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Abstract
The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth 
and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly 
absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues 
to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this inva-
sion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction 
between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase 
their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having 
control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that 
regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a 
variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In 
addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during 
pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.

Keywords Amino acids · Amino acid transporter · Lysine histidine transporter (LHT) · Organic nitrogen · Pathogen 
defense · Ethylene signaling

Availability of nitrogen orchestrates plant 
pathogen resistance

A proper plant nitrogen (N) nutrition is warranted by the 
uptake of inorganic and organic N sources. Organic N such 
as proteins, peptides or amino acids (AAs) are taken up 
via specific root transporters (Paungfoo-Lonhienne et al. 
2008; Nasholm et al. 2009; Tegeder and Rentsch 2010; 
Inselsbacher and Näsholm 2012; Tegeder and Masclaux-
Daubresse 2018; Gratz et al. 2021) that have multiple func-
tions within a plant (Yang et al. 2020; Yao et al. 2020). 
AAs represent an important storage and transport form of 
organic N and are precursors for protein synthesis. AAs are 

especially important for the development of roots, leaves, 
and seeds (Rentsch et al. 2007; Tegeder and Masclaux-
Daubresse 2018), which makes AA transport systems a 
key component for plant development. Not only plants but 
also the microbial community relies on the availability of 
AAs, and it is not surprising that both compete for this N 
source (Roberts and Jones 2012; Kuzyakov and Xu 2013; 
Wilkinson et al. 2014). We identified the need of a concise 
survey highlighting the role of AA transporters (AATs) dur-
ing pathogen infection due to the fact that literature mostly 
focusses on the influence of inorganic N on plant resistance 
(Ballini et al. 2013; Huang et al. 2017; Farjad et al. 2018; 
Sun et al. 2020).

Amino acid pools and fluxes are, however, dependent 
on N supply and the absolute majority of studies report-
ing on N effects on pathogen resistance have focused on 
comparisons of the inorganic N sources nitrate  (NO3

−) 
and ammonium  (NH4

+). In addition to reviewing the links 
between AATs and pathogen resistance, we therefore also 
performed a literature search aiming to compare effects of 
nitrate and ammonium addition on the plant’s ability to resist 

 * Regina Gratz 
 Regina.Gratz@slu.se

1 Department of Forest Genetics and Plant Physiology, Umeå 
Plant Science Centre, Swedish University of Agricultural 
Sciences, 90183 Umeå, Sweden

2 Department of Forest Ecology and Management, Swedish 
University of Agricultural Sciences, 90183 Umeå, Sweden

http://orcid.org/0000-0001-6977-5283
http://orcid.org/0000-0002-9623-4412
http://orcid.org/0000-0002-2275-2030
http://orcid.org/0000-0002-8820-7211
http://crossmark.crossref.org/dialog/?doi=10.1007/s11103-022-01244-1&domain=pdf


414 Plant Molecular Biology (2022) 109:413–425

1 3

pathogens that differ in their nutrition strategy (Table 1, 
Supplementary Tables 1–3). Especially the different nutri-
ent acquisition strategies by different pathogens such as 
biotrophic, hemibiotrophic as well as necrotrophic patho-
gens are important in this context. Biotrophic pathogens 
exhibit specialized feeding structures that allow nutrient 
retrieval from living cells. Hemibiotrophic microbes, how-
ever, first colonize the living cell but then transition into a 
necrotrophic phase. Necrotrophs obtain their nutrients from 
killed cells (Spanu and Panstruga 2017). Within biotrophic 
pathogens, the presence of different inorganic N sources led 
to strong and opposing effects: addition of  NO3

− reduced 
plant resistance in the majority of analyzed cases (11 out of 
15 cases). Interestingly, not only the presence but also the 
rate of  NO3

− addition influenced defense responses of plants 
(Ding et al. 2021). Tomato plants infected with the biotroph 
Ralstonia solanacearum, for instance, demonstrated less 
disease lesions when grown on 1 mM compared to 7 mM 
 NO3

− (Ding et al. 2021). Interestingly, the presence of  NH4
+ 

as N source, though, demonstrated an opposing trend: in 10 
out of 14 cases elevated plant resistance was found (Table 1, 
Supplementary Table 1). Plant resistance against hemibio-
trophic pathogens seems not to display any clear response 
to different inorganic N sources and both positive and nega-
tive effects of  NO3

− and  NH4
+ addition have been reported 

(Table 1, Supplementary Table 2). Concentration-related 
effects such as reduced disease lesions were observed for 
tomato plants after infection with Pseudomonas syringae (P. 
syringae), when plants were grown on 1 mM compared to 

7 mM  NO3
− (Ding et al. 2021). In 9 out of 15 cases  NO3

− led 
to a positive immune response such as increased resist-
ance or hypersensitive response during necrotrophic attack 
(Table 1, Supplementary Table 3). Similar to biotrophic and 
hemibiotrophic infection, plant responses after necrotrophic 
interaction seem to dependent on the N rate (Farjad et al. 
2018). Measurements of bacterial cell numbers of the necro-
troph Erwinia amylovora in infected Arabidopsis thaliana 
(Arabidopsis) revealed lower numbers when grown on low 
 NO3

− (0.5 mM) compared to high  NO3
− (5 mM). This was 

associated with transcriptional reprograming of defense 
genes, e.g., PATHOGENESIS-RELATED GENE2 and 5 
(PR2 and PR5) or salicylic acid (SA)-related genes (Far-
jad et al. 2018). Addition of  NH4

+, though, led to increased 
cases of elevated plant susceptibility, when infected with a 
necrotroph (7 out of 11 cases) (Table 1). Overall, we found 
that a plant’s ability to withstand biotrophic attacks tends to 
be more successful when  NH4

+ is accessible, the opposite of 
what was shown for necrotrophs. The overall N addition rate 
might serve as a proxy for plant N status, which influences 
susceptibility additionally.

As shown above, plant N sources play critical roles 
for plant resistance. This observation motivates a further 
analysis of N transporters during pathogen attack. Camanes 
et al. (2012) investigated the response of  NO3

− transporters 
AtNRT2.1 and AtNRT2.2 to infection by the hemibiotrophic 
bacteria P. syringae. The nrt2 mutant exhibited an increased 
immune response along with a reduced susceptibility and 
significant alterations in the transcriptome. The expression 

Table 1  Effects of nitrate  (NO3
−) and ammonium  (NH4

+) availability on plant pathogen resistance

Results of a survey of different studies are summarized, comparing different pathogen types, separated by their nutrition strategy. The impact of 
different inorganic N sources on the plant’s immune response during respective pathogen attacks were denoted. Effects are expressed through 
increased resistance and elevated susceptibility, respectively. Respective numbers express the count of experiments found, displaying a similar 
response. A summary of the counts is presented in bold, with no differentiation between different pathogen types, but grouped according to 
nutrition strategy. Respective references to the included studies can be found in Supplementary Tables 1–3

Type Nutrition strategy Positive effect of  NO3
− 

on plant resistance
Negative effect of  NO3

− 
on plant resistance

Positive effect of  NH4
+ 

on plant resistance
Negative effect of 
 NH4

+ on plant resist-
ance

Bacteria Biotroph 1 3 1 0
Fungi Biotroph 1 4 2 1
Nematode/Protist Biotroph 1 3 3 1
Virus Biotroph 0 1 4 1
Oomycota Biotroph 1 0 0 1
Bacteria Hemibiotroph 1 2 2 1
Fungi Hemibiotroph 5 3 3 5
Oomycota Hemibiotroph 1 1 1 1
Bacteria Necrotroph 0 2 0 0
Fungi Necrotroph 9 4 4 7
Total Biotroph 4 11 10 4

Hemibiotroph 7 6 6 7
Necrotroph 9 6 4 7
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of SA marker genes was strongly increased compared to the 
wild type, and it was suggested that members of the AtNRT2 
family might be important for the plant-pathogen interac-
tion (Camanes et al. 2012). More recently it was shown that 
the nrt2.5 mutant displayed similar responses (du Toit et al. 
2020). Similarly, also  NH4

+ transporters such as AtAMT1.1 
seem to play an important role for plant resistance (Pas-
tor et al. 2014). amt1.1 plants infected with P. syringae 
and Plectosphaerella cucumerina, a hemibiotrophic and 
a necrotrophic organism respectively, exhibited increased 
resistance, an effect that was enhanced by N depletion (Pas-
tor et al. 2014). These findings lead to the hypothesis, that N 
transporters play a role in plant immune responses, by act-
ing as regulators in N supply. We therefore ask the question 
whether other transporters that are involved in N uptake and 
N translocation and in particular the AATs could potentially 
also play a role in plant resistance.

A dual utilization of amino acids

It is well established that pathogens can feed on plant N 
reserves, mainly AAs, which makes them crucial players 
in the plant-pathogen interaction (Struck et al. 2004; Zeier 
2013; Sonawala et al. 2018; Yang et al. 2020; Sharma 2020). 
It is energetically more beneficial for pathogens to directly 
acquire and metabolize plant AAs which is why a range of 
pathogens can directly target the induction of genes needed 
for AAT (Sonawala et al. 2018; Li et al. 2020). Having 
control over a plant’s AA uptake and transport system can, 
therefore, be decisive for the survival of either the plant or 
the pathogen.

Li et al. found substantial reprogramming of N and C 
metabolic pathways in kiwifruit tissues upon infection with 
P. syringae, i.e., an accumulation of specific AAs (Li et al. 
2020). While the accumulation of some AAs can be benefi-
cial for the pathogen, others can play important roles in plant 
resistance. Tryptophan and methionine, for instance, are 
known precursors for the synthesis of secondary metabolites 
with antimicrobial effects (Ahuja et al. 2012). Depending on 
the microbe, these metabolites accumulate in individual root 
cell layers and can contribute to increased resistance (Fro-
schel et al. 2021). A similar response of citrus plants was 
described upon infection with the phloem-feeding biotroph 
Candidatus liberibacter, as the phloem sap of tolerant plants 
exhibited high amounts of tryptophan, tyrosine or phenyla-
lanine; well-studied precursors for secondary metabolites 
and phenolics (Killiny and Hijaz 2016). Proline, a known 
radical scavenger, contributes to the regulation of cellular 
redox homeostasis (Smirnoff and Cumbes 1989). Gupta 
et al. (2020) recently corroborated the positive properties 
of proline during infection and analyzed upstream compo-
nents. They identified miRNA involved in the regulation of 

proline biosynthesis, which is not only important for the 
plant immune response but is also involved in regulation of 
abiotic stresses (Gupta et al. 2020).

The above suggests that it is crucial to understand the 
molecular regulation of AA transport and accumulation 
because AAs can be used as N sources for the pathogen 
but also as protective agents for the plant. This leads to the 
question whether AATs are differently expressed during 
plant-pathogen interaction and if so, who the driver of this 
regulation is. Having control over the expression can, thus, 
decide over the fate of both, plants or pathogens (Hammes 
et al. 2006; Liu et al. 2010; Elashry et al. 2013; Pariyar et al. 
2018; Sonawala et al. 2018; Froschel et al. 2021).

Responses of plant amino acid transporters 
to pathogen infection

The products of about 100 genes are known to facilitate AA 
transport in Arabidopsis and similar AATs have addition-
ally been identified in many crop and tree species (Tegeder 
and Ward 2012; Pratelli and Pilot 2014; Yang et al. 2020). 
ATF (amino acid transporter family), APC (amino acid-pol-
yamine-choline transporter family) and UMAMIT (usually 
multiple acids move in and out transporter family) represent 
the three main AAT families (Rentsch et al. 2007; Pratelli 
and Pilot 2014; Dinkeloo et al. 2018; Yang et al. 2020). 
ATFs can be divided into several subfamilies such as, e.g., 
AAPs (amino acid permeases) or LHTs (lysine histidine 
transporters) (Rentsch et al. 2007). CATs (cationic amino 
acid transporters) represent a subfamily within the APCs 
(Tegeder and Rentsch 2010).

Amino acid permeases (AAPs)

AAPs, a group of one-directional transporters, are involved 
in root AA uptake, phloem loading, xylem-phloem transfer, 
and seed loading (Fischer et al. 1995; Okumoto et al. 2002, 
2004; Lee et al. 2007; Svennerstam et al. 2008; Zhang et al. 
2010; Santiago and Tegeder 2016). It is well known that 
AAPs are highly conserved between various species (Ben-
edito et al. 2010; Zhao et al. 2012, 2017; Limpens et al. 
2013; Garneau et al. 2018; Duan et al. 2020; Llebrés et al. 
2021; Omari Alzahrani 2021).

Several members of the AAP family were found to be dif-
ferentially regulated upon biotrophic interactions. AtAAPs 
demonstrated enhanced gene expression after plant-para-
sitic nematode infection and increased resistance in respec-
tive knockout mutants (Hammes et al. 2005; Elashry et al. 
2013; Marella et al. 2013). Analysis of aap1, aap2 and aap6 
knockout mutants displayed decreased reproduction of cyst 
nematodes (Elashry et al. 2013). Similarly, aap3 and aap6 
exhibited reduced reproduction of root-knot nematodes 
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(Marella et al. 2013). Recently, the role of CsAAP2A in 
cucumber became evident as knockout plants displayed 
resistance to downy mildew (Berg et al. 2021). A functional 
analysis of AAPs in tomato plants, when challenged with the 
hemibiotrophic Phytophthora infestans (P. infestans), dis-
played that mutations in the tomato homologues SIAAP5A 
and SIAAP5B led to similar effects (Berg et al. 2021). It is 
reasonable that an infection causes a differential regulation 
of local AATs in specific cell types. It would also be con-
ceivable that a transporter is being regulated in opposing 
directions upon infection of the same pathogen, however, in 
different cells. A recent study zoomed in on these questions 
and compared expression patterns in four specific root cell 
layers (rhizodermis, cortex, endodermis, and stele), when 
Arabidopsis was challenged with, in their nutrition strategy 
varying, microbes (Froschel et al. 2021). When looking at 
the cell layer-specific transcript abundance after hemibio-
trophic P. parasitica infection, it was found that AtAAP3, 
AtAAP5 and AtAAP6 were induced in the stele, however, 
AtAAP6 was additionally upregulated in the cortex (Fro-
schel et al. 2021). Responses to hemibiotrophic, vascular 
Verticillium longisporum (V. longisporum) varied within the 
AtAAP family: AtAAP4 was the only representative that was 
upregulated and only in the cortex. AtAAP1, in the cortex, 
and AtAAP2, in the rhizodermis, were found to be downregu-
lated after infection (Froschel et al. 2021).

Based on the above publications, it can be suggested 
that AAPs are negative regulators in plant defense against 
(hemi-) biotrophic pathogens. An increase in AAT tran-
script abundance might reduce plant defense reactions which 
would be beneficial for the pathogen. Alternatively, these 
transporters might be exploited by pathogens to steer plant 
AA transport, elevating the amount of accessible AAs in 
infected leaves and creating an artificial sink that pathogens 
can feed on (Berg et al. 2021).

Cationic amino acid transporters (CATs)

Some AATs affect the plant immune system in a positive 
way, like AtCAT1 (Yang et al. 2014). The infection with 
hemibiotrophic P. syringae caused elevated transcript lev-
els of AtCAT1 and increased resistance. Overexpression 
of AtCAT1 led to the constitutive expression of SA related 
and PR1 genes, as well as an increase in SA levels. Since 
AtCAT1 expression responded quickly to the infection it 
seems that it is involved in the systemic resistance of the 
plant (Yang et al. 2014).

Usually multiple acids move in and out transporter 
family (UMAMITs)

Most AATs operate as one-directional symporter, transport-
ing AAs along a proton gradient (Bush 1993; Frommer et al. 

1993; Hsu et al. 1993), however, UMAMITs are an excep-
tion. Driven by an electrochemical gradient, UMAMITs 
transport AAs in both directions (Ladwig et al. 2012; Mul-
ler et al. 2015). Due to their bi-directional activity, AtUM-
AMITs are involved in multiple physiological roles rang-
ing from phloem loading/unloading, over xylem-phloem 
transport, to transport to sink tissues (Ladwig et al. 2012; 
Muller et al. 2015; Besnard et al. 2016). When looking at 
the cell layer-specific transcript abundance, all differentially 
regulated AtUMAMIT genes found upon presence of the 
hemibiotroph P. parasitica were downregulated: AtUM-
AMIT11/38/41 were differentially regulated in the rhizoder-
mis and the cortex. Besides, AtUMAMIT11 was additionally 
downregulated in the stele. AtUMAMIT33 was regulated in 
the cortex and AtUMAMIT5 in the rhizodermis as well as 
the stele (Froschel et al. 2021). AtUMAMIT18 expression 
in the rhizodermis and stele, AtUMAMIT5 in the stele, and 
AtUMAMIT34 expression in the cortex were downregulated 
upon hemibiotrophic V. longisporum infection. The oppo-
site effect, an increase in transcripts, was seen for AtUM-
AMIT5/31 (cortex), AtUMAMIT38 (endodermis) and AtUM-
AMIT14 (stele) (Froschel et al. 2021). Based on the analysis 
of transgenic Arabidopsis lines, Besnard et al. (2021) sug-
gested that AtUMAMIT14 is a positive regulator in plant 
pathogen resistance. When challenged with the biotrophic 
oomycota Hyaloperonospora arabidopsidis, AtUMAMIT14 
overexpression lines displayed enhanced expression of SA 
marker genes as well as SA levels, leading to increased 
resistance (Besnard et al. 2021). The example of UMAMITs 
visualizes a diverse set of responses, where individual genes 
can be regulated opposingly depending on the cell type, and 
genes within the transporter family are regulated inconsist-
ently. It might be that their bi-directional transport ability 
causes different responses, which is why the individual role 
of each transporter during plant-pathogen interaction needs 
to be carefully evaluated.

Lysine histidine transporters (LHTs)

In Arabidopsis, 10 AtLHT paralogs (Rentsch et al. 2007) 
exist with different specificity and cellular location. 
AtLHT1, the first identified transporter of this family (Chen 
and Bush 1997; Hirner et al. 2006; Svennerstam et al. 2007) 
is involved in leaf mesophyll import as well as root uptake 
of acidic and neutral AAs, both at naturally occurring con-
centrations (Svennerstam et al. 2011), and from agricultural 
soil (Ganeteg et al. 2017). AtLHT1 also transports non-pro-
teinogenic AAs, like 1-aminocyclopropane-1-carboxylic 
acid (ACC), just as its paralog AtLHT2 (Shin et al. 2015; 
Choi et al. 2019). ACC serves as a precursor of the phy-
tohormone ethylene (ET) and as a signaling molecule on 
its own (Van de Poel and Van Der Straeten 2014; Vander-
straeten et al. 2019). AtLHT1 can be exploited to shuttle 
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novel AA-coupled pesticides inside a plant (Jiang et al. 
2018; Chen et al. 2018). Homologs of AtLHT1 were also 
identified and studied in, e.g., rice, poplar, lotus, tea and 
ginseng (Guether et al. 2011; Zhang et al. 2013; Wang et al. 
2019; Guo et al. 2020; Gratz et al. 2021; Li et al. 2021). 
The Arabidopsis knockout mutant lht1-1 displayed an early 
senescence phenotype (Hirner et al. 2006; Svennerstam et al. 
2007).

The role of AtLHT1 during pathogen infection has been 
investigated in several studies: AtLHT1 transcript levels 
were elevated when the host was infected with the bio-
trophic powdery mildew fungus Erysiphe cichoracearum (E. 
cichoracearum) (Liu et al. 2010) or the biotrophic nematode 
Heterodera schachtii (Elashry et al. 2013). Also, upon infec-
tion with the hemibiotrophic bacteria P. syringae, the fungi 
Colletotrichum higginsianum (C. higginsianum) (Liu et al. 
2010) and V. longisporum (Froschel et al. 2021) as well as 
the oomycete P. parasitica (Froschel et al. 2021), AtLHT1 
was upregulated. Most biotrophs feed on the apoplast or 
apoplast-like compartments and assimilate nutrients directly 
from their living host (Szabo and Bushnell 2001; Fatima and 
Senthil-Kumar 2015; Wang et al. 2020). It has been shown, 
that pathogens can reprogram plant transport proteins for 
their benefit, in order to, e.g., gain nutrients (Delmotte et al. 
2009; Spanu and Panstruga 2017). This opens for the pos-
sibility that the pathogen, rather than the host plant, may 
steer the expression of AtLHT1.

From a plant’s perspective, it would be beneficial to 
increase the uptake of AAs from the apoplast to lower AAs 
accessibility for biotrophic pathogens and to secure its 
AA resources away from the infected area. This means an 
increased remobilization of AAs would require increased 
expression of AATs as part of a slash-and-burn defense 
strategy (Masclaux-Daubresse et al. 2010) (Fig. 1a). The 
increased expression of AtLHT1 could be seen as a defense 
strategy caused by the plant to drain a maximum of AAs out 
of the apoplast in order to starve the pathogen.

However, and in contrast to the predictions from this 
hypothesis, lht1-1 knockout mutants displayed increased 
resistance to P. syringae, C. higginsianum and E. 
cichoracearum, highlighting that AtLHT1 is a negative 
regulator in plant defenses (Liu et al. 2010). Disruption 
of AtLHT1 displayed different defense responses such as 
increased callose deposition, hypersensitive cell death and 
the constitutive expression of genes belonging to the SA 
defense pathway such as PR1 (Liu et al. 2010). The response 
is very similar to what was described for mutants of different 
AAPs (Elashry et al. 2013; Marella et al. 2013; Berg et al. 
2021; Froschel et al. 2021). Liu et al. (2010) hypothesized 
that AtLHT1’s role in plant resistance was linked to its abil-
ity to transport glutamine. The absence of AtLHT1 causes a 
lack of glutamine within the cell, which leads to an altered 
redox status and enhanced immunity due to an accumulation 

of reactive oxygen species (ROS) and induced programmed 
cell death (PCD) (Liu et al. 2010). This suggests that the 
increased expression of AtLHT1 observed during the infec-
tion may be caused by the biotrophic pathogens, in order 
to inhibit the activation of the SA defense and, hence, an 
increase in plant resistance (Fig. 1a).

On the contrary, necrotrophic pathogens break plasma 
membranes and induce PCD in the host prior to nutrient 
uptake. While the SA pathway plays little role, the ethyl-
ene/jasmonic acid (ET/JA)-mediated response contributes to 
defense against necrotrophic pathogens (Glazebrook 2005; 
Pieterse et al. 2012; Huang et al. 2020). Furthermore, it has 
been shown that plants react in an analogous way to nema-
todes as to necrotrophic pathogens by activating the ET/
JA pathway (Przybylska and Obrępalska-Stęplowska 2020). 
Similar to what has been observed for biotrophic pathogens, 
increased LHT1 transcript levels were also found upon inter-
action with necrotrophic pathogens Botrytis cinerea (Xiong 
et al. 2018) and Erwinia amylovora (Farjad et al. 2018). 
Farjad et al. confirmed the involvement of AtLHT1 during 
pathogen attack: AtLHT1 resembled the expression profile 
of other defense associated genes by being induced during 
infection, behaving opposing to other N metabolism related 
genes. Potentially this serves an increased transport of ACC, 
supporting ET-based plant defense, as AtLHT1 and AtLHT2 
were found to transport the ET precursor (Shin et al. 2015; 
Choi et al. 2019). This hypothesis is in line with the find-
ing, that lht1-1 mutants displayed no increased resistance to 
necrotrophic pathogen infection such as Sclerotinia scleroti-
orum (Liu et al. 2010) or the nematode H. schachtii (Elashry 
et al. 2013). Necrotrophic pathogens would not benefit from 
increasing the transcript abundance of AtLHT1, which there-
fore might display a plant response in order to transport ACC 
as defense mechanism as well as to transport AAs away from 
the invaded tissue (Fig. 1b).

Regulation of amino acid transporters 
through additional physiological processes

The dominant players in plant defense are the antagonistic 
phytohormones SA and ET/JA (Huang et al. 2020; Zhang 
et al. 2020). The involvement of other phytohormones and 
crosstalk among the different players is well studied (Piet-
erse et al. 2012; Huang et al. 2020; Zhang et al. 2020; Aerts 
et al. 2021). The SA-mediated defense seems to be more 
effective against biotrophs and hemibiotrophs whereat the 
ET/JA-mediated defense targets necrotrophic microbes 
(Glazebrook 2005; Huang et al. 2020; Zhang et al. 2020). 
The link between SA-mediated defense and AAT regula-
tion has been studied (Liu et al. 2010; Yang et al. 2014; 
Besnard et al. 2021), whereas not much is known about ET/
JA-regulated defense against necrotrophs in connection to 
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AAT regulation. Recently, much work has been done on 
understanding the molecular underpinnings of leaf senes-
cence. Due to the fact that the lht1-1 mutant displays an early 
senescence-like phenotype (Hirner et al. 2006; Svennerstam 
et al. 2007), we aimed to identify regulatory targets, that 

play a role in plant senescence and pathogen defense, and 
at the same time display a connection to the regulation of 
AATs (Fig. 2).

The transcription factor ORESARA1 (AtORE1) targets 
promoters of senescence-associated genes and directly 



419Plant Molecular Biology (2022) 109:413–425 

1 3

mediates PCD (Oh et al. 1997; Kim et al. 2009; Balaza-
deh et al. 2010; Farage-Barhom et al. 2011; Al-Daoud and 
Cameron 2011; Matallana-Ramirez et al. 2013; Qiu et al. 
2015; Durian et al. 2020). AtORE1 itself is targeted for deg-
radation by the RING-type E3 ubiquitin ligase NITROGEN 
LIMITATION ADAPTATION (AtNLA) (Park et al. 2018). 
Deubiquitination events, however, stabilize AtORE1 and 
promote leaf senescence (Park et al. 2019). ET is involved in 
a positive regulation of AtORE1. More specifically, AtEIN3, 
a transcription factor acting downstream of EIN2, represses 
miR164, a negative regulator of AtORE1, and can in paral-
lel bind to the AtORE1 promoter (Kim et al. 2009, 2014; 
Li et al. 2013). Together with AtEIN3, AtORE1 then acti-
vates transcription of chlorophyll catabolic genes in an ET 
dependent manner (Qiu et al. 2015). AtORE1 additionally 
activates ACC SYNTHASE2 (AtACS2) and AtACS6 expres-
sion, leading to enhanced ET production, displaying a coher-
ent feed-forward loop for ET dependent leaf senescence (Qiu 
et al. 2015; Zhang et al. 2021). Interestingly, the action of 
AtORE1 and AtNLA are tightly connected to plant defense 
responses (Zhang et al. 2021). Arabidopsis infection with the 
hemibiotroph V. dahliae caused premature leaf senescence. 
It was shown that a microbial elicitor interfered with the 
interaction between AtORE1 and AtNLA, which, in turn, 
stabilized AtORE1, enhanced ET production and, thus, 
promoted senescence (Zhang et al. 2021). Recently, it was 
shown that AtORE1 is activated through protein phospho-
rylation via the calcium  (Ca2+) kinase AtCPK1 (Durian et al. 
2020). This kinase has previously been analyzed and it was 
shown that AtCPK1 is upregulated upon pathogen infection 
and was found to be a positive regulator in plant resistance 
due to activation of SA biosynthesis (Coca and San Segundo 

2010). Interestingly, also plants infected with necrotrophs 
displayed increased resistance, although no ET derived 
defense responses were found (Coca and San Segundo 
2010). In a preprinted study, it was suggested that AtNLA 
displays a negative regulator in plant defense against necro-
trophs (Val-Torregrosa et al. 2021-preprint). nla mutants 
displayed increased callose deposition as well as increased 
resistance. Upon pathogen attack, transcript levels of AtNLA 
were reduced (Val-Torregrosa et al. 2021-preprint).

It was recently shown that AtORE1 and AtNLA addi-
tionally play a role in the regulation of AtLHT1 (Fig. 2). 
The ubiquitin ligase AtNLA targets pathways connected to 
organic N remobilization by targeting AATs during N defi-
ciency (Liao et al. 2020). Transcript abundance of several 
AATs was found upregulated in the nla mutant and AtLHT1 
displayed the highest regulation. A proteomic analysis con-
firmed the regulation of AtLHT1 by AtNLA (Liao et al. 
2020), however, it remains to be tested whether this regula-
tion is due to a direct interaction between AtLHT1 and the 
ligase. The authors additionally speculated whether AtORE1 
is controlling transcription of AtLHT1 (Liao et al. 2020), 
however, an upregulation of AtLHT1 in AtORE1 overexpres-
sion lines has not been observed (Matallana-Ramirez et al. 
2013). It remains unclear whether AtORE1 serves as TF 
regulating AtLHT1.

Given this complex regulatory crosstalk between differ-
ent physiological processes, it can be speculated whether 
AtLHT1 is subject to additional molecular regulation. Due 
to the fact that miR164 is an important player at the inter-
face between ET signaling and senescence (Kim et al. 2009, 
2014; Li et al. 2013), and miRNAs in general play impor-
tant roles in plant immunity (Val-Torregrosa et al. 2021), 
future studies should evaluate whether AtLHT1 may also 
be regulated through the action of miRNAs. As mentioned 
above, the signaling compound and ET precursor ACC is 
transported by members of the AtLHT family (Van de Poel 
and Van Der Straeten 2014; Shin et al. 2015; Choi et al. 
2019; Vanderstraeten et al. 2019), which provides a direct 
link between the ET signaling- and AA uptake pathways. 
In addition, Chen et al 2012 found the ER-localized ETH-
YLENE RESPONSE SENSOR2 (ERS2) (Hua et al. 1998), 
to interact with AtLHT1 in yeast (Chen et al. 2012). Novel 
findings about the poplar homolog PtrLHT1.2 being not 
exclusively localized at the PM but also at the ER (Gratz 
et al. 2021), raise the question about a potential functional 
importance of this potential interaction, that remains to 
be tested in planta. Given the fact that ERS2 is a receptor 
kinase (Moussatche and Klee 2004) whose activity is not 
needed for ET signaling, it raises the question whether the 
kinase targets substrates outside the ET pathway and, thus, 
could be involved in additional responses (Chen et al. 2009; 
Lacey and Binder 2014). This opens up for the hypothesis 
that AtLHT1 could be post-translationally modified in an 

Fig. 1  Response of the plant amino acid transporter AtLHT1 to 
pathogen attack. Upon attack by biotrophic pathogens (orange P), 
the transcript abundance of AtLHT1 is increased (a). An increased 
gene expression leads to an increased AtLHT1 protein abundance at 
the plasma membrane, which causes an active import of AAs (purple 
dots) into the cytosol. As a consequence, a depletion of apoplastic- 
and an increase of cytosolic AA concentrations occurs. This might 
be a direct response by the plant to apoplastic-feeding pathogens, in 
order to empty the apoplast and shuttle AAs into the cytosol. From 
there, AAs can be exported to healthy plant tissues. Due to the fact 
that lht1-1 mutants display increased pathogen resistence due to 
the accumulation of reactive oxygen species (ROS), salicylic acid 
(SA) production and pathogenesis-related (PR) gene expression, the 
upregulation of AtLHT1 might by steered by the biotrophic pathogen 
itself (dotted arrow). This action might avoid SA defense responses 
and might increase chances for the pathogen to survive. Upon attack 
by a necrotrophic pathogen, AtLHT1 is also elevated (b). This might, 
however, be an exclusive response by the plant. AtLHT1 transports 
the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) 
(yellow dots). Mostly ET/JA-mediated responses contribute to the 
defense against necrotrophic pathogens. Additionally, an upregula-
tion of the transporter might contribute to the shuttling of AAs to 
healthy, more distal plant tissues. Hence, the observed upregulation 
of AtLHT1 might be mostly a protective measure, steered by the plant

◂
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ET-dependent way; a speculation that remains to be tested. 
The strong connection between AtLHT1 and ET leads to 
the question if unknown defense responses against necro-
trophs exist, that involve the action of AtLHT1. Pathogen 
attack triggers  Ca2+ influx into the cell (Nishad et al. 2020), 
which can then lead to phosphorylation and activation of 
AtORE1 (Coca and San Segundo 2010; Durian et al. 2020). 
Overexpression of AtCPK1 leads to increased resistance of 
plants upon necrotrophic attack, the molecular regulation 
for this is, however, so far unknown (Coca and San Segundo 
2010). The suggested downregulation of AtNLA upon necro-
trophic interaction (Val-Torregrosa et al. 2021-preprint) 

would lead to a potential reduction in AtORE1 degradation. 
Overall, this would increase AtORE1 activity and PCD as 
well as senescence (Oh et al. 1997; Kim et al. 2009; Balaza-
deh et al. 2010; Farage-Barhom et al. 2011; Al-Daoud and 
Cameron 2011; Matallana-Ramirez et al. 2013; Qiu et al. 
2015; Durian et al. 2020). This, a beneficial outcome for 
necrotrophs, would stand in contrast to the fact that a high 
accumulation of AtORE1 would increase ACC production 
via ACS2/6, and thus, ET accumulation (Qiu et al. 2015; 
Zhang et al. 2021). Reduced transcript accumulation of 
AtNLA would additionally lead to an increase in AtLHT1 
(Liao et al. 2020). AtLHT1 could then contribute to the 

Fig. 2  The molecular regula-
tion of amino acid transport-
ers is influenced by diverse 
regulatory pathways. Using the 
example of AtLHT1, the influ-
ence of individual key players 
important for ethylene (ET) 
signaling and senesence in the 
context of pathogen defense is 
depicted. AtLHT1 transports 
the signaling molecule and 
ET precursor 1-aminocyclo-
propane-1-carboxylic acid 
(ACC). The ET receptor kinase 
ETHYLENE RESPONSE SEN-
SOR2 (AtERS2) might interact 
with AtLHT1 and thus depicts 
a potential feedback loop in 
dependence of ET. ET presence 
in parallel represses the activity 
of miRNA164, through the 
action of the transcription factor 
(TF) EIN3. miRNA164 itself 
is a negative regulator of the 
TF ORESARA1 (AtORE1), a 
key player in plant senescence. 
AtEIN3 activates AtORE1 
transcription directly whereas 
AtORE1 then activates the 
expression of ACC SYNTHASE2 
(AtACS2), displaying a feed-
forward loop. AtORE1 itself 
is directly regulated by the 
ubiquitin ligase NITROGEN 
LIMITATION ADAPTATION 
(AtNLA), which also regulates 
AtLHT1 through either direct 
or indirect action. Dashed lines 
indicate potential regulatory 
connections that remains to be 
tested
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production of ET by transport of ACC (Shin et al. 2015; 
Choi et al. 2019) and, potentially, ET triggered resistance to 
necrotrophic microbes. It becomes evident that many com-
mon players in the regulation of pathogen resistance, leaf 
senescence and AAT regulation have overlapping functions. 
In future experiments, it has to be carefully determined, in 
which way the crosstalk between those players has an influ-
ence on plant microbes and plant resistance.

The complex network behind plant pathogen defense 
depends on several factors such as soil N availability and 
composition of the soil N pool which would affect both the 
internal N status of the plant and its energy status. Both 
plants and pathogens possess toolboxes, containing differ-
ent signaling molecules such as ROS or hormones, but also 
transcription factors to concur the respective other. These 
responses are deeply interwoven with a machinery of cell-
type specific regulation of AATs and, hence, the accumula-
tion or depletion of specific AAs. The unique response sig-
natures that are being formed upon association of a pathogen 
then contributes to the susceptibility of the plant.
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