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Abstract
Key message  Lipoxygenases mediate important biological processes. Through comparative genomics, domain-scan 
analysis, sequence analysis, phylogenetic analysis, homology modelling and transcriptional analysis the lipoxygenase 
gene family of pepper (Capsicum annuum) has been identified.
Abstract  Lipoxygenases (LOXs) are non-heme, iron-containing dioxygenases playing a pivotal role in diverse biological 
processes in plants, including defence and development. Here, we exploited the recent sequencing of the pepper genome to 
investigate the LOX gene family in pepper. Two LOX classes are recognized, the 9- and 13-LOXs that oxygenate lipids at the 
9th and 13th carbon atom, respectively. Using two main in-silico approaches, we identified a total of eight LOXs in pepper. 
Phylogenetic analysis classified four LOXs (CaLOX1, CaLOX3, CaLOX4 and CaLOX5) as 9-LOXs and four (CaLOX2, 
CaLOX6, CaLOX7 and CaLOX8) as 13-LOXs. Furthermore, sequence similarity/identity and subcellular localization analy-
sis strengthen the classification predicted by phylogenetic analysis. Pivotal amino acids together with all domains and motifs 
are highly conserved in all pepper LOXs. Expression of 13-LOXs appeared to be more dynamic compared to 9-LOXs both 
in response to exogenous JA application and to thrips feeding. Bioinformatic and expression analyses predict the putative 
functions of two 13-LOXs, CaLOX6 and CaLOX7, in the biosynthesis of Green Leaf Volatiles, involved in indirect defence. 
The data are discussed in the context of LOX families in solanaceous plants and plants of other families.

Keywords  Pepper · Lipoxygenases (LOXs) · Phylogenetic analysis · Gene transcription · Sequence analyses · Defence

Introduction

Lipoxygenases (EC 1.13.11.12) are non-heme, iron-con-
taining dioxygenases ubiquitously present in plants, animals 
and fungi (Brash 1999). In plants, lipoxygenases (LOXs) 
are well-known to be involved in several plant processes 
like tuber development, seed germination, fruit ripening 
and most importantly in plant defences (Bailly et al. 2002; 
Barry and Giovannoni 2007; Feussner and Wasternack 2002; 

Kessler 2004; Kolomiets et al. 2001; Yan et al. 2013). Upon 
insect or pathogen attack, LOXs oxidize polyunsaturated 
fatty acids (PUFAs) (linoleic acid, α-linolenic acid and ara-
chidonic acid) constituting a (Z,Z)-1,4-pentadiene structural 
unit and catalyzing it into conjugated hydro-peroxides such 
as oxylipins (Brash 1999; Feussner and Wasternack 2002; 
Shibata and Axelrod 1995). Oxylipins such as jasmonates, 
green leaf volatiles (GLVs) and recently discovered death 
acids, are known for their roles in defence against herbivo-
rous insects and pathogens (Allmann et al. 2010; Bell et al. 
1995; Christensen et al. 2015; Losvik et al. 2017; Shen et al. 
2014; Yan et al. 2013). Jasmonates and GLVs are 13-LOX-
derived products involved in direct and indirect defences, 
respectively. In indirect defence, GLVs play a pivotal role in 
the attraction of natural enemies of the herbivores (ul Has-
san et al. 2015). Death acids (10-OPDA, 10-oxo-11-phyto-
dienoic acid, and 10-OPEA, 10-oxo-11-phytoenoic acid) are 
9-LOX-derived products that in maize (Zea mays) accumu-
late upon southern leaf blight (Cochliobolus heterostrophus) 
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infection resulting in the hampering of growth of fungi and 
herbivorous insects (Christensen et al. 2016, 2015).

Plant LOXs are primarily classified into two major 
classes, 9- and 13-LOXs, based on their positional specific-
ity to oxygenate linoleic acids (LAs) (Feussner and Waster-
nack 2002). Moreover, LOXs are also classified as Type-1 
and Type-2 based on their primary structure and sequence 
similarity. LOXs having high sequence similarity (> 75%) 
among themselves and having no plastidic transit peptide 
are classified as Type-1, whereas LOXs with moderate 
sequence similarity (> 35%) and possessing a plastidic tran-
sit peptide are classified as Type-2 (Brash 1999; Feussner 
and Wasternack 2002). All Type-2 LOXs known at present 
are 13-LOXs, whereas Type-1 LOXs include both 9- and 
13-LOXs (Feussner and Wasternack 2002).

Information on LOXs from several plants has been 
reported. The Arabidopsis genome comprises a total of six 
LOXs (AtLOX1–AtLOX6) (Umate 2011). AtLOX1 is up-
regulated in leaves upon pathogen attack and stress-related 
hormones (Melan et al. 1993); AtLOX2 is involved in jas-
monic acid (JA) biosynthesis (Bell et al. 1995); AtLOX3 and 
AtLOX4 are essential for flower growth and male fertility 
(Caldelari et al. 2011); AtLOX5 is important for lateral root 
development and defence responses (Vellosillo et al. 2007) 
and AtLOX6 is expressed in roots and involved in JA syn-
thesis (Grebner et al. 2013). Among solanaceous plants, dif-
ferent numbers of LOXs are reported in tomato, potato and 
tobacco. In tomato, SlLOXA (TomLOXA) and SlLOXB (Tom-
LOXB) are induced during fruit ripening (Ferrie et al. 1994; 
Griffiths et al. 1999); SlLOXC (TomLOXC) participates 
in production of flavour compounds resulting from fatty 
acids (Chen et al. 2004); SlLOXD (TomLOXD) is involved 
in wound-induced JA biosynthesis, enhancing resistance 
against herbivores and pathogens (Yan et al. 2013); SlLOXE 
(TomLOXE) is expressed in breaker fruit (Chen et al. 2004) 
and SlLOXF (TomLOXF) enhances systemic resistance 
stimulated by Pseudomonas putida BTP1(Mariutto et al. 
2011). In tobacco, NaLOX1 codes for a 9-LOX and is spe-
cifically expressed in roots (Allmann et al. 2010); NaLOX2 
is involved in biosynthesis of GLVs (Allmann et al. 2010; 
VanDoorn et al. 2010); and NaLOX3 is involved in JA bio-
synthesis (Halitschke and Baldwin 2003; Kessler 2004). 
Furthermore, in potato, StLOXH1 mediates the biosynthesis 
of volatile C6-aldehydes (GLVs) involved in defence (Leon 
et al. 2002) and StLOXH3 is involved in the JA biosynthetic 
pathway (Royo et al. 1996). Knowledge on LOXs has also 
been presented in grapevine (Podolyan et al. 2010), kiwi-
fruit (Zhang et al. 2006), rice (Umate 2011), apple (Vogt 
et al. 2013), soybean (Shin et al. 2008), cucumber (Liu et al. 
2011), and olive (Padilla et al. 2009, 2012).

Pepper (Capsicum annuum) is an economically impor-
tant crop worldwide. It is used e.g. as food, spice and in 
pharmacology. There are many biotic and abiotic factors 

constraining pepper production (Kulkarni and Phalke 2009; 
Kurunc et  al. 2011; Pakdeevaraporn et  al. 2005; Shipp 
et al. 1998). Despite increasing commercial significance 
of pepper, the molecular mechanisms underlying different 
plant processes are still unknown. For instance, to develop 
resistance against pathogens and insects, identifying genes 
involved in different defence mechanisms in pepper is 
important.

To date, no comprehensive knowledge on the pepper LOX 
gene family is available. One 9-LOX, CaLOX1, involved 
in defence and cell-death responses against pathogens 
has been reported (Hwang and Hwang 2010). Recently, a 
second member of the LOX gene family (CaLOX2; Capa-
na03g000103) was identified, playing a role in JA-regulated 
defence against Western flower thrips (Frankliniella occi-
dentalis) (Sarde et al. 2018). Therefore, there is a need of 
a genome-wide survey of the LOX gene family of pepper. 
Here, we performed comparative genomics and domain-scan 
analyses for identification and classification of the LOX gene 
family in pepper. To investigate the conservation levels of 
pepper LOXs compared to known LOXs of other plant spe-
cies, we subjected pepper LOXs to sequence analysis, phy-
logenetic analysis and homology modelling. Furthermore, to 
investigate the role of pepper LOXs in defence mechanisms, 
we examined their expression upon two treatments: exog-
enous JA application and exposure to feeding by a natural 
inducer of JA, the cell-content feeding insect Western flower 
thrips (WFT). WFT was selected because it is a major pest 
on pepper and well-known to induce JA signaling (Hickman 
et al. 2017; Steenbergen et al. 2018). The resulting data pro-
vide insights into putative functions of these genes in pepper.

Materials and methods

Sequence acquisition and identification of pepper 
LOXs

Protein sequences of tomato (Solanum lycopersicum) 
lipoxygenases were obtained from the Ensembl Plants data-
base (http://www.ensem​bl.org) (Yates et al. 2016). LOX 
sequences from Brassica oleracea, Brassica napus, Brassica 
rapa, Arabidopsis thaliana, Nicotiana attenuata, Nicotiana 
tabacum, Solanum tuberosum, Zea mays and Actindia deli-
ciosa, were downloaded from NCBI (http://www.ncbi.nlm.
nih.gov/). Oryza sativa and Cucumis melo LOX sequences 
were retrieved from the Rice Genome Annotation Project 
(http://rice.plant​biolo​gy.msu.edu/) and the Melonomics 
database (http://melon​omics​.net/), respectively. Two main 
approaches were used for the identification of the pepper 
LOX gene family. First, BLAST searches were performed 
locally on the Capsicum annuum L. Zunla-1 proteome (Qin 
et al. 2014) using Tomato LOX proteins as queries. Second, 

http://www.ensembl.org
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://rice.plantbiology.msu.edu/
http://melonomics.net/


377Plant Molecular Biology (2018) 98:375–387	

1 3

the Capsicum annuum L. Zunla-1 proteome was entirely 
analyzed for the presence of lipoxygenase gene family sig-
nature domains, LOX and PLAT/LH2 (polycystin-1, lipoxy-
genase, α-toxin domain or lipoxygenase homology) using 
the Pfam database (v27.0) in the CLC Bioworkbench (https​
://www.qiage​nbioi​nform​atics​.com/).

Sequence alignment of lipoxygenases

Alignment of LOX protein sequences was performed using 
the MUSCLE tool (Edgar 2004) with default settings. Edit-
ing and visualization of alignment was produced in GENE-
DOC (Nicholas et al. 1997). Sequence logos of conserved 
regions in pepper LOX proteins were generated by Weblogo 
3.3 (Crooks et al. 2004).

Phylogenetic analysis of plant LOXs

Seventy-two plant LOX protein sequences were analyzed, 
including one known pepper LOX, CaLOX1(L) (L stands 
for ‘literature’) (Hwang and Hwang 2010) and eight pepper 
LOXs identified in the present study. A Maximum likelihood 
tree using WAG-model (Hall 2013), with 1000 bootstrap 
replicates was generated using MEGA 7.0 (Kumar et al. 
2016). The tree was edited with the Figtree tool (http://tree.
bio.ed.ac.uk/softw​are/figtr​ee/).

Sequence analysis and identification of conserved 
sequences

Conserved sequences and pivotal amino acids were identi-
fied by manual observations on pepper LOX alignments in 
GENEDOC (Nicholas et al. 1997). Molecular weight and 
isoelectric point of pepper LOX proteins were calculated by 
protein isoelectric point calculator (Kozlowski 2016). Sub-
cellular localization analysis was performed using TargetP 
1.1 (http://www.cbs.dtu.dk/servi​ces/Targe​tP/).

Homology modeling of CaLOX1 and CaLOX2 protein

We generated a protein structural model of CaLOX1 and 
CaLOX2 using the I-TASSER (Roy et al. 2010) database and 
the resulting model was visualized with YASARA (Krieger 
et al. 2002).

Plant growth conditions, thrips rearing 
and bioassays

Sweet pepper [Capsicum annuum (Mandy variety, Rijk 
Zwaan (De Lier, The Netherlands))] plants were grown in 
a greenhouse at 23–25 °C, 70 ± 10% relative humidity and 
16L:8D photoperiod. Four-week-old plants were used in 
the experiments for both treatments. Western flower thrips 

(WFT; Frankliniella occidentalis) were reared on bean 
pods (Phaseolus vulgaris) in a climate-controlled cabinet 
(25 ± 2 °C, 70 ± 10% relative humidity, L16:8D photoper-
iod). For thrips treatment in the gene expression experiment, 
five 2nd instar thrips larvae were placed in clip cages and 
used for infestation on one of the first two true leaves. Empty 
clip cages were used on control plants for each time point. 
Samples were harvested at 0, 2, 4, 6, 8, 10 and 24 h post 
infestation, frozen in liquid nitrogen and stored at − 80 °C.

RNA extraction and qRT‑PCR

Transcriptional responses of pepper LOXs in response to 
JA treatment (100 µM) and thrips feeding were assessed by 
qRT-PCR. For JA-treatment, plants were dipped in 100 µM 
of JA (treatment) or mock-treated with water (control), both 
mixed with 0.1% of Tween20. One of the first two true leaf 
samples were harvested at 0, 0.5, 1, 2, 3, 6, 8, 10 and 24 h 
post JA application, frozen in liquid nitrogen and stored 
at − 80 °C. For both treatments (JA and thrips), control 
samples were harvested at each time point to rule out the 
effect of circadian rhythm on the expression of LOX genes. 
Four to five biological replicates (individual plants) were 
harvested and analysed for each time point and treatment. 
Each biological replicate comprises one individual plant. 
Bioline kit (ISOLATE II RNA Plant Kit), in accordance to 
its protocol, was used for RNA extraction. cDNA synthesis 
was executed with 1 µg of total RNA with Bio-Rad iScript 
cDNA synthesis kit. For qPCR, a reaction mixture compris-
ing of 12.5 µl of SYBR Green (Bioline), 1 µl (10 µM) of 
forward and reverse primers, 5.5 µl RNase free-water and 
5 µl cDNA was used. The data normalization was performed 
with a reference gene, CaActin. The PCR cycle conditions 
used were 95 °C for 3 min, followed by 40 cycles of 95 °C 
for 15 s, and 60 °C for 45 s. Melt curves for each gene were 
recorded at the end of each cycle. All primers used for qPCR 
are presented in Supplementary file S1.

Relative gene expression was studied using the geometric 
mean of Ct (threshold cycles) values (Vandesompele et al. 
2002) from the reference gene CaActin using the 2–ΔΔCt 
method (Livak and Schmittgen 2001).

Statistical analysis

The gene expression data were subjected to a Student’s t-test.

Results and discussion

Identification of lipoxygenase gene family in pepper

A genome-wide search for lipoxygenase genes in pepper 
was performed by implementing two main approaches: 

https://www.qiagenbioinformatics.com/
https://www.qiagenbioinformatics.com/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://www.cbs.dtu.dk/services/TargetP/
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homology search and scanning of the pepper proteome for 
the presence of “lipoxygenase” and “PLAT/LH2” domains. 
Both approaches resulted in the identification of eight lipox-
ygenases in the Capsicum annuum L. Zunla-1 proteome 
(Table 1). Several proteins depicting the presence of either 
one lipoxygenase domain or the PLAT/LH2 domain were 
excluded from analysis based on arguments of Chen et al. 
(2015).

The total number of LOXs in pepper (8) is similar to 
that in tomato (7). This number is also close to the number 
in Arabidopsis (6) (Umate 2011) and kiwifruit (6) (Zhang 
et al. 2006), double the number in olive (4) (Padilla et al. 
2009, 2012) and much lower than in melon (18) (Zhang et al. 
2014), cucumber (23) (Liu et al. 2011) and grapevine (18) 
(Podolyan et al. 2010). This diverse number of LOXs in 
different plant species indicates that this gene family has 
not been conserved during evolution, despite similarities in 
biochemical functions of the gene family in different plant 
species (Feussner and Wasternack 2002).

Genomic and proteomic features of the pepper LOX gene 
family do not differ much (Table 1). At the genomic level, 
the number of introns varies between 7 and 9, whereas, 
ORF (Open Reading Frame) length ranges from a mini-
mum of 2379 bp to a maximum of 2748 bp. Most of the 
pepper LOXs are located on Chromosomes 1 and 3, with 
the exception of CaLOX8 (Capana11g000928) on Chromo-
some 11. At the protein level, LOX length varied between 
792 and 915 aa, the predicted isoelectric point (PI) ranged 
between 5.4 and 7.5 and the predicted molecular weight of 
the proteins ranged from 89,959 to 104,131 Da. Sequence 
comparison among pepper LOXs at the protein level shows 
high sequence identity (33–70%) and similarity (48–77%) 
(Table 2). Taken together, these genomic and proteomic fea-
tures show a close relation among the pepper LOXs, indica-
tive of a gene family.

Phylogenetic analysis of lipoxygenases

To determine the evolutionary relationship and predict the 
classification of pepper LOXs, a maximum-likelihood phy-
logenetic tree with 1000 bootstraps was generated. For this, 
we used sixty-four previously known plus eight pepper LOX 
protein sequences from twelve different plant species, com-
prising monocots and dicots. The tree explicitly categorizes 
plant LOXs into 9-LOXs, 13-LOXs and uncharacterized 
LOXs. From the identified eight pepper LOXs, four LOXs 
(CaLOX1, CaLOX3, CaLOX4 and CaLOX5) are charac-
terized, including the previously described CaLOX1(L) 
(Hwang and Hwang 2010) into the 9-LOX group and four 
other LOXs (CaLOX2, CaLOX6, CaLOX7 and CaLOX8) 
into the 13-LOX group (Fig. 1). Moreover, upon closer 
examination of the 9- and 13-LOXs major clades, explicit 
sub-clades of monocot and dicot LOXs are formed indicating Ta
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that this gene family has evolved differently in monocots and 
dicots (Fig. 1).

In the 13-LOX clade, pepper LOXs group with well-char-
acterized Solanaceae 13-LOXs like SlLOXD, StLOXH3, 
NaLOX3, SlLOXF, NaLOX2, StLOXH1 and SlLOXC 
(Fig. 1). These clusters or sub-clusters among known LOXs 

and newly identified LOXs may be useful to predict bio-
chemical features and molecular functions of the newly 
identified pepper LOXs. CaLOX2 clusters with SlLOXD, 
StLOXH3 and NaLOX3, well-known to be involved in JA 
biosynthesis (Halitschke and Baldwin 2003; Kessler 2004; 
Royo et al. 1996; Yan et al. 2013) suggesting that CaLOX2 

Table 2   Pepper LOX protein 
identities and similarities (%)

Protein 
IDs CaLOX5 CaLOX1 CaLOX3 CaLOX4 CaLOX7 CaLOX6 CaLOX8 CaLOX2

CaLOX5 57 52 53 36 33 38 38

Se
qu

en
ce

 id
en

tit
y

CaLOX1 72 59 64 39 35 38 40

CaLOX3 70 73 70 39 36 37 38

CaLOX4 69 77 83 38 35 38 39

CaLOX7 51 56 55 56 70 45 45

CaLOX6 48 50 50 48 77 42 40

CaLOX8 53 54 54 55 65 59 52

CaLOX2 54 57 57 56 62 56 69

Sequence similarity

High, intermediate and low similarity/identity of genes is shown in green, yellow and red color, respec-
tively

Fig. 1   Phylogenetic analysis 
of plant lipoxygenases. The 
evolutionary relationship 
between pepper and other LOX 
proteins. The tree was generated 
by MEGA 7 using Maximum 
Likelihood method with 1000 
bootstraps and viewed in 
Figtree. The scale bar represents 
the branch length. Different 
classes of LOXs are depicted 
in different colors, 13-LOXs in 
purple; 9-LOXs in blue; unclas-
sified without color. Identified 
pepper LOXs are highlighted in 
red color. Species abbreviations 
used for phylogeny are as fol-
lows. At: Arabidopsis thaliana, 
Bo: Brassica oleracae, Bn: 
Brassica napus, Br: Brassica 
rapa, Sl: Solanum lycopersi-
cum, St: Solanum tuberosum, 
Na: Nicotiana attenuata, Nt: 
Nicotiana tabacum, Ca: Capsi-
cum annuum, Os: Oryza sativa, 
Zm: Zea Mays, Cm: Cucumis 
melo, Ad: Actindia deliciosa 
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has a similar function. This matches with our recent study 
experimentally confirming that CaLOX2 is involved in JA 
biosynthesis upon thrips feeding (Sarde et al. 2018). Virus-
induced gene silencing of CaLOX2 led to disruption of the 
jasmonate pathway resulting in enhanced performance of 
thrips. CaLOX6 clusters with SlLOXF, known to be involved 
in systemic resistance to Pseudomonas putida BTP1 (Mar-
iutto et al. 2011). CaLOX7 groups with NaLOX2, StLOXH1 
and SlLOXC. These three LOXs are involved in the biosyn-
thesis of green leaf volatiles (Allmann et al. 2010; Chen 
et  al. 2004; Leon et  al. 2002; VanDoorn et  al. 2010). 
CaLOX8 seems to be related to AtLOX6, known to provide 
resistance against biotic and abiotic stresses through oxylipin 
biosynthesis in roots (Grebner et al. 2013).

Also in the 9-LOX clade, pepper LOXs cluster with func-
tionally characterized LOXs of other plant species such as 
AtLOX5, AdLOX2, SlLOXA, SlLOXB (Fig. 1). AdLOX2, 
that mediates the generation of C6 aldehydes in kiwifruit 
(Zhang et al. 2009), clusters with CaLOX5, suggesting that 
CaLOX5 has a similar function. CaLOX3 and CaLOX4 form 
a major clade with AtLOX5 and CmLOX09. AtLOX5 is 
involved in lateral root development and defence responses 
(Vellosillo et al. 2007). Additionally, relatedness of CaLOX3 
and CaLOX4 to each other, suggests that they may be iso-
forms mediating the same biological process. Furthermore, 
clustering together of identified CaLOX1 from Capsicum 
annuum Zunla-1 proteome (Qin et al. 2014) and known 
CaLOX1(L) reflects their similarity/relatedness, suggest-
ing them to be the same protein. Hwang and Hwang (2010) 
identified CaLOX1(L) independently from cDNA clones and 
reported it to be involved in defence and cell-death responses 
against pathogens. Furthermore, CaLOX1 identified here 
and the previously reported CaLOX1(L) (Hwang and Hwang 
2010) cluster with LOXs like SlLOXA and SlLOXB, two 
LOXs that are up-regulated in ripening tomato fruits (Fer-
rie et al. 1994; Griffiths et al. 1999). Nevertheless, taken 
together, the predicted functions of pepper LOXs require 
further experimental validation to characterize their molec-
ular functions, as reported for CaLOX1(L) and CaLOX2 
(Hwang and Hwang 2010; Sarde et al. 2018).

Finally, the reported uncharacterized LOXs like 
OsLOX10, CmLOX17 and ZmLOX6 clearly form an out-
group from the 9- and 13-LOXs (Cao et al. 2016; Liu et al. 
2011; Zhang et al. 2014).

Sequence analysis consolidates phylogenetic 
classification of pepper LOXs

The lipoxygenase family of pepper (CaLOX1–CaLOX8) 
is highly conserved with variable sequence identities and 
similarities with each other (Table 2). It is known that, based 
on degree of sequence similarity and presence/absence of 
chloroplast-transit peptide, LOXs are classified into Type-1 

or Type-2 (Feussner and Wasternack 2002; Porta and Rocha-
Sosa 2002). Type-1 LOXs show high sequence similarity 
(> 75%) in the absence of a chloroplast-transit peptide; in 
contrast, Type-2 LOXs show low sequence similarity and the 
presence of a chloroplast-transit peptide. The pepper LOXs 
CaLOX1 and CaLOX3, CaLOX4 and CaLOX5, exhibit 
high sequence similarity (> 70%) and identity (> 52%) with 
each other compared to other LOXs. In contrast, CaLOX2 
and CaLOX6, CaLOX7 and CaLOX8 show low sequence 
similarity among themselves with the exception of CaLOX6 
and CaLOX7. CaLOX6 and CaLOX7 show high sequence 
similarity and identity among themselves, but not when 
compared to the rest of the LOXs, suggesting that CaLOX6 
and CaLOX7 are isoforms of each other. Furthermore, the 
presence of a chloroplast-transit peptide in sequences of 
CaLOX2 and CaLOX6, CaLOX7 and CaLOX8 suggests that 
they are localized in the chloroplast. Collectively, sequence 
similarity and sub-cellular localization analysis indicates 
classification of CaLOX1, CaLOX3, CaLOX4 and CaLOX5 
into Type-1 and CaLOX2, CaLOX6, CaLOX7 and CaLOX8 
into Type-2.

Furthermore, plant LOXs are also classified into 9- and 
13-LOXs, based on their positional specificity of action on 
the substrate (Feussner and Wasternack 2002). The pres-
ence of Phe608/His608 or Val608 residue predicts LOX 
activity as 13- or 9-LOX, respectively. Multiple sequence 
alignment of all pepper LOXs clearly shows the occurrence 
of valine in CaLOX1 and CaLOX3, CaLOX4 and CaLOX5 
classifying them as 9-LOXs and phenylalanine in CaLOX2 
and CaLOX6, CaLOX7 and CaLOX8 classifying them as 
13-LOXs (Fig. S1). This agrees with the observation that 
all Type-2 LOXs identified so far are 13-LOXs (Feussner 
and Wasternack 2002).

Therefore, both classification methods provide consensus 
on distribution of pepper LOXs into different classes, thus 
consolidating our methodology and predictions. Moreover, 
it also suggests to use the parameters from both approaches 
in the future for classification of plant lipoxygenases.

High conservation of motifs and pivotal amino acids

Lipoxygenases are characterized by the presence of a 38-res-
idue representative sequence, a substrate-binding domain, an 
oxygen binding domain and a C-terminal motif (Padilla et al. 
2009, 2012). The highly representative 38-residue sequence 
in lipoxygenases is important for stability of lipoxygenases. 
In addition, the enzymatic activity or efficiency of lipoxyge-
nases can be severely affected if any of the residues of this 
sequence is substituted (Chen et al. 2015). This sequence is 
highly conserved in all the predicted pepper LOXs (Fig. 2a, 
e, f). Also, the other motifs like substrate binding, oxygen 
binding and the C-terminal are conserved among all pepper 
LOXs (Fig. 2a–f).
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Among the conserved amino acids, the three histidine 
residues (including two from the representative 38-resi-
due sequence) His499, His504, His690 with Asn694 and 
Ile839 are identified to be vital for binding to non-heme 
iron (Boyington et al. 1997; Feussner and Wasternack 2002; 

Padilla et al. 2012; Porta and Rocha-Sosa 2002; Steczko 
et al. 1992). All these five amino acids appear to be con-
served in the pepper LOXs (Fig. S1) with an exception for 
Ile839 in CaLOX7. Substitution of C-terminal isoleucine 
with any other amino acid except valine led to inactivation 

Fig. 2   Conservation of sequence motifs in pepper lipoxygenases (a–
d) and protein models of CaLOX1 and CaLOX2 (e–f). Highly repre-
sentative 38-residue motif (a), substrate binding (b), oxygen binding 
(c) and C-terminal (d) motifs are highly conserved. Protein model of 
a 9-LOX CaLOX1 (e) and 13-LOX CaLOX2 (f) depicting conser-

vation of highly representative 38-residue (red), substrate binding 
(cyan), oxygen binding (green) and C-terminal motif (blue) motifs. 
13- or 9-LOX activity determinant Phe or Val residue, respectively 
are depicted
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of lipoxygenases, whereas, substitution with valine had posi-
tive consequences for enzymatic activity (Chen et al. 1994). 
Therefore, the absence of a C-terminal motif and the pres-
ence of Ile839, essential for non-heme iron binding, leads 
us to suggest that CaLOX7 may have an altered enzymatic 
activity. Moreover, the conserved Val608 or Phe608/His608 
residue that are indicative for 9- or 13-LOX activity, respec-
tively (Hornung et al. 1999; Padilla et al. 2009, 2012; Sloane 
et al. 1991), are found highly conserved in pepper LOXs 
(Fig. 2e, f and Fig. S1). The determinant residues for inverse 
substrate orientation and S-stereospecificity of LOXs, Arg 
and Ala, respectively (Coffa and Brash 2004; Hornung et al. 
1999) are well-conserved as well in pepper LOXs (Supple-
mental Fig. S1). Taken together, the conservation of motifs 
and pivotal amino acids suggests that functions of pepper 
LOXs are conserved to their respective homologs in other 
plant species.

Expression pattern of lipoxygenases upon JA 
application and thrips feeding

qRT-PCR was performed to investigate the expression 
dynamics of pepper LOXs over time upon thrips feeding 
or exogenous JA application. Upon thrips feeding, two 
13-LOXs (CaLOX2 and CaLOX7) are up-regulated for most 
of the analyzed time points (Fig. 3). Induction of CaLOX2 
occurred after 2 h of thrips feeding and remained up-regu-
lated. This gene’s involvement in JA biosynthesis has been 
experimentally supported (Sarde et al. 2018). CaLOX7 is 
significantly up-regulated at 4 h after the start of feeding 
and remained up-regulated throughout the period suggest-
ing that it may have a role in defence. CaLOX6 is signifi-
cantly up-regulated after 10 h of feeding. In contrast, all 
other LOXs, i.e. CaLOX1, CaLOX3, CaLOX4 and CaLOX8 
did not show induction over time (Fig. 3). CaLOX4 and 
CaLOX8 are significantly down-regulated after 8 h of thrips 
feeding. CaLOX5 expression is not shown due to its unsta-
ble expression resulting in a high degree of variation. This 
instability of CaLOX5 expression was also confirmed by 
its expression pattern in an RNA-seq dataset (Sarde et al. 
unpublished data).

In Arabidopsis, it is well-known that LOX expression is 
triggered following application of JA due to presence of a 
positive feedback loop that amplifies JA responses (Hick-
man et al. 2017). Upon exogenous JA application, CaLOX2, 
known to be involved in JA biosynthesis (Sarde et al. 2018), 
shows significant induction after 2 h which was maintained 
until 6 h after JA application with exception at 3 h (Fig. 4). 
This instant up- and downregulation of CaLOX2, suggests 
involvement of some feedback mechanism in JA-biosyn-
thetic pathway. CaLOX6 and CaLOX7 are also upregulated 
upon JA application. Both of them exhibit high expres-
sion levels at similar timepoints i.e., 8 h and 24 h after JA 
application. In contrast, the other LOX genes, i.e. CaLOX1, 
CaLOX3, CaLOX4 and CaLOX8, were not up-regulated at 
any time point, but exhibited down-regulation at several time 
points (Fig. 4).

In general, the 9-LOXs in pepper (CaLOX1, CaLOX3 and 
CaLOX4) did not show any induction, but rather down-regu-
lation at certain time points in both treatments, i.e. JA appli-
cation and thrips feeding. This fits to the fact that 9-LOXs 
are especially involved in functions such as plant–patho-
gen interactions, storage of proteins and tuber development 
(Feussner and Wasternack 2002). In contrast, the 13-LOXs 
were more responsive to both treatments, except CaLOX8. 
Similarity of CaLOX7 to NaLOX2 and SILOXC (Fig. 1), 
both known to be involved in the biosynthesis of green leaf 
volatiles (GLVs) (Allmann et al. 2010; Chen et al. 2004; 
Shen et al. 2014; VanDoorn et al. 2010), and it’s up-regu-
lation upon both thrips feeding and JA application (Figs. 3, 
4) suggest a role of CaLOX7 in the biosynthesis of GLVs 
in pepper. Additionally, in tomato SILOXC-antisense lines, 
low expression of both SILOXC and SILOXF resulted in 
decreased levels of C5 and C6 leaf volatiles, suggesting a 
possible synergistic involvement of SILOXC and SILOXF in 
the biosynthesis of these plant volatiles (Shen et al. 2014). 
Therefore, the similarity of CaLOX6 to SILOXF (Fig. 1) and 
its induction upon both JA application and thrips feeding 
makes it a potential candidate to test for its synergistic role 
with CaLOX7 in volatile biosynthesis (Figs. 3, 4).

In conclusion, this study has identified and classified 
eight LOXs in pepper. Phylogenetic analysis classified 
four LOXs as 9-LOXs (CaLOX1, CaLOX3, CaLOX4 
and CaLOX5) and four others as 13-LOXs (CaLOX2, 
CaLOX6, CaLOX7 and CaLOX8) with predictions of 
their putative functions. Pepper LOX proteins are highly 
conserved in all lipoxygenase characteristics. Characteri-
zation of CaLOX2 encoding for a LOX that is involved 
in JA biosynthesis is confirmed by a recent experimen-
tal study through a combination of in-silico, transcrip-
tional, behavioural, and chemical analyses plus silencing 
of CaLOX2 through virus-induced gene silencing (Sarde 
et al. 2018). For the other LOXs their function remains 
to be elucidated. High expression levels of 13-LOXs in 

Fig. 3   Quantitative RT-PCR (RT-qPCR) of pepper lipoxygenase 
genes in sweet pepper leaves in response to thrips (F. occidentalis) 
feeding. Five 2nd instar thrips larvae in a clip cage fed on the first 
true leaf of 4-week-old pepper plants. Clip cages without thrips were 
used on control plants. Expression of the housekeeping gene CaActin 
was used to normalize the expression level of each LOX gene at each 
time point. Relative expression compared to the control for the same 
time point is presented. Bars represent means ± SE of 4–5 biological 
replicates. Bars marked with asterisks indicate significant differences 
(Student’s t-test) to corresponding control samples for the same time 
point, *P < 0.05, **P < 0.01. For bars without asterisk or P value, the 
P value is > 0.10

◂
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pepper with support of in-silico analysis predict poten-
tial candidate genes (CaLOX6 and CaLOX7) that code for 
enzymes involved in GLV biosynthesis in pepper. Finally, 

this comprehensive study provides a pepper LOX genes 
repository to further elucidate their functional roles in 
respective biological processes.
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