
modelled for every dependent variable. Normal
data distribution was evaluated through the UNI-
VARIATE procedure (SAS Institute 2006), and the
Shapiro-Wilk test (Shapiro and Wilk 1965) was
used to determine the normality of the residuals
distribution. The homogeneity of variance was ver-
ified visually with graphics of residuals. Differ-
ences were considered significant at P ≤ 0.05.

A principal component analysis was performed using
proportions of total root length in all diameter classes
with the complete dataset of 2017. An analysis of

variance was thereafter conducted on the scores of every
combination of soil depth, photo session, and manage-
ment system on axes 1 and 2 of the principal component
analysis to assess how management system, time, and
soil depth affected the root length distribution. To inter-
pret significant triple interactions, the levels of two
factors were fixed to compare the levels of the third
factor.

Results

Aboveground growth and proportion of seeded species

The forage DM yield was affected by a significant
interaction between management system and defoliation
in both years (Fig. 1). The ALF management system
yielded more than the SLU and CAN management
systems at the third defoliation in both years. The forage
DM yield of the SLU management system was lower
than that of the other two management systems at the
first defoliation in 2017, and lower than that of the ALF
management system at the second defoliation in 2018.

The proportion of tall fescue in all management
systems increased through defoliations in 2017 (24%,
35%, and 55% at 1st, 2nd, and 3rd defoliations, respec-
tively) and 2018 (50%, 54%, and 57% at 1st, 2nd, and
3rd defoliations, respectively) (Fig. 1). The proportion
of alfalfa in the ALF management system increased
through defoliations in 2017 (35%, 45%, and 67% at
1st, 2nd, and 3rd defoliations, respectively) and 2018
(51%, 70%, and 75% at 1st, 2nd, and 3rd defoliations,
respectively) (Fig. 1).

Root elongation dynamics over the 0–60 cm soil profile

Root elongation rates in the two grass-only man-
agement systems (SLU and CAN) did not differ in
any of the monitored periods (Table 4). Root elon-
gation rates of all mixtures over the 60-cm soil
profile were the greatest in the spring of the first
post-seeding year (2017, Table 4, Fig. 2a). Root
elongation either stopped in the ALF management
system or slowed down in the SLU and CAN
management systems in the post-defoliation 1 pe-
riod (Table 4, Fig. 2a). In the post-defoliation 2
period, root elongation rates of the SLU and CAN
management systems did not change while root
elongation resumed in the ALF management
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system (Table 4). In the post-defoliation 3 period,
no root elongation was measured in any manage-
ment systems (Table 4). In the fall, root length in
all management systems decreased with time, but
this decrease was greater in the SLU and CAN
management systems than in the ALF management
system (−18.7 vs. –8.6 mm tube−1 day−1; Table 4).

In the spring of the second post-seeding year (2018),
root elongation rates in the SLU and CAN management
systems were reduced three-fold as compared to the same
period in the first post-seeding year (2017; Table 4). The
mean root diameter over the 60-cm soil profile decreased
continuously in 2017, with no differences among the
three forage management systems (Fig. 2b).

Overwinter changes in root length and diameter

Root length of the grass-only management systems
(SLU and CAN) over the 60-cm soil profile increased
from the last photo session in fall to the first photo
session the next spring in both winters of 2016–2017
(+113 mm tube−1) and 2017–2018 (+1037 mm tube−1;
Table 5). The increase was significant in the 30–45 and
45–60 cm soil layers in 2016–2017 and at all soil depths
in 2017–2018 (Fig. 3). Root length in the ALF manage-
ment system did not change over the first winter and
decreased by 517 mm tube−1 over the second winter.

Average root diameter over the 60-cm soil profile in all
management systems increased more over the first than
over the second winter period (Table 5).

Root length and biomass depth distribution

In Oct. 2016, 2017, and 2018, total root length (0–60 cm
soil profile) was 425, 2164, and 1137 mm tube−1 re-
spectively (Fig. 4a–c), while total root biomass (0–
45 cm soil profile) reached 4.1, 5.8, and 7.3 Mg DM
ha−1, respectively (Fig. 4d–f).

Root length and root biomass measured in the fall
varied with soil depth, but did not vary among the three
management systems at any depth (Fig. 4). The distri-
bution of root biomass in the soil profile was similar in
all 3 years, with 73 to 75% of the biomass in the top
15 cm of soil (Fig. 4d–f). The distribution of root length
gradually shifted over the soil profile, and the proportion
of root length in the surface soil layer (0–15 cm) de-
creased from 79% in 2016 to 29% in 2017 and 12% in
2018 (Fig. 4a–c).

Root length distribution per diameter class

The principal component analysis revealed that root
length distribution among diameter classes changed
with soil depth (spatial gradient) and among photo
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Fig. 1 Forage dry matter (DM)
yield in three forage management
systems (SLU, a mixture of timo-
thy and tall fescue fertilized with
dairy cattle slurry; CAN, a mixture
of timothy and tall fescue fertilized
with calcic ammonium nitrate and;
ALF, a mixture of timothy, tall
fescue, and alfalfa unfertilized
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sessions (temporal gradient), but was not affected by
management systems (Fig. 5). The spatial gradient indi-
cated that while very fine roots (< 300 μm, first

component) dominated near the soil surface (0–
30 cm), coarser roots (> 300 μm, first component)
dominated at greater depths. The temporal gradient

Table 4 Daily root elongation rates in three forage management
systems (SLU, a mixture of timothy and tall fescue fertilized with
dairy cattle slurry; CAN, a mixture of timothy and tall fescue
fertilized with calcic ammonium nitrate and; ALF, a mixture of

timothy, tall fescue, and alfalfa unfertilized during post-seeding
years) during the first post-seeding year (2017) and the following
spring (2018)

2017 2018

Spring Post-defoliation 1 Post-defoliation 2 Post-defoliation 3 Fall Spring

Elongation rate (mm tube−1 day−1)

SLU 34.4 a 11.0 b 13.1 b −0.6 c –18.2 d 12.7 b

CAN 45.9 a 12.2 b 10.6 b −3.2 a –19.1 d 12.5 b

ALF 32.0 a −5.4 c 16.8 b 2.0 c –8.6 c

Contrasts (P values)

SLU and CAN vs. ALF 0.27 0.004 0.39 0.40 0.031

SLU vs. CAN 0.19 0.85 0.74 0.64 0.87 0.98

Within a management system, values with the same letter are not statistically different at P ≤ 0.05. Values in italics are not statistically
different from 0. Spring periods started with the first N amendment (16 May 2017 and 10 May 2018) and stopped at the first defoliation (6
June 2017 and 2018); subsequent post-defoliation periods lasted 5 weeks ensuing a defoliation, while the fall period covered the rest of the
growing season until 30 Nov. 2017
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Fig. 2 Root length per tube (a) and average root diameter over the
0–60 cm soil profile (b) for each photo session from the fall of the
seeding year in 2016 to the fall of 2018. SLU, a mixture of timothy
and tall fescue fertilized with dairy cattle slurry; CAN, a mixture of
timothy and tall fescue fertilized with calcic ammonium nitrate
and; ALF, a mixture of timothy, tall fescue and alfalfa unfertilized

during post-seeding years. Hatched zones indicate winter periods,
dotted lines indicate defoliations, and arrows indicate fertilization
events. Periods (E-Sp, early spring; Sp, spring; PD: post-
defoliation; Fa, fall) were determined by defoliation events and
N applications. For more details about periods, see Table 3A.
Standard errors (SE) are presented for each photo session
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indicated that roots were coarser in early spring, became
progressively finer until mid-Oct., and coarser again (>
300 μm) after mid-Oct.

There was a significant interaction between manage-
ment systems, photo sessions (time), and soil depth
(P < 0.001, Fig. 5). Values of the first component were
lower for the SLU than the CANmanagement system in
early spring (until 12 May 2017), indicating a larger

proportion of very fine roots (< 300 μm) in the SLU
management system, for both 0–15 and 15–30 soil
layers. For all management systems, the depth factor
was significant in the early season only, meaning that
root length distribution tended to homogenize over
depth through time. This homogenization came earlier
in the ALF management system (mid-Sept.) than in the
SLU and CAN management systems (mid-Oct.).

Table 5 Overwinter changesa in root length and diameter in grass-only (SLU and CAN) and grass-alfalfa (ALF) management systems

2016–2017 2017–2018

Mean ± SE P value Mean ± SE P value

Root length (mm tube−1)

SLU and CAN b + 113 ± 42.1 0.017 + 1037 ± 126.3 <0.002

ALF − 53 ± 67.1 0.450 − 517 ± 38.9 <0.001

Root diameter (μm)

SLU and CAN + 110 ± 22.8 <0.001 + 48 ± 21.0 0.023

ALF + 83 ± 24.0 0.008 + 30 ± 11.4 0.031

a The change was calculated by subtracting the last value in fall from the first value in spring (4 Oct and 4 May in 2016–2017, and 30 Nov
and 25 Apr. in 2017–2018); contrasts were used to determine the statistical significance of the change
b Results are an average of the SLU (mixture of timothy and tall fescue fertilized with dairy cattle slurry) and CAN (mixture of timothy and
tall fescue fertilized with calcic ammonium nitrate) forage management systems because there were no significant differences between those
two management systems

0 150 300 450

[0-15] cm

[15-30] cm

[30-45] cm

[45-60] cm*

*

*

*

*

*

2016-2017

2017-2018

Root length change (mm∙tube-1)

Fig. 3 Overwinter root length
changes in the grass-only man-
agement systems (SLU, a mixture
of timothy and tall fescue fertil-
ized with dairy cattle slurry and
CAN, a mixture of timothy and
tall fescue fertilized with calcic
ammonium nitrate) for each 15-
cm soil layer during the 2016–
2017 and 2017–2018 winters.
Asterisks indicate a significant
(P < 0.05) change between fall
and the following spring root
length values, and standard errors
are presented for each soil layer.
Values are averaged across SLU
and CAN forage management
systems because they did not dif-
fer significantly
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Root mortality and turnover

In the ALF management system, no signs of root mor-
tality were observed at any soil depth (P > 0.05), thus,
the root length turnover could not be calculated for this
management system. In the SLU and CANmanagement
systems, root mortality assessed until late fall totalled

1000 to 1137 mm tube−1 over the 0–60 cm soil profile in
the first post-seeding year (2017). It decreased with
depth (Fig. 6; P < 0.001), from an average of 391 mm
tube−1 in the top 15 cm of soil to 83 mm tube−1 in the
45–60 cm soil layer. Root length turnover based on the
late fall estimate averaged 131% over the 0–60 cm soil
profile and was affected by an interaction between soil
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was measured from minirhizotron
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depth and management system (P = 0.002). In the 0–
15 cm soil layer, root length turnover was greater in the
SLU than in the CAN management system (269 vs.
138%, P < 0.05; Fig. 6), while it was similar between
management systems in the deeper soil layers with
average values of 149%, 107%, and 58% in the 15–30,
30–45 and 45–60-cm soil layers, respectively (Fig. 6). If
assessed until early fall, root mortality in the SLU and
CAN management systems totalled 263 to 354 mm
tube−1 over the 0–60 cm soil profile (data not shown),
resulting in a root length turnover that averaged 23%.

Discussion

Early spring root growth

The large overwinter increase in grass root length ob-
served in the present study suggests that grass root
growth resumed very early in spring, likely before shoot
growth. In line with this finding, Rytter and Rytter
(2012) previously suggested that roots of perennial
crops are not dormant between growing seasons, and
that root growth never completely ceases. In perennial
forage crops, shoot growth is generally assumed to
resume concomitantly when air temperature has reached
an average of 0 °C for 5 or 6 consecutive days for forage
grasses like timothy and tall fescue, and 5 °C for alfalfa
(Jégo et al. 2013, 2015; Qian et al. 2010). In spring
2017, these requirements were reached 1 month before
the first photo session and, therefore, it is not possible to
ascertain if the measured overwinter increase in root
length occurred before shoot growth. In 2018, however,
the temperature requirement for shoot growth of grasses
was reached only 6 days prior to the first photo session
(25 Apr.) when a major increase in root length was
measured (+1037 mm tube−1). Considering a root elon-
gation rate of 12.6 mm tube−1 day−1 during this period
(Table 4), it can reasonably be assumed that root growth
resumed long before shoot growth. Although an in-
crease in root length of 1037 mm tube−1 may appear
impressive, it consisted mainly of an increase in length
of very fine roots, and probably did not represent a large
proportion of the total root biomass. Our data, however,
do not allow the estimation of early spring changes in
root biomass.

In arctic environments, roots of perennial grasses
remain active and able to absorb nutrients, especially
N, during the snowmelt period (Bilbrough et al. 2000;

Edwards and Jefferies 2010; Ma et al. 2018a). More-
over, NO3

− and NH4
+ are reported to accumulate in

snow-covered soils (Tatti et al. 2014) as mineralization,
nitrification, and denitrification occur in Canadian agri-
cultural soils duringwinter (Chantigny et al. 2019; Clark
et al. 2009). As root growth is responsive to N avail-
ability (Huang and Eissenstat 2000; Hodge 2004), the
likely presence of available N in soils in early spring
could partly explain the root elongation of grasses under
cold conditions. We suggest that to exploit this available
N, de novo root growth likely occurs using C resources
stored in standing roots, as photosynthesis has not yet
resumed.

The increase in root diameter over both winter pe-
riods in all treatments could be the result of the growth
of large roots or/and the mortality of fine roots. Even a
small change in root diameter has major consequences
in terms of soil exploration and nutrient acquisition (Ma
et al. 2018b). In the grass-only management systems,
the large increase in root diameter found in the first
winter after establishment supports the idea that, at this
period, root development is mainly aimed at increasing
energy and nutrient storage capacity, hence the larger
roots. In subsequent winter periods, however, root de-
velopment is mainly dedicated to the renewal of the root
system. Traits displayed are then more closely related to
an acquisitive strategy, i.e. surface rooting, high root
length density, and high root N concentration
(Mommer et al. 2011), hence the finer roots. Since there
was no apparent root growth over winter periods in the
grass-alfalfa mixture (ALF), it is reasonable to believe
that the small overwinter increase in average root diam-
eter in this treatment is related to the mortality of fine
roots.

In-season root elongation and depth distribution patterns

The observed slower root elongation in the regrowth
periods following the first defoliation is consistent with
a previous observation in grass-clover swards (Chen
et al. 2016), which was explained by a lower water-
soluble carbohydrate availability for root growth in the
regrowth periods following defoliation, compared to the
primary growth. However, higher root growth rates
during summer than spring were reported from a study
conducted with tall fescue in France (Bélanger et al.
1994), which is contrary to our observations.

Seasonal variations in root length and diameter of the
grass-only management systems (SLU and CAN) over
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the 60-cm soil profile are consistent with those reported
under similar conditions in shallower soil layers (0–30
to 0–40 cm; Beyrouty et al. 1990; Chen et al. 2016),
suggesting that deep root development (30–60 cm) also
shows a seasonal pattern. The observed patterns in root
length over two growing seasons is also similar to those
observed for root biomass by Steen (1989).

Root elongation patterns differed between the man-
agement system with alfalfa and the management sys-
tems without alfalfa. This could be due at least partially
to phenological rooting differences between grasses and
legumes (Bolinder et al. 2002; Fan et al. 2016). In pure
alfalfa stands, defoliation stops root elongation, in-
creases decay, and thus stimulates root turnover (Goins
and Russelle 1996; Reid et al. 2015). This is partly in
line with our results showing a cessation of root elon-
gation from the first defoliation in the management
system with alfalfa, while root elongation continued in
the grass-only management systems. However, we did
not observe an increase in root decay or a higher root

turnover with alfalfa. In the fall, the greater root mortal-
ity found in the grass-only management systems could
be related to differences between monocotyledons and
dicotyledons; tap roots of legumes are longer-lived be-
cause of large root diameter and high dry matter content
(Hakl et al. 2017). Besides, grass-only management
systems were N fertilized in surface soil, while the
mixture with alfalfa was not. As high nutrient availabil-
ity in shallow soil layers tend to trigger soil exploration
by fine roots and result in high specific root length
(Mommer et al. 2011; Prieto et al. 2015), fertilization
could have stimulated the growth of finer roots in the
surface soil in the SLU and CAN management systems,
contributing to their higher root elongation rates after
the first defoliation. The present experimental design
does not allow to decouple the effect of plant species
composition from that of fertilization.

The grass-only management systems (SLU and
CAN) did not differ in total root length and biomass.
Chantigny et al. (2007) reported similar forage DM
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yield for timothy with mineral fertilizer and animal
slurries in the area of our study. It is hypothesized that
mineralization of slurry organic N as the season
progressed contributed to crop nutrition, thereby atten-
uating the discrepancy between these two forage man-
agement systems. Moreover, mineralization of the soil
N reserve also likely contributed significantly to forage
nutrition (Nyiraneza et al. 2010), thus further mitigating
the difference in N availability between dairy cattle
slurry and mineral fertilizers.

The dissimilar depth distributions between root
length and root biomass in the soil profile were unex-
pected, especially because increases in root biomass
mostly occurred in the 0–15 cm soil layer as sward aged,
as also reported by Bolinder et al. (2002). Nevertheless,
Fort et al. (2017) found that, in many species, root tissue
density tends to decrease with depth while root diameter
increases, a strategy aimed at maximising water uptake.
As the demand for water increases during summer and it
becomes scarcer, deep coarse rooting maximises water
uptake and transport from the subsoil to shoots over the
long-term (Fort et al. 2017; Klimesova et al. 2018).

These deep roots can survive over a long period, as they
are protected from degradation and external conditions
in the deep soil (Rasse et al. 2005). In the present study,
this could explain why a large proportion of root length
but a low proportion of root biomass were found in the
15–30 and 30–45 cm soil layers in 2017 and 2018.
However, root length and biomass were obtained from
two different methods and, therefore, depth distributions
of these parameters cannot be compared.

Root length turnover and implications for soil C storage

Several factors may explain the higher turnover rate
observed in the surface soil layer than at depth in the
present study. Indeed, a greater oxygen availability,
water availability, and temperature near the soil surface
can lead to a greater respiration and decomposability of
roots in this soil layer (Gill et al. 1999; Prieto et al. 2016;
Wu et al. 2013). In the present study, the surface-applied
N fertilizer is also thought to have fostered the growth of
very fine and absorptive roots in surface soil layers, as N
availability entails intense root exploration of the topsoil
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at a very low C cost (Eissenstat 1992). However, these
absorptive fine roots are short-lived and highly decom-
posable (Roumet et al. 2016), which is consistent with
the high root length turnover that was found near the soil
surface. Turnover values of the present study are also in
line with the suite of traits that Prieto et al. (2015)
observed at the community level, i.e. fine, low-lignin,
high-N, highly acquisitive roots, and with great soil
exploration capacity in shallow soil layers. Regarding
root traits in deep soil layers, many studies stated that
large root diameter and longevity are positively corre-
lated for a wide range of plant species (Gill et al. 2002;
Roumet et al. 2016; Weemstra et al. 2016; Wu et al.
2013), which is consistent with our results of larger
diameter and lower root turnover rate at depth. Some
authors, however, argue for a more complex relationship
between diameter and longevity (McCormack et al.
2015; McCormack and Guo 2014). Difference in root
turnover rates between the grass-only management sys-
tems (SLU and CAN) was significant only in the topsoil
layer. Since root mortality did not differ between man-
agement systems, this difference in root turnover is
mostly attributable to the lower root length in the fall
for the SLU management system.

Root turnover (Goss and Watson 2003) and rooting
depth (Rasse et al. 2005; Poirier et al. 2018) have been
identified as key drivers of C storage potential. On one
side, the high root turnover rate observed in the surface
soil layer in the present study for the grass-only man-
agement systems can favor C storage by providing
readily decomposable litter which can be rapidly trans-
formed to soil microbe products that contribute to the
formation of soil organic matter and C storage (Cotrufo
et al. 2013; Poirier et al. 2018). In accordance, soil C
accumulation was shown to decrease with soil depth
under perennial pasture (Ojeda et al. 2017). On the other
side, deep roots rich in recalcitrant compounds such as
lignin and with a high mean residence time in soil
(Rumpel and Kögel-Knabner 2011) are also crucial for
long-term soil organic matter stabilization (Poirier et al.
2018). Indeed, our results highlight that the studied
forage management systems, including the mixture with
alfalfa, invested in coarse root development in deep soil
layers (30–60 cm) at early stages of the sward establish-
ment. Moreover, the results showed low root length
turnover at depth, suggesting a preservation of coarse-
root C. Although C inputs were not measured in this
study, it could be suggested that C input and C storage
potential in deep soil layers occurred early and nearly

peaked by the end of the first post-seeding year. Further
research is needed to confirm this hypothesis, which
could have strong implications in the context of short
grassland-annuals rotation systems.

Root length turnover values calculated until late fall
are greater than those calculated until early fall (Fig. 6).
Root mortality is likely to have increased between early
and late fall root measurements. It is not excluded,
however, that soil displacement around observation
tubes at this period of the year might have led to an
overestimation of late fall root mortality and the corre-
sponding root turnover. Indeed, our silty clay soil is
susceptible to shrink-swell behaviour with varying soil
water content and freeze-thaw cycles. We observed that
some roots disappeared from the observation tubes in
late fall, when soil water content was high, and re-
appeared later in the subsequent spring, after soil had
dried. It was not possible to quantify this observation
and, therefore, root length turnover was also presented
based on early fall measurements, at which point the soil
was not yet affected by shrink-swell behaviour.

Conclusions

This study improves our understanding of many
important drivers of C dynamics in soils under pe-
rennial crops, especially those affecting C inputs
such as root elongation, mortality, turnover, and
depth distribution. The forage management system
with alfalfa resulted in a slower root elongation after
the first defoliation and a slower root mortality in
the fall. In all management systems, roots were finer
and more abundant near the soil surface than at
depth, and grass-only management systems showed
a decreasing root length turnover rate from the top
soil layer to the 45–60 cm soil layer. Our results
suggest that these spatial and temporal variations
could impact root-derived C-input potential of pe-
rennial forage mixtures under different management
systems.

Root growth and mortality were more contrasted
between forage management systems that differed by
the presence or absence of alfalfa than by the source of
fertilization in grasses. The choice of perennial species
in mixtures therefore appears as a key management
factor for sustainable farming systems. Further research
is required to assess root length turnover over multiple
years along with in situ monitoring of soil organic C.
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