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Abstract
Knowing how chromosome recombination works is essential for plant breeding. It enables the design of crosses between 
different varieties to combine desirable traits and create new ones. This is because the meiotic crossovers between homolo-
gous chromatids are not purely random, and various strategies have been developed to describe and predict such exchange 
events. Recent studies have used methylation data to predict chromosomal recombination in rice using machine learning 
models. This approach proved successful due to the presence of a positive correlation between the CHH context cytosine 
methylation and recombination rates in rice chromosomes. This paper assesses the question if methylation can be used 
to predict recombination in four plant species: Arabidopsis, maize, sorghum, and tomato. The results indicate a positive 
association between CHH context methylation and recombination rates in certain plant species, with varying degrees of 
strength in their relationships. The CG and CHG methylation contexts show negative correlation with recombination. Meth-
ylation data was key effectively in predicting recombination in sorghum and tomato, with a mean determination coefficient 
of 0.65 ± 0.11 and 0.76 ± 0.05, respectively. In addition, the mean correlation values between predicted and experimental 
recombination rates were 0.83 ± 0.06 for sorghum and 0.90 ± 0.05 for tomato, confirming the significance of methylomes in 
both monocotyledonous and dicotyledonous species. The predictions for Arabidopsis and maize were not as accurate, likely 
due to the comparatively weaker relationships between methylation contexts and recombination, in contrast to sorghum and 
tomato, where stronger associations were observed. To enhance the accuracy of predictions, further evaluations using data 
sets closely related to each other might prove beneficial. In general, this methylome-based method holds great potential as 
a reliable strategy for predicting recombination rates in various plant species, offering valuable insights to breeders in their 
quest to develop novel and improved varieties.

Key message 
Plant species methylation data can be used to predict recombination rates using machine learning regression models; high 
model performance values on sorghum and tomato data are presented in this paper.
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Introduction

Meiotic recombination is a fundamental process that 
drives genetic diversity by generating new combina-
tions of existing genetic variation in sexually reproducing 
organisms (Boideau et al. 2022; Choi 2017). Through the 

independent segregation of chromosomes and reshuffling of 
genetic material, meiosis generates novel allelic combina-
tions in offspring (Casale et al. 2022). Recombination not 
only impacts meiotic outcomes, but also has far-reaching 
effects on evolutionary and population genomics (Adrion 
et al. 2020). Specifically, it results in the mixing of alleles 
between homologous parental chromosomes (Fayos et al. 
2022). Although meiotic recombination occurs through-
out the genome, crossovers are not evenly distributed and 
often happen on hotspots in chromosome arms, with a sup-
pression in pericentromeric regions (Choi and Henderson 
2015; Colomé-Tatché et al. 2012). In plants, high rates of 
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recombination have been observed in gene-rich euchroma-
tin and low rates in repeat-rich heterochromatin. However, 
the regulation of meiotic crossover hotspots remains largely 
unknown (Melamed-Bessudo and Levy 2012; Choi et al. 
2013; Choi and Henderson 2015).

Understanding the rates of recombination is crucial for 
plant breeding. This allows breeders to identify the best vari-
eties for crosses, leading to better offspring development 
(Brandariz and Bernardo 2019). High recombination rates 
promote the merging of desirable alleles into one haplotype, 
but the success of the mix depends on the susceptibility of 
the chromosomal regions that contain the favorable genes. 
Hence, knowledge of recombination locations is essential 
for improving variety development (Brandariz and Bernardo 
2019; Casale et al. 2022; Fayos et al. 2022).

Several studies have explored the prediction of chromo-
somal recombination in multiple species using machine 
learning methods. Liu et al. (2016) utilized these techniques 
to construct a predictor for yeast recombination hot/cold 
spots, while Demirci et al. (2018) applied them to predict 
recombination in crops such as Arabidopsis, maize, tomato, 
and rice. Adrion et  al. (2020) also employed recurrent 
neural networks to estimate recombination in Drosophila 
melanogaster populations. Furthermore, Casale et al. (2022) 
assessed the capability of a genomic prediction approach to 
reproduce the variation in recombination rate in cultivated 
barley. Despite the different strategies and features employed 
by these studies, they all achieved favorable results. How-
ever, it is worth noting that these approaches were developed 
to predict species-level recombination using population data 
to generate generalized recombination landscapes, rather 
than predicting recombination in specific varieties that are 
typically utilized in breeding programs.

Recently, the authors of the present work developed a new 
approach for predicting recombination rates in two commer-
cial rice varieties using methylomes (Peñuela et al. 2022). 
This study evaluated the relationship between recombina-
tion rates and methylated cytosines in CG, CHG, and CHH 
contexts (where H is one of C, T, or A) across the twelve rice 
chromosomes. In that work, CHH methylation was found 
to have a positive correlation with recombination across 
chromosomes and was used as a distinct feature to train an 
Extra Trees model for prediction purposes. This opened up 
new avenues for using plant methylomes to predict chromo-
somal recombination. It also may be of value to breeders as 
it allows for predictions to be made on specific data sets of 
target varieties, rather than relying on generalized recombi-
nation landscapes.

The relationship between DNA methylation and chro-
mosomal recombination has been widely documented, but 
its precise mechanisms of action remain unclear (Tock and 
Henderson 2018; Taagen et al. 2020; Fayos et al. 2022; 
Lloyd 2022). DNA methylation plays a critical role in plant 

development and serves as a stable mark passed down from 
one generation to the next, primarily regulated and main-
tained through DNA replication and cell division by DNA 
methyltransferases (Law and Jacobsen 2010; Bräutigam and 
Cronk 2018; Gallo-Franco et al. 2020). DNA methylation is 
also associated with gene expression regulation, chromo-
some interactions, and transposon silencing (Zhang et al. 
2018). Investigating the natural variations in the epigenome 
will shed light on the orchestration of gene regulation in 
plants and the potential for manipulation in the future (Lloyd 
and Lister 2022).

The ability to predict variations in recombination rates 
in chromosomes is essential for boosting crop improvement 
and methylomes hold potential for this purpose. To investi-
gate whether the methylation patterns found in rice and their 
correlation with recombination can be applied to other plant 
species, the methodology introduced by Peñuela et al. (2022) 
was tested on Arabidopsis, maize, sorghum, and tomato, 
which are model and crop plants. The results indicated that 
CG and CHG methylation contexts have negative correla-
tion with recombination, while CHH correlated positively 
in all four tested species. Machine learning models were 
trained using methylation data to predict recombination rates 
for each one of the species, with particularly good results 
obtained for the sorghum and tomato datasets, validating 
this methodology for both monocotyledonous and dicoty-
ledonous plants.

Materials and methods

Data access

Four plant species were evaluated in this study; Arabidop-
sis, maize, sorghum, and tomato, representing one model 
plant and three cultivated plants. The raw data for the 
experiments of bisulfite sequencing were downloaded from 
GenBank with run accessions SRR9166060, SRR8786631, 
SRR3286309, and SRR503393, respectively. Recombina-
tion rates for each plant species were estimated from the 
genotype data extracted from the supplementary material 
of their corresponding articles, namely, Arabidopsis (Singer 
et al. 2006), maize (Kianian et al. 2018), sorghum (Kimball 
et al. 2019), and tomato (Gonda et al. 2019).

Methylation extraction

Illumina bisulfite reads were checked for quality control for 
each species in FastQC (https://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/ (accessed on 5 September 2022)). 
For maize, adaptor remnants were removed using Trimmo-
matic (Bolger et al. 2014) (http://​www.​usade​llab.​org/​cms/?​
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page=​trimm​omatic (accessed September 5, 2022)). The 
bisulfite reads were aligned with the reference genomes 
and methylation calls were done using Bismark (Krueger 
and Andrews 2011) with the default parameters (https://​
www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​bisma​rk/ 
(accessed September 5, 2022). The reference genomes used 
were TAIR10.1 for Arabidopsis, Zm-B73-REFERENCE-
NAM-5.0 for maize, NCBIv3 for sorghum, and SL3.1 
for tomato, all of them available in GenBank. Methylated 
cytosines in the CG, CHG, and CHH contexts were extracted 
from the Bismark outputs using the Methylkit package in R 
(Akalin et al. 2012) (https://​www.​bioco​nduct​or.​org/​packa​
ges/​relea​se/​bioc/​html/​methy​lKit.​html (accessed September 
10, 2022)). Finally, cytosines with methylation levels greater 
than 75% were retained and counts of these cytosines were 
performed in windows of 100 kb on each chromosome using 
Python.

Recombination rates

For Arabidopsis and tomato, genotype data for each chro-
mosome consisted of a matrix of genetic markers (arranged 
by sequence position) versus individuals. An entry was 
encoded as A or B depending on the parental origin of the 
corresponding sequence. For all chromosomes, new rows 
with positions every 100 kb were imputed using the nearest 
marker information. These new rows were used to estimate 
genetic recombination maps with MapDisto v2 (Heffelfinger 
et al. 2017) (http://​mapdi​sto.​free.​fr/ (accessed 10 Septem-
ber 2022)), using the Kosambi mapping function to convert 
recombination fractions into centimorgans (cM). For maize 
and sorghum, the genetic map was provided by Kianian 
et al. (2018) and Kimball et al. (2019), where new rows 
were imputed every 100 kb with the genetic position in cM 
using the information of the closest marker. In the case of 
maize, the female genetic map was used in this study. For 
all species, these new imputed rows were used to build win-
dows of 100 kb and recombination rates on chromosomes 
were estimated by subtracting the genetic position of the 
next window from the current one.

Machine learning modeling

For each species, a consensus table was made with counts 
of methylated cytosines in CG, CHG, and CHH contexts, 
and recombination rates. Exponential smoothing with 
α = 0.1 was applied to the recombination and methylation 
data to remove noise associated with the abrupt change in 
adjacent windows. The smoothed counts of cytosines for 
all contexts were first correlated with recombination rates 
and then used as features to train machine-learning models 

to predict smoothed recombination rates. For each one of 
the species, the Auto-Sklearn package (Hutter et al. 2019) 
(https://​automl.​github.​io/​auto-​sklea​rn/​master/ (accessed 31 
October 2022)) was used to identify the regression mod-
els with the best prediction performance and their optimal 
parameters. After choosing the models, an evaluation of the 
contribution was made by means of Shap values for all the 
features using the Shap package (https://​shap.​readt​hedocs.​
io/​en/​latest/​index.​html (accessed 31 October 2022)). The 
models were then used to predict the recombination of one 
chromosome in isolation, trained with information from all 
remaining chromosomes. This procedure was also developed 
consecutively for the remaining chromosomes. The value 
of Pearson’s correlation r, the coefficient of determination 
R2, and the mean square error MSE of each evaluation were 
estimated to measure the performance of the models. All 
procedures were developed using Python.

Results and discussion

In all cases, the CG methylation context has the highest 
amount of methylated cytosines, followed by the CHG con-
text, with the CHH context having the lowest amount of 
methylated cytosines, which is in agreement with the results 
obtained by Vafadarshamasbi et al. (2022) and with our pre-
vious results in rice (Peñuela et al. 2022). Methylation in 
Arabidopsis, maize, sorghum, and tomato show a positive 
correlation in CHH context with the recombination rates, 
whereas methylations in CG and CHG contexts are nega-
tively correlated (Fig. 1). Nevertheless, the values of these 
correlations are different for each species. In Arabidopsis, 
for example, positive and negative trends approach zero 
(between − 0.37 and 0.29). Meanwhile, in maize, correla-
tion trends are somewhat higher (among − 0.55 and 0.43); it 
is more evident that methylation in the CHH context is posi-
tively correlated with recombination. In turn, this presents a 
higher negative correlation of the CG and CHG contexts. In 
sorghum, the positive and negative trends are more intense 
(between − 0.74 and 0.92). In tomato, the highest values are 
observed when compared to the other three plant species 
(between − 0.89 and 0.85). The methylation patterns found 
here are in agreement with the results obtained by Gouil 
and Baulcombe (2016), which report different methylation 
landscapes for Arabidopsis, maize, and tomato, depending 
on the methylation context.

The recombination rates in Arabidopsis chromosomes 
exhibit a gradual increase from the telomeres towards the 
pericentromeric regions, where they reach their peak fre-
quencies. However, these rates sharply decline in the cen-
tromeric regions (Fig. 2). The same increase from telomere 
to centromere and suppression of crossovers at the cen-
tromere is also reported by Choi et al. (2013) and Rowan 

http://www.usadellab.org/cms/?page=trimmomatic
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://www.bioconductor.org/packages/release/bioc/html/methylKit.html
https://www.bioconductor.org/packages/release/bioc/html/methylKit.html
http://mapdisto.free.fr/
https://automl.github.io/auto-sklearn/master/
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
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et al. (2019). Regarding the number of methylated cytosines 
in the CG and CHG contexts, they show the opposite path, 
with the centromeric region exhibiting the highest counts. 
In fact, there are negative associations for chromosomes 3 
and 5 (Fig. 1).

In the case of maize, for example, the highest recom-
bination rates are located at the ends of the chromosome 
arms, followed by an extended valley where recombination 
rates are very low, which is a trend in large and complex 
genomes such as those of grasses (Kianian et al. 2018). It 
is important to note that maize chromosomes are between 
five and ten times larger than that of Arabidopsis. This is 
because maize has undergone tetraploidy expansion events 
and a transposon ‘bloom’ (Horton et al. 2012). However, 
it is possible to observe a pattern similar to Arabidopsis in 
which the highest counts of methylated cytosines in the CG 
and CHG context are found in the center of the chromosome 
and the lowest ones at the ends, just where the recombination 
peaks are located.

In maize, recombination predominantly takes place in 
gene-rich regions while being infrequent in transposon-
rich regions, which comprise the majority of the genome 
(Kianian et al. 2018). Moreover, there have been reports of 
crossovers occurring at ATG initiation codon positions of 
genes (Li et al. 2015). These gene regions are unmethylated, 
whereas transposon regions are highly methylated in CG and 
CHG contexts (He and Dooner 2009). For maize, (Rodgers-
Melnick et al. 2015) found a strong negative relationship 
between CG and CHG methylation with respect to crossover 
density in chromosome arms, similar to that reported here. 
In this study, the same opposite trends between methylation 
and recombination are clear in the sorghum and tomato chro-
mosomes, which have chromosomes about twice the size of 

Arabidopsis. For these two species, the negative correlation 
values shown in Fig. 1 are higher, and the opposite behav-
ior between recombination rates and methylation in CG and 
CHG contexts is completely evident. As such, methylation 
plays a crucial role in regulating chromosomal recombina-
tion (Tock and Henderson 2018; Taagen et al. 2020; Fayos 
et al. 2022; Lloyd 2022). For example (Choi et al. 2013), 
show that gene transcriptional start sites (TSS) and tran-
scriptional terminal sites (TTS), which are in crossover hot-
spots, presented low methylation compared to non-recom-
binant sites. In addition, they show that TSSs have a high 
abundance of histones H2A.Z, H3K4me3, and regions with 
low nucleosome density (LND). These features increase 
with recombination rates and show an opposite trend with 
respect to methylation.

Figure  3 specifically shows the count of methylated 
cytosines in the CHH contexts, which are low compared to 
the other contexts and difficult to observe in Fig. 2. Recom-
bination rates and methylated cytosine counts in Arabidopsis 
increase progressively from the arm ends. However, recom-
bination rates decrease around the centromere region and 
methylation in the context of CHH increases. For this case, 
a positive trend between measures is not evident, which 
can explain why the correlation values are close to zero for 
Chromosome 1 of Arabidopsis. However, positive values are 
shown in chromosomes 2 and 4 (Fig. 1). In maize, recombi-
nation and methylation rates in CHH contexts show a similar 
pattern with peaks at the end sections of chromosome arms 
and a large valley of low values in the middle of the chro-
mosome. This positive relationship between recombination 
and methylation in the CHH context is supported by the cor-
relation values for most maize chromosomes and have been 
also reported by Rodgers-Melnick et al. (2015) who used 

Fig. 1   Correlations between recombination rates and the count of 
methylated cytosines in the contexts CG, CHG, and CHH for chromo-
somes of Arabidopsis, maize, sorghum, and tomato. The purple color 

represents negative values and the green color represents positive val-
ues. The higher the correlation value, the higher the color intensity. 
Non-significant values are marked with a star
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Fig. 2   The figure illustrates recombination rates (cM/100  kb) rep-
resented in blue, along with counts of methylated cytosines (≥ 75% 
methylation) per 100 kb window obtained using bismarck and Meth-
ylkit. These measurements are categorized into CG (green), CHG 

(yellow), and CHH (pink) contexts, and pertain to Chromosome 1 of 
Arabidopsis, Chromosome 2 of maize, Chromosome 3 of sorghum, 
and Chromosome 4 of tomato
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it in their linear regression model. In the case of sorghum 
and tomato chromosomes, the positive relationship between 
recombination rates and CHH methylation is strongly sup-
ported by high correlation values.

The negative correlation rates for CG and CHG meth-
ylation, and the positive correlation rates for CHH meth-
ylation with respect to recombination obtained here, are 
in agreement with the trends reported in maize and rice 

Fig. 3   In this figure, recombination rates (cM/100 kb) are depicted in 
blue, while counts of methylated cytosines within the CHH context 
(≥ 75% methylation) per 100  kb window, obtained using bismarck 

and Methylkit, are highlighted in pink. These data correspond to 
Chromosome 1 of Arabidopsis, Chromosome 2 of maize, Chromo-
some 3 of sorghum, and Chromosome 4 of tomato
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(Rodgers-Melnick et al. 2015; Peñuela et al. 2022). It sup-
ports the hypothesis that methylation in the CHH context 
plays a key role in chromosomal recombination in plant spe-
cies. It is not clear what is the biological role of the CHH 
cytosines. (Stroud et al. 2014) show that the CMT2 protein 
specifically adds methyl groups to CHH sequences when 
bound to methylated H3K9. Some studies have reported the 
role of CHH methylation in fruit size, transposons silenc-
ing, seed dormancy, and plant reproductive organs (Daccord 
et al. 2017; Zakrzewski et al. 2017; Zhang et al. 2018; Wang 
et al. 2022). In fact, the CHH methylome has been shown to 
exhibit differences between chromosome arms and the peri-
centromeric region in plants (Gouil and Baulcombe 2016).

At the genomic level, CHH methylation can be found in 
16 different motifs, as the H nucleotide can be C, T, or A. 
To explore which motifs are most common in CHH methyla-
tion and more likely to influence recombination, a count of 
methylated CHH motifs in the genomes of the four species 
evaluated was performed. The results indicate that the CTT 

motif is the most abundant methylated motif in all species, 
followed by CAT, CTA, and CAA (Fig. 4). Similar results 
have been obtained by Gouil and Baulcombe (2016) who 
found that CHH methylation is dense at CAA and CTA in 
Arabidopsis and maize, at CAA and CAT in tomato, and at 
CTA in rice. They even suggest a detailed evaluation of the 
subcontexts within the CHG and CHH methylomes because 
many of them are binding sites and are involved in different 
cellular pathways.

On the other hand, evidence obtained by Horton et al. 
(2012) demonstrates the association between A-rich motifs 
and crossover frequency in Arabidopsis. Other authors such 
as (Choi et al. 2013) report that CTT and AAA motifs are 
associated with high recombination frequency in TSSs for 
the same species. They suggest that the overlap between 
these motifs, and the H2A.Z and LND regions may contrib-
ute to nucleosome positioning or chromatin organization at 
promoters, with consequences for recombination. For maize, 
(Kianian et al. 2018) found motifs with A/T content near 

Fig. 4   Proportion of the different methylated CHH motifs present in the genomes of Arabidopisis, maize, sorghum, tomato
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to crossovers. More recently, (Rowan et al. 2019) reported 
that the poly(A) and CTT/GAA repeat motifs constituted 
approximately 90% of occurrences within the 500 bp region, 
nearly to cross-overs in Arabidopsis. Meanwhile, in tomato, 
(de Haas et al. 2017) report rich AT-rich DNA motifs at 
recombination prone regions, and (Rommel Fuentes et al. 
2020) also report the finding of sequence motifs rich in 
cytosines, thymines, and adenines near crossover hotspots 
also in tomato.

Studies such as (Choi et al. 2018) report in Arabidop-
sis that SPO11-oligo hotspots that are involved in crosso-
ver events and lead to the formation of DNA double-strand 
breaks are rich in AT motifs. They propose that these 
exclude nucleosomes that are abundant in genes and trans-
posons, reporting also that there are positive correlations 
between SPO11-1 binding sites and methylation in all con-
texts at chromosomal arms, and also negative correlations 
near the centromere. Based on the reports of these previous 
studies and the results presented in this paper, it is possi-
ble that methylation in CHH contexts, especially for motifs 
containing A or T nucleotides, may be involved in crossover 
recombination.

It should be noted that the results presented in this 
research are the product of a bioinformatics analysis between 
public data on recombination rates and methylomes, and are 
not the product of planned experiments. This could explain 
why correlations are weak in Arabidopsis and maize. It is 
also possible that these genomes have different relationships 
between their methylomes and chromosomal recombination, 
which were not captured. It will be necessary to explore 
other datasets and new methods to gain a better understand-
ing within each species. The relative distribution of methyla-
tion domains varies by species: in maize, sorghum, and rice, 
CG and CHG methylation occurs in heterochromatic regions 
and is enriched in TEs and intergenic regions, but is reduced 
in genes. Meanwhile, rice has the highest CHH methylation, 
which is largely due to the RNA directed DNA methyla-
tion (RdDM) pathway (Vafadarshamasbi et al. 2022), which 
explains the findings of (Peñuela et al. 2022) who based their 
machine learning model just in this feature.

The datasets of all species were evaluated to choose the 
best machine-learning regression model using the Auto-
Sklearn package. For all datasets, the Extra Trees model 
is chosen as the best model or is in the top positions of the 
recommended models. Based on this, the Extra Trees model 
is chosen to predict the recombination rates of the four spe-
cies using the methylated cytosine counts from CG, CHG, 
and CHH contexts as features. The recommended parameters 
and feature transformations obtained by Auto-Sklearn were 
evaluated for each species. Since their increase in prediction 
performance is too small, the default model parameters and 
original features were maintained. Evaluations of this model 
using individual features or combinations of them for each 

species indicate that the best predictions are obtained with 
all three features as input. Extra Trees seems to be a power-
ful model with this type of data and approach as (Peñuela 
et al. 2022) also chose it to predict rice recombination. 
However, the Extra Trees model in rice trained only with 
methylation in the CHH context gives the best prediction 
results, while for the data evaluated in this study the best 
results are obtained using all three methylation contexts as 
input features.

The prediction results obtained using this setting are dif-
ferent for each species. For Arabidopsis, the coefficients of 
determination R2 are close to zero or negative for all five 
chromosomes, indicating that the model cannot reproduce 
the recombination rates using the methylation data. Correla-
tion values for Arabidopsis chromosomes are greater than 
zero, even for chromosomes 1 and 5 they approach 0.5, pro-
viding evidence that the model can at least indicate recom-
bination trends on those chromosomes (Table 1). Similar 
results are obtained for maize, where the predictions are far 
from the expected according to the R2 of the ten chromo-
somes, and only chromosomes 3, 5, 7, and 10 have correla-
tion values superior to 0.5 (Table 2). It is to be expected that 
for Arabidopsis and maize the predictions are not good since 
the features used (counts of methylated cytosines in contexts 

Table 1   Performance of chromosome recombination rates predictions 
of Arabidopsis using the Extra Trees model trained with CG, CHG, 
and CHH methylation data

Chromosome R2 Correlation MSE

1 0.14 0.44 0.02
2 − 0.42 0.14 0.02
3 − 0.13 0.25 0.03
4 − 0.43 0.11 0.05
5 0.23 0.49 0.01

Table 2   Performance of chromosome recombination rates predictions 
of maize using the Extra Trees model trained with CG, CHG, and 
CHH methylation data

Chromosome R2 Correlation MSE

1 0.13 0.39 0.004
2 0.04 0.49 0.004
3 0.27 0.54 0.005
4 0.17 0.43 0.005
5 0.24 0.54 0.003
6 0.16 0.42 0.004
7 0.31 0.58 0.006
8 0.11 0.34 0.006
9 − 0.06 0.18 0.015
10 0.27 0.57 0.008
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CG, CHG, and CHH) do not show strong relationships with 
recombination rates (Figs. 1, 2, 3).

On the other hand, sorghum predictions show a different 
pattern. The mean value of R2 for the 10 chromosomes is 
0.65 ± 0.11. For some chromosomes, such as 5 and 7, the 
values rise to 0.79 and 0.77, respectively, showing that the 
model can adequately reproduce the recombination rates for 
this species. In the same way, correlation values between 
predictions and recombination rates are high with a mean 
value of 0.83 ± 0.06 (Table 3). These results indicate that 
the model performs well in predicting recombination rates 
for sorghum using methylated data as input. In contrast 
to Arabidopsis and maize, CG, CHG, and CHH features 
show clear negative and positive trends with recombination 
(Figs. 1, 2, 3), which helps to better train the model allowing 

Table 3   Performance of chromosome recombination rates predictions 
of sorghum using the Extra Trees model trained with CG, CHG, and 
CHH methylation data

Chromosome R2 Correlation MSE

1 0.48 0.76 0.02
2 0.69 0.83 0.01
3 0.48 0.77 0.01
4 0.60 0.78 0.02
5 0.79 0.92 0.01
6 0.72 0.85 0.01
7 0.77 0.88 0.01
8 0.74 0.94 0.02
9 0.57 0.77 0.02
10 0.64 0.81 0.02

Fig. 5   Predictions of recombination rates for sorghum chromosomes 
by the Extra Trees machine learning model using methylated cytosine 
counts in CG, CHG, and CHH contexts as features. For chromosome 

length, the continuous gray lines represent quartiles 1 and 3, while 
the dashed gray line represents quartile 2
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better predictions. The predicted recombination landscapes 
on sorghum chromosomes can be seen in Fig. 5.

In the case of tomato, the results are better than those of 
sorghum. The mean value of R2 for the twelve chromosomes 
is 0.76 ± 0.05, with chromosomes 8 and 12 both reaching 
0.92. The mean correlation value is 0.90 ± 0.05 (Table 4). 
The predicted recombination landscapes on tomato chro-
mosomes can be seen in Fig. 6. These predictions in sor-
ghum and tomato are even better than those obtained by 
Peñuela et al. (2022) in rice, who planned the experiments 
and obtained the methylomes and recombination rates of the 
same varieties. They report a mean coefficient of determina-
tion of 0.32 for the Azucena variety and 0.21 for the IR64 
variety, and correlation values of 0.67 and 0.65, respectively.

For sorghum and tomato, the Extra Trees model is able to 
obtain good performance in predicting recombination rates, 
this is also evident in the low MSE values for the predictions 
of both species. However, the contribution of each feature 
to the model is not the same for sorghum and tomato. For 
the former, the CHH context has the largest contribution 
to model predictions, followed by CHG and CG, with the 
highest CHH values producing the greatest impact. For the 
latter, the CHG context has the largest contribution to the 
predictions, followed by CHH and CG, with the lowest CHG 
values having the greatest impact on the predictions (Fig. 7).

For these two species, the recombination landscape var-
ies along the chromosomes showing higher recombination 
rates in the chromosome arms, with the predictions being 
able to reproduce these general patterns. However, the per-
formance of the predictions is not the same on each section 
of the chromosome. To measure this, the chromosomes were 
divided into quartiles and the performance of the model 
was evaluated in each quartile (Fig. 8). For sorghum, the 
Q1 and Q4 quartiles, those containing the distal regions of 

the chromosome arms, show a higher correlation between 
predicted and experimental values compared to those of the 
Q2 and Q3 quartiles, which contain the inner arms of the 
chromosomes and the centromere region. In the distal quar-
tiles, correlation values are higher because the predictions 
reproduce positive trends where recombination increases 
and negative trends where recombination decreases, draw-
ing peaks.

In contrast, many inner quartiles show low or negative 
correlation values. This is because, for many windows, the 
experimental recombination rate is zero or near zero, and the 
model does not predict trends that can increase the correla-
tion value. For this reason, the performance of the model is 
low. However, although the model does not perform well in 
the inner regions of chromosomes, it is able to indicate the 
absence of recombination, which is valuable for breeding, 
the final goal. Therefore, it is necessary to pay attention to 
how the data are analyzed; the landscape figures and the 
model performance are complementary.

In the inner quartiles of sorghum, where correlations 
between experimental and predicted rates were high, it was 
because the model replicates the trends of the onset of the 
recombination hill. In the case of tomato, a similar behavior 
is observed. The distal quartiles show higher model perfor-
mance compared to the inner quartiles, the explanation being 
the same as for sorghum. However, in the case of tomato, the 
least inner quartiles show positive correlation values, which 
is due to the fact that the recombination peaks are further 
away from the inner region of the chromosome and appear 
almost entirely in the distal quartiles. For tomato’s chromo-
some two, the experimental recombination rates were zero 
in the windows of Q1 and Q2 because recombination is 
suppressed in this arm of the chromosome, and correlation 
could not be calculated with respect to the predicted values.

Both trained models seem good enough for their data-
sets, however, based on Shap values, the two Extra Trees 
models trained on sorghum and tomato differ in the contri-
bution of the three features to the predictions, and the ques-
tion remains whether both models would be good on other 
data sets. To evaluate this, a model trained on all sorghum 
chromosomes was used to predict recombination in tomato 
and the model trained on all tomato chromosomes to predict 
recombination in sorghum. The results show that the predic-
tions in sorghum using the model trained on tomato have a 
mean R2 of 0.28 ± 0.60 for the 10 chromosomes, with mini-
mum values of − 0.47 and − 1.02 for chromosomes 1 and 
3, respectively, and maximum values of 0.74 and 0.78 for 
chromosomes 5 and 8, respectively. Meanwhile, correlation 
values have a mean of 0.81 ± 0.08, with minimum values of 
0.66 and 0.70 for chromosomes 1 and 3, respectively, and 
maximum values of 0.90 and 0.91 for chromosomes 7 and 
8, respectively (Table 5).

Table 4   Performance of chromosome recombination rates predictions 
of tomato using the Extra Trees model trained with CG, CHG, and 
CHH methylation data

Chromosome R2 Correlation MSE

1 0.75 0.89 0.01
2 0.83 0.95 0.01
3 0.77 0.88 0.01
4 0.75 0.87 0.01
5 0.73 0.88 0.02
6 0.53 0.83 0.01
7 0.76 0.88 0.01
8 0.92 0.96 0.00
9 0.83 0.92 0.01
10 0.78 0.94 0.02
11 0.92 0.96 0.00
12 0.58 0.81 0.04
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For tomato, the predictions of the model trained with 
sorghum data show a mean R2 of 0.65 ± 0.26 for the twelve 
chromosomes, with minimum values of 0.23 and 0.32 for 
chromosomes 3 and 4, respectively, and maximum values 
of 0.88 for chromosomes 8, 9, and 10, and 0.90 for Chro-
mosome 11. In addition, correlation values have a mean of 
0.83 ± 0.12, with minimum values of 0.63 for Chromosome 
3 and 0.67 for chromosomes 4 and 5, and maximum values 
of 0.94 for chromosomes 8 and 9, and 0.95 for chromosomes 
10 and 11 (Table 6).

These predictions are interesting considering that the 
models are being trained on genetically distant plant methy-
lomes. In fact, sorghum and tomato belong taxonomically to 

different classes, indicating that they are not closely related, 
sorghum being a monocotyledonous plant and tomato a 
dicotyledonous one. It is surprising how these methyla-
tion data can be used to predict recombination even when 
training models on such distant species. For both cases, the 
average performance in R2 and correlation of predictions in 
their own datasets exceed the results obtained by Peñuela 
et al. (2022) in rice, demonstrating the broad potential of 
methylomes in crop improvement. For example, the model 
trained on the sorghum methylome could be useful to shed 
light on sugarcane recombination, which is a species very 
close to sorghum, but with high genomic complexity product 
of hybridization events and high ploidy. For instance, the 

Fig. 6   Predictions of recombination rates for tomato chromosomes 
by the Extra Trees machine learning model using methylated cytosine 
counts in CG, CHG, and CHH contexts as features. For chromosome 

length, the continuous gray lines represent quartiles 1 and 3, while 
the dashed gray line represents quartile 2



	 Plant Molecular Biology (2024) 114:2525  Page 12 of 15

estimation of recombination rates in sugarcane is not fre-
quent because hybrid clones are generally grown in the field.

Further work is needed to clarify the influence of the 
methylome on chromosomal recombination in plants, and 

more experimental data will be needed to test this meth-
odology and create a solid background in this field. Using 
these datasets, good predictions are obtained for sorghum 

Fig. 7   Shap values and contributions of features CG, CHG, and CHH to the prediction of recombination rates in sorghum and tomato. Shap val-
ues at the top and Shap summary graph at the bottom

Fig. 8   Pearson correlation values between the predicted recom-
bination rates and the experimental recombination rates using the 
ExtraTrees model and the methylation data as input for all chromo-
somes of sorghum and tomato. In Q1, correlation values for the first 
quartile of the chromosome, Q2 for the second, Q3 the third, and Q4 

the fourth. The purple color represents negative values and the green 
color represents positive values. The higher the correlation value, the 
higher the color intensity. Non-significant values are marked with a 
star
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and tomato, but not so good for Arabidopsis and maize. 
This is probably because the methylomes and genetic maps 
used here are not compatible or because other methodolo-
gies will be needed to extract information from the data 
to obtain better predictions. The door remains open in 
this new field of research for the community to explore 
methylomes in other plant species. Also, the data and 
the code presented in this work can be used to propose 
improvements or new methods of recombination predic-
tion (https://​github.​com/​mauro​pe/​Methy​lRec).

Conclusion

This study reported that methylation in the CHH context 
was positively associated with chromosomal recombina-
tion rates in Arabidopsis, maize, sorghum, and tomato, 
having a similar pattern recently found in rice. This indi-
cates that such a pattern is common across different plant 
species and suggests a possible role of CHH methylation in 
chromosomal recombination. In the context of CHH meth-
ylation, the prevalence of methylated cytosines showed a 
clear pattern, with the CTT motif being the most abundant 
among all the species evaluated. Additionally, the CAT, 
CTA, and CAA motifs were also frequently observed, 
further highlighting their relevance in the methylation 
landscape across these species. With respect to methyla-
tion in CG and CHG contexts, the results showed high 
levels of methylation in mid-chromosomal regions close 
to centromeres, which is in agreement with what is widely 
reported in plants. However, correlation values between 
cytosines methylated in different contexts and recombina-
tion rates varied among the four species evaluated, being 
mild for Arabidopsis and maize, and strong for sorghum 
and tomato. According to these results, the count of meth-
ylated cytosines in all contexts were evaluated as features 
to train machine learning models for predicting recom-
bination rates in the focused species. The results showed 
that the Extra Trees model was the best for predicting 
recombination rates from methylation data and that the 
default parameters are sufficient for good performance. 
Predictions were especially good for sorghum and tomato 
datasets, showing the significant potential of the proposed 
methodology to make predictions on chromosomal recom-
bination at the 100 Kb scale.
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