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Abstract
Key message Transcriptomic analysis resulted in the upregulation of the genes related to common defense mecha-
nisms for black spot and the downregulation of the genes related to photosynthesis and cell wall modification for 
powdery mildew.
Abstract Plant pathogenic fungi successfully colonize their hosts by manipulating the host defense mechanisms, which 
is accompanied by major transcriptome changes in the host. To characterize compatible plant pathogen interactions at 
early stages of infection by the obligate biotrophic fungus Podosphaera pannosa, which causes powdery mildew, and the 
hemibiotrophic fungus Diplocarpon rosae, which causes black spot, we analyzed changes in the leaf transcriptome after the 
inoculation of detached rose leaves with each pathogen. In addition, we analyzed differences in the transcriptomic changes 
inflicted by both pathogens as a first step to characterize specific infection strategies. Transcriptomic changes were ana-
lyzed using next-generation sequencing based on the massive analysis of cDNA ends approach, which was validated using 
high-throughput qPCR. We identified a large number of differentially regulated genes. A common set of the differentially 
regulated genes comprised of pathogenesis-related (PR) genes, such as of PR10 homologs, chitinases and defense-related 
transcription factors, such as various WRKY genes, indicating a conserved but insufficient PTI [pathogen associated molecu-
lar pattern (PAMP) triggered immunity] reaction. Surprisingly, most of the differentially regulated genes were specific to the 
interactions with either P. pannosa or D. rosae. Specific regulation in response to D. rosae was detected for genes from the 
phenylpropanoid and flavonoid pathways and for individual PR genes, such as paralogs of PR1 and PR5, and other factors 
of the salicylic acid signaling pathway. Differently, inoculation with P. pannosa leads in addition to the general pathogen 
response to a downregulation of genes related to photosynthesis and cell wall modification.
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Introduction

Fungal pathogens have developed specific strategies to 
obtain nutrients from their hosts depending on their lifestyle. 
Biotrophic fungi develop nutrient-absorbing structures, such 
as haustoria, to establish a long-term feeding relationship 
without killing their hosts. In contrast, necrotrophic fungi 
kill the host cells, often by secreting toxins, to feed on the 
dead tissue, while hemibiotrophic pathogens often change 
their lifestyle during development from an early biotrophic 
to a later necrotrophic stage (Horbach et al. 2011).

In their natural environment, roses are confronted 
with many different pathogens. The biotrophic fungus 
Podosphaera pannosa, which causes powdery mildew, and 
the hemibiotrophic Diplocarpon rosae, which causes black 
spot, are the most common and damaging pathogens in 
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roses cultivated in the greenhouse and the field, respectively 
(Debener and Byrne 2014).

The life cycle of D. rosae begins on the surface of rose 
leaves with the germination of its conidia within 8–9 h 
after infection, and 3 h later, appressoria may already have 
formed. After an additional 3 h, subcuticular hyphae and the 
first haustoria may be developed (Aronescu 1934). In this 
biotrophic phase, all the fungal structures in the host cells 
are surrounded by the plasma membrane of the host. The 
resulting circular black spots that are typical infection symp-
toms are mostly surrounded by living host cells, so-called 
“green islands” (Gachomo et al. 2006). Few details about 
the infection process of P. pannosa in roses are available. 
Germ tubes may be observed 2–6 hpi (hours post inocula-
tion), rapidly developing into mycelia that grow on the leaf 
surface. After approximately 1 dpi, multilobed haustoria 
develop under the appressoria, which are formed in regu-
lar distances (Linde and Shishkoff 2003). Under favorable 
conditions, asexually produced spores are released after 
3–5 days, completing the life cycle on the living host tissue 
(Coyier 1983).

The recognition of a pathogen can either be mediated by 
pattern-recognition-receptors in the cell membrane, which 
recognize highly conserved pathogen- or microbe-associated 
molecular patterns (PAMP or MAMP) on the surface of a 
pathogen, e.g., fungal chitin or bacterial flagellin, or by R 
proteins that recognize the effectors secreted from the path-
ogen into the host cell. These two mechanisms are called 
PAMP-triggered immunity (PTI) and effector-triggered 
immunity (ETI), respectively, and the latter is often accom-
panied by a so-called “hypersensitive response” (Bent and 
Mackey 2007; Jones and Dangl 2006).

The recognition of a pathogen by the plant cells leads to 
drastic changes in the transcriptome and activates a diverse 
set of immune responses, including the synthesis of second-
ary metabolites, cell wall modifications and the expression 
of pathogenesis-related (PR) genes (Slusarenko et al. 2000). 
In addition to common immune responses in both, compat-
ible and incompatible interactions, the responses to fungal 
infections may involve specific reactions depending on the 
life style of the infecting fungus (González et al. 2013; Silvia 
Sebastiani et al. 2017).

Plant hormones play an important role as signaling mol-
ecules in plant defense. Salicylic acid (SA) is involved in the 
defense response to biotrophic and hemibiotrophic pathogens, 
while jasmonate (JA) and ethylene (ET) are the primary hor-
mones involved in the response to necrotrophic pathogens. 
Both pathways have often been described as antagonistic. In 
addition, crosstalk with other phytohormones can modulate 
the responses to pathogens/stress (Derksen et al. 2013). In the 
compatible interaction between Erysiphe necator and Vitis 
vinifera, significant alterations in the host transcriptome were 
induced, essentially genes involved in signaling and secondary 

metabolite biosynthetic pathways (Borges et al. 2013). The 
analysis of the compatible interaction between Malus × domes-
tica Borkh. and Alternaria alternata showed that genes associ-
ated with photosynthesis and oxidation–reduction were down-
regulated, while transcription factors (i.e., WRKY, MYB, 
NAC, and Hsf) and genes involved in cell wall modification, 
defense signaling, the synthesis of defense-related metabolites, 
including pathogenesis-related (PRs) genes and phenylpropa-
noid/cyanoamino acid/flavonoid biosynthesis, were activated 
(Zhu et al. 2017).

PR-proteins are pathogen or stress-related induced plant 
proteins, which are classified into 17 families based on their 
structural or functional similarities (van Loon et al. 2006). 
PR1 is one of the primary marker genes for the SA-mediated 
defense response, but its overall function is not yet clear. The 
PR2 family (endo-1,3-β-d-glucanase) and the PR5 family 
(thaumatin-like) are also associated with this pathway, while 
the other PR-protein families, such as PR4 (hevein-like pro-
tein), PR6 (proteinase inhibitor) or PR9 (peroxidase) are more 
closely associated with the JA-ET pathway (van Loon et al. 
2006; Vidhyasekaran 2015; Derksen et al. 2013).

Among the secondary metabolites involved in plant patho-
gen interactions, flavonoids are widely distributed with differ-
ent biological functions, such as protecting against harmful 
radiation and phytopathogens, binding phytotoxins and con-
trolling auxin transport. They are synthesized through the phe-
nylpropanoid pathway, which transforms phenylalanine into 
4-coumaroyl-CoA, which finally enters the flavonoid biosyn-
thesis pathway (Falcone Ferreyra et al. 2012; Winkel-Shirley 
2002). A transcriptome analysis of Fragaria vesca infected 
with either Colletotrichum fragariae or Phytophtora cactorum 
showed the induction of several genes of the flavonoid biosyn-
thetic pathway (Guidarelli et al. 2011; Toljamo et al. 2016).

In this study, we analyzed differences in the manipulation 
of the leaf transcriptome of roses after successful coloniza-
tion of the leaves with either the hemibiotrophic fungus D. 
rosae or the biotrophic fungus P. pannosa.

The goal of these analyses is to gain initial insights into 
the changes that the two pathogens inflict on the host tran-
scriptomes as the first step to understand host–pathogen 
interactions in the two systems. For this, we analyzed the 
transcriptomic responses against the two pathogens in the 
early stages of infection (0 hpi, 24 hpi and 72 hpi) using the 
massive analysis of cDNA ends (MACE) data from three 
independent inoculation experiments.

Materials and methods

Plant material

For the MACE analysis and the multiplication of the fungal 
isolates, the susceptible rose cultivar ‘Pariser Charme’ (PC) 
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was propagated in vitro as previously described (Davies 
1980; Debener et al. 1998; Linde and Debener 2003; Dohm 
et al. 2001), rooted, and transplanted into fertilized substrate 
(“Einheitserde T”, Einheitserdewerke Gebr. Patzer, Sinntal-
Altengronau, Germany) in 9-cm pots and cultivated under 
semicontrolled conditions (12 h light/12 h darkness). The 
plants used to validate the MACE analysis were cultivated in 
climate chambers under short-day conditions (8 h light/16 h 
darkness) at 22 °C.

Disease assays

The D. rosae isolate DortE4 was used for the black spot 
inoculations. The single conidial isolate was maintained 
on detached leaves of the susceptible cultivar PC as pre-
viously described (von Malek and Debener 1998). Young 
unfolded leaves were infected with a suspension of 500,000 
conidia/mL with a vaporizer and kept on moist tissue paper 
in translucent plastic boxes in an air-conditioned laboratory 
at 20 °C.

A multispore isolate of powdery mildew originating from 
the host genotype PC, which was grown in the greenhouses 
at Leibniz Universität Hannover (Germany), was used for 
inoculation. Very young, recently unfolded PC leaves were 
placed in an infection box covered with a 14 cm tall-100 µm 
nylon mesh. Infected leaves were rubbed over the mesh to 
cover the leaves with conidia. The conidia were allowed 
to settle for 30 min to ensure that they all reached the leaf 
surfaces. To estimate the density of the conidia, a micro-
scope slide was placed next to the leaves, and the conidia 
were counted under a microscope at 100-fold magnification 
(20 conidia/mm2, 25 conidia/mm2, 60 conidia/mm2 for the 
three biological replicates respectively, and the validation 
experiment: 16 conidia/mm2). Infected leaves were stored 
in translucent plastic boxes on moist tissue paper at 20 °C. 
Control leaves were used and stored in conditions identi-
cal to those of the samples inoculated. The treatments and 
infection time points for both pathogens are listed in Table 1. 
Three completely independent inoculation experiments for 
each time point were conducted for the MACE experiment, 
and independent sets of three additional experiments were 
conducted for the qPCR experiment. These experiments 
were treated as biological repeat experiments.

Microscopic analysis

The control leaves and leaves infected with either D. rosae 
or P. pannosa were sampled at 0, 24, and 72 hpi for the 
microscopic analysis. Leaf pieces of approximately 1 cm2 
were fixed, stained with Alexa Fluor 488-conjugated wheat 
germ agglutinin (Invitrogen, Carlsbad, USA) and examined 
as previously described (Menz et al. 2017).

MACE

Transcriptomic data was generated using the MACE 
technique (Kahl et al. 2012). A particular feature of this 
technique is that only one sequence (tag) per cDNA mol-
ecule is generated, so normalization to the length of the 
respective transcript/gene model is not necessary. The 
RNA for this analysis was extracted from the independ-
ent biological replicates using an RNeasy® Plant Mini 
Kit from Qiagen (Hilden, Germany) following the manu-
facturer’s instructions with an additional DNase digestion 
step using an Ambion VR DNA-free™ Kit from Life Tech-
nologies (Carlsbad, CA, USA) to remove the remaining 
genomic DNA. The cDNA synthesis and sequencing was 
performed by GenXPro (Frankfurt am Main, Germany). 
The sequencing data were already quality- and adapter-
trimmed by the provider. The raw reads of this study were 
placed in the NCBI Sequence Read Archive (SRA) under 
the accession numbers SRR6879138 to SSR6879164. 
Additional processing of the sequences was performed 
using CLC Genomic Workbench 9.0.1 (Qiagen, Hilden, 
Germany). The remaining pieces of the poly-A tail were 
removed by an additional adapter trimming step using a 
poly-A-adapter. Reads shorter than 35 bp were discarded. 
The trimmed sequences were mapped to the genomic 
sequence of Rosa chinensis var. ‘Old Blush’ (Hibrand 
Saint-Oyant et al. 2018) using the following parameters: 
mismatch cost = 2, insertion cost = 3, deletion cost = 3, 
length fraction = 0.9, similarity fraction = 0.9, strand spe-
cific = both, maximum number of hits = 10 and expression 
value = unique counts. The expression values were normal-
ized using the tags per million (TPM) normalization and 
were log2 transformed. Differential gene expression was 
analyzed using the EdgeR package (Robinson et al. 2010) 
with a false discovery rate (FDR) adjustment.

Only the genes detected in all three repeat experiments 
of at least one condition that had at least 1 TPM and a 
minimum mean fold change ± threefold, with an FDR-
adjusted p value ≤ 0.05, were considered to be differen-
tially expressed.

Table 1  Overview of the treatments and sampling time points

a  Hours post inoculation
b  Rose genotype ‘Pariser Charme’
c Podosphaera pannosa
d Diplocarpon rosae
e  Control

Treatment 0 hpia 24 hpi 72 hpi

P. pannosa PCb+PPc PC+PP PC +PP
D. rosae PC +DRd PC +DR PC +DR
Control PC−Coe PC−Co PC−Co
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Additional data analysis

In addition to the annotation presented by Hibrand Saint-
Oyant et al. (2018), Blast2GO 4.1.9 software (Conesa et al. 
2005) was used to classify sequences with GO terms and 
generate an automatic functional description derived from a 
BLASTp search (E-Value cut-off 1E-10) against a subset of 
the NR database that contained only plant sequences (Ash-
burner et al. 2000). These GO terms were used for an enrich-
ment analysis of the differentially expressed genes (DEGs) 
using a Fisher’s exact test implemented in Blast2GO. The 
figure was designed in Microsoft Excel 2013.

To visualize of the regulated genes in heatmaps, R 3.4.0 
(R Core Team) and the package “pheatmap” (Version 1.0.10; 
Kolde 2018) were used. The clustering default settings were 
used.

Based on the normalized expression values, the Spear-
man rank correlations between the samples and the biologi-
cal repeat experiments were calculated in R 3.4.0 (R Core 
Team).

Validation of the MACE analysis using 
high‑throughput qRT‑PCR

To validate the MACE analysis, an independent set of three 
inoculations representing independent biological replicates 
was performed. From 20 to 30 mg of infected leaf tissue 
(0 hpi, 24 hpi and 72 hpi), the total RNA was isolated using 
a Quick-RNA™ MiniPrep Plus kit (Zymo Research, Irvine, 
USA) according to the manufacturer’s instructions with 
some minor modifications. The leaf material was frozen in 
liquid nitrogen and disrupted using a bead mill. Dithiothrei-
tol (DTT) was added to the lysis buffer to a final concentra-
tion of 50 mM.

To synthesize the cDNA, 500 ng of total RNA was pro-
cessed using a High Capacity cDNA Reverse Transcription 
Kit from Applied Biosystems VR (Carlsbad, USA) accord-
ing to the manufacturer’s instructions. A set of 28 genes was 
chosen among the differentially regulated genes identified by 
the MACE analysis and subjected to BioMark high-through-
put qPCR (Fluidigm Corperation, San Francisco, USA). 
Primers for the genes were constructed using Primer3plus 
(Rozen and Skaletsky 2000) and are listed in Supplementary 
Table 1. The primer efficiency was tested with a dilution 
series (1:4, 1:16, 1:64, 1:256) using a StepOnePlus™ sys-
tem from Applied Biosystems (Austin, USA) as described 
by Menz et al. (2017). The expression of the differentially 
regulated genes and the three reference genes TIP, SAND and 
UBC (Klie and Debener 2011) were analyzed using a Flui-
digm Dynamic Array IFC (96.96) (Fluidigm Corperation, 
San Francisco, USA) following the manufacturer’s instruc-
tions. The specific target amplifications (STA) were diluted 
fivefold, and the qPCR conditions were as follows: 60 s at 

95 °C, 30 cycles of 95 °C for 5 s and 20 s at 64 °C, and a 
final melting curve analysis. The data were processed using 
Fluidigm Real-Time PCR Analysis Software (4.3.1, Fluid-
igm Corporation, San Francisco, USA). A quality threshold 
of 0.65, a linear baseline correction and an auto global cycle 
threshold (Ct) were used. Ct values were used to calculate 
the expression ratios with using the REST 2009 software 
(V2.0.13, Qiagen, Hilden, Germany). The expression ratios 
were log2 transformed, and the coefficient of correlation 
(Pearson) of the significantly up- or downregulated genes 
in both the MACE and BioMark analysis were calculated in 
R 3.4.0 (R Core Team).

Results

Fungal development in the early stages 
of compatible interactions

To analyze the fungal development in the early stages of the 
rose interaction with the hemibiotrophic fungus D. rosae 
and the obligate biotrophic fungus P. pannosa, a micro-
scopic analysis was performed. The development of both 
pathogens was similar at the beginning. At 24 hpi, the spores 
germinated, and the first haustoria formed (Fig. 1B, F). At 
72 hpi, D. rosae developed long-range hyphae, and numer-
ous haustoria were formed in the epidermis and the under-
lying mesophyll layer (Fig. 1C, D). However, after 72 hpi, 
the development progressed more in P. pannosa than in D. 
rosae. More fungal hyphae spread across wide parts of the 
leaf, and a high number of haustoria formed in the epidermis 
of the plant (Fig. 1G, H).

MACE sequencing results and validation

MACE sequencing was performed for the inoculated and 
control samples for all the time points (0, 24, 72 hpi) in 
the three biological repeats, each represented by an inde-
pendent inoculation experiment. The sequencing resulted 
in 6–30 million high-quality reads per library with an aver-
age output of 12.7 million reads per library (Supplementary 
Table 2). Between 79.2 and 94.2% of these reads could be 
mapped to the genome sequence of the ‘Old Blush’ rose 
variety (Hibrand Saint-Oyant et al. 2018). The majority of 
the sequenced reads (76.3–92.9%) uniquely mapped to the 
genome (Supplementary Table 1).

To validate the results of the MACE analysis, three addi-
tional inoculation experiments were analyzed using a high-
throughput RT-qPCR system. For this purpose, a set of 28 
significantly up- and downregulated genes was chosen based 
on the MACE results. The selection primarily focused on 
genes that showed similar differences in expression between 
the infected and noninfected samples in all three biological 
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replicates. A close correlation (r = 0.82) between the sig-
nificant log2-fold changes in the MACE and the RT-qPCR 
results was detected, and except for the three data points that 
were downregulated in the qPCR results and upregulated in 
the MACE results (left upper quadrant), the same expression 
trends were observed (Fig. 2). The selected genes, primer 
sequences, PCR amplification efficiencies and expression 
data of the MACE and RT-qPCR analysis are listed in Sup-
plementary Table 2.

Common responses of roses to both pathogens

To provide an overview of the functions and processes 
linked to the differentially expressed genes in the transcrip-
tome, we performed a GO enrichment analysis (Fig. 3 and 
Supplementary Table 3) using Blast2GO with a particular 
interest in visualizing the pathogen-related reactions of the 
rose. In addition, the expression of single and typical marker 
genes and gene families were analyzed (Fig. 4).

The response of the susceptible rose PC to infection with 
P. pannosa and D. rosae leads to major changes in the leaf 
transcriptome (Supplementary Tables 4 and 5). The most 
strongly differentially regulated genes (Supplementary 
Table 6) comprised some defense-related genes, such as the 
major allergen Pru ar1, belonging to the PR10 family. In 
addition, some genes involved in signaling pathways, such 
as kinases, transcription factors and a calmodulin, as well 
as genes encoding cytochrome P450 proteins, were among 
the most highly regulated genes.

The GO terms enriched in the set of upregulated genes 
at 24 and 72 hpi include particular terms such as “chitinase 
activity”, “chitin catabolic process”, “defense response” and 
“response to biotic stimulus”(Fig. 3). Consistent with the 
drastic changes in the transcriptome, the GO term “transcrip-
tion factor activity, sequence-specific DNA binding” was 
also overrepresented in the upregulated sequences.

In addition to these upregulated terms, other GO terms 
were enriched in the sets of significantly downregulated 
genes, such as terms related to auxin signaling, such as 
“auxin efflux”, “auxin-activated signaling pathway”, “cel-
lular response to auxin stimulus” and “response to auxin”, 
which were enriched at 24 hpi for D. rosae and at 72 hpi for 
P. pannosa.

In addition, GO terms representing photosynthesis-
related (“chlorophyll binding”, “photosynthesis, light har-
vesting”) and cell wall organization-related mechanisms 
(“cellular polysaccharide catabolic process”, “pectin meta-
bolic process”) were overrepresented in the gene sets for 
both pathogens. In addition, walls are thin 1 (WAT1) gene 
with a general low expression level, which is also found in 
the control samples, was downregulated under both types 
of infections.

Pathogen‑related (PR) genes

Different PR genes were strongly upregulated in rose leaves 
during the interactions with both pathogens (Fig. 4). In par-
ticular, many PR10 genes and major allergens (Pru av1 and 
Pru ar1) showed very high levels of upregulation. Of the 39 

Fig. 1  Microscopic analysis of the two interaction systems. The inter-
action between the susceptible genotype PC and D. rosae (black spot, 
A–D) and P. pannosa (powdery mildew, E–H) at different time points 

[0 hpi (A, E), 24 hpi (B, F) and 72 hpi (C, D, G, H)]. Co conidia, 
Gt germ tube, Ha haustoria, Hy hyphae. Samples were stained with 
Alexa Fluor 488-conjugated wheat germ agglutinin (WGA)
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Fig. 2  Scatter plot for 28 genes analyzed with both MACE and RT-
qPCR at three time points. Only the expression ratios of the signifi-
cantly up- or downregulated genes from the MACE and RT-qPCR 

data are shown, resulting in 58 data points. The Pearson’s correlation 
coefficient is also shown

Fig. 3  Gene ontology enrichment analysis in significant down- and 
upregulated gene sets. This figure shows the number of genes associ-
ated with GO terms, which exhibited statistically significant enrich-

ments in at least one of the time points or infection treatments. Inter-
esting Go terms in the category of “biological process”, “cellular 
component” and “molecular function” are shown
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major allergens found in the genome of ‘Old Blush’, 29 were 
highly upregulated in response to D. rosae, and the major-
ity of these were already differentially expressed at 24 hpi. 
Of these, 15 were also significantly upregulated in response 
to P. pannosa, and 8 were already upregulated at 24 hpi. 
In addition to PR10, the upregulation of the chitinases, 
which belong to the PR3 and PR4 classes, was observed in 
both pathosystems. Eleven chitinases were upregulated in 
response to D. rosae, and some were more highly upregu-
lated at 24 hpi than at 72 hpi. Six were also upregulated 
in response to P. pannosa, and four of these were already 
expressed at 24 hpi. In addition, six genes only annotated 
as “pathogenesis-related family protein” were induced in 
response to D. rosae and five in response to P. pannosa.

Non-race specific disease resistance protein 1 (NDR1), 
which acts as a downstream regulator of resistance (R) 
protein-derived signalling, was interestingly significantly 

downregulated at 24 hpi in the interaction with D. rosae 
and at 72 hpi for P. pannosa.

Phytohormones

Supporting the GO enrichment related to auxin signaling 
within the downregulated gene sets, a transcriptional down-
regulation of single auxin-induced/responsive genes (AUX/
IAA/ARG) could be observed. In detail, 14 genes were 
expressed at a lower level at 24 hpi and four at 72 hpi in 
the leaves inoculated with D. rosae and nine at 72 hpi for P. 
pannosa compared to the control leaves.

In both pathosystems, ethylene-related genes also 
showed significant regulation; however, they exhibit both 
up- and down-regulations (Fig. 4). One gene encoding the 
ethylene-responsive transcription factor (TF) ERF109 was 
downregulated, while three ABR1-likes were upregulated 

Fig. 4  Heatmaps showing the expression of genes associated with 
different keywords or gene families. Fold changes, compared to the 
control leaves, of down- (blue) and upregulation (red) are shown on 
a log2 scale for all the time points and infection treatments. At least 

in one data point, the expression is significantly different according to 
our criteria. “DR” stands for inoculations with D. rosae and “PP” for 
P. pannosa at “0”, “24” and “72” hpi. The clustering default settings 
were used



306 Plant Molecular Biology (2019) 99:299–316

1 3

for interaction with D. rosae at 0 hpi. At 24 hpi six genes 
encoding for 1-aminocyclopropane-1-carboxylate oxidase 
1 homologs (ACO1), and each one ACO4 and ACO5 gene 
were highly upregulated. In addition, one ERF2, three 
ABR1s and two ERF113 genes were induced. In con-
trast, eight ethylene-responsive TF genes (ERFs, ANT and 
SHINE2) and one ACO gene were expressed at a lower level 
than in the control plants. A similar scenario emerged after 
72 h.

Rose leaves inoculated with P. pannosa also showed 
transcriptional changes in ethylene-related genes, too. Five 
ethylene responsive transcription factors were already down-
regulated at 0 hpi. At 72 hpi, five ethylene-responsive TFs 
were downregulated, which were different from the others 
downregulated at 0 hpi. In addition, similarly to an infection 
with D. rosae, six ethylene responsive TFs were upregulated, 
including ERF1B, ERF113 and ABR1. At 24 hpi, no ethyl-
ene-related genes were significantly differentially expressed.

Transcription factors

Inoculation with both P. pannosa and D. rosae led to a 
regulation of several WRKY transcription factors (Fig. 4); 
WRKY31, WRKY47, WRKY48, WRKY61, WRKY 71 and 
WRKY75 were upregulated. During infection with P. pan-
nosa, upregulation could only be observed after 72 h, but 
in infections with D. rosae, the majority of the genes were 
upregulated at both 24 and 72 hpi.

The basic helix-loop-helix (bHLH) transcription factor 
MYC2 is downregulated in both interactions at 72 hpi and 
with D. rosae at 24 hpi. The downregulation is tenfold dur-
ing D. rosae and almost fourfold during P. pannosa infection 
after 72 h. In addition, one MYC3 gene is also downregu-
lated at 72 hpi. In contrast MYB108 is upregulated at the 
same time points.

The heat shock factors (Hsf) 4 (also known as HsfB1) and 
HsfB3 were found to be upregulated in response to D. rosae 
at 24 hpi and 72 hpi and in response to P. pannosa at 72 hpi.

Two C2H2-type zinc finger family proteins were down-
regulated in response to both pathogens. In addition, only 

two are downregulated in response to P. pannosa, and only 
one was downregulated in response to D. rosae (Fig. 4). In 
addition, two different zinc finger (CCCH type) helicase 
family proteins were downregulated in response to either 
P. pannosa or D. rosae.

Sugar transporters

A number of genes related to the transport of sugars were 
differentially expressed in roses during pathogen attack. 
Leaves inoculated with both pathogens upregulated a num-
ber of sugar transporters, such as ERD6. During the inter-
action with D. rosae two hexose carrier 6 (HEX6) genes, a 
homolog of sugar transporter 13 and one sugar phosphate/
phosphate translocator were also upregulated, while other 
homologues of the same genes are downregulated in both 
leading to a contradictory scenario.

Response to P. pannosa compared to the response 
to D. rosae

Based on the comparison of the responses of roses to 
both pathogens (Fig. 5), the majority of the significantly 
regulated genes were specific to the reaction to one of 
the pathogens. Only a smaller number of the genes was 
regulated in response to both pathogens. One of the major 
differences between the two responses is the time point 
when the genes were regulated. During the interaction 
with D. rosae, many of the responses occurred at 24 hpi. 
In contrast, almost no change in the gene expression was 
visible in the interaction with P. pannosa at 24 hpi (Fig. 5). 
In the comparison of the later responses at 72 hpi, it is 
noticeable that only approximately 25% of the significantly 
upregulated genes and 21.6% of the significantly downreg-
ulated genes were identical between the different pathogen 
interaction systems. The remaining genes were exclusively 
regulated in response to only one pathogen.

Fig. 5  Venn diagram of the 
quantitative comparison of the 
significantly regulated genes 
in response to inoculations 
with D. rosae and P. pannosa. 
Downregulated genes are shown 
in “A” and upregulated genes in 
“B” each for 24 and 72 hpi
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Specific response of rose to P. pannosa infection

In total, 1450 genes (650 up- and 800 downregulated) were 
differentially expressed (Fig. 6). The majority of these genes, 
representing approximately 80% of the up- and downregu-
lated genes, were differentially expressed at 72 hpi. The 
smallest number of differentially expressed genes was 
detected at 24 hpi. The majority of the up- or downregu-
lated genes at 24 hpi were also regulated at 72 hpi. Directly 
after the inoculation (0 hpi), 131 genes were upregulated 
and 142 genes were downregulated in the inoculated leaves 
compared to the control leaves. However, only a few of those 
changes were also observed at the other time points. In addi-
tion, several GO terms were enriched in the gene sets at the 
beginning of the experiment (0 hpi), in contrast to the D. 
rosae infections.

In addition to the mentioned common GO terms related 
to photosynthesis, the terms “photosynthetic membrane”, 
“photosynthesis”, “photosystem II” and “response to light 
stimulus” were enriched in the set of downregulated genes.

The majority of the significantly downregulated genes 
associated with photosynthesis encode chlorophyll a/b bind-
ing proteins (cab), structural components of photosystem 
I (subunit l, K, N) and a PsbP gene of photosystem II. In 
addition, four genes of different steps in chlorophyll bio-
synthesis were downregulated, including glutamyl-tRNA 
reductase (HEMA1), a subunit of magnesium-chelatase 
(CHIH), geranylgeranyl diphosphate reductase (CHLP) and 
a chlorophyllase (CLH).

Also, several genes related to cell-wall organization 
were specifically downregulated in response to P. pannosa, 
including the genes encoding six expansins, three trichome 
birefringence-like proteins (TBL), two fasciclin-like arabi-
nogalactan (FLA) proteins and two COBRA-like genes and 
one additional walls are thin 1-like (WAT1) gene (Fig. 4). 
One cellulose synthase 4 gene, three genes encoding pec-
tin lyases, two xyloglucan endotransglucosylase genes 

and some genes of the lignin biosynthesis pathway were 
downregulated.

Furthermore, the heat shock protein (Hsp) 90.1 is specifi-
cally upregulated in response to P. pannosa. In contrast to 
the infection with D. rosae, no other PR genes or other genes 
related to a defense response specific to the interaction of 
roses to P. pannosa could be identified.

Specific response of rose to D. rosae infection

Almost 2000 genes were changed in their expression spe-
cifically in response to D. rosae, and the majority (1158) 
of these were upregulated with only 828 that were down-
regulated (Fig. 7). Less than 100 genes were considered 
differentially expressed directly after inoculation at 0 hpi. 
Approximately 80% of both the up- or downregulated genes 
were observed at 24 hpi. The majority of the upregulated 
genes and many of the downregulated genes show a similar 
regulation pattern at 72 hpi.

The majority of the overrepresented GO terms were the 
same for both 24 and 72 hpi (Fig. 3, Supp. 3). In the reaction 
to D. rosae, GO terms related to the defense response (e.g., 
“chitinase activity”, “defense response”, “response to biotic 
stimulus”, “response to fungus”) were highly enriched in 
the set of upregulated genes. In addition, GO terms such as 
“calcium ion binding”, “kinase activity” or “reactive oxygen 
species metabolic process”, which are involved in signaling 
processes, were also significantly overrepresented, as well as 
the GO terms representing secondary metabolism, especially 
those related to the phenylpropanoid and flavonoid pathways 
(“caffeate O-methyltransferase activity”, “flavonoid meta-
bolic process”, “phenylpropanoid metabolic process”, and 
“secondary metabolite biosynthetic process”).

Remarkably, genes responding to the salicylic acid (SA)-
mediated signaling pathway were only upregulated in the 
samples inoculated with D. rosae, including typical marker 
genes, such as phytoalexin deficient 4 (PAD4) and PR1 and 

Fig. 6  Venn diagram of signifi-
cantly regulated genes after P. 
pannosa inoculation. Genes that 
were significantly up- (A) and 
downregulated (B) compared to 
the control samples at different 
time points (0, 24, 72 hpi) are 
shown
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PR5s (Derksen et al. 2013). In particular, three PR5 genes 
(thaumatin) were highly upregulated at 24 and 72 hpi, and 
one PR1 gene was among the most highly upregulated gene 
(Fig. 4). The upregulation of the PR1 gene was also observed 
in the qPCR validation. In addition, six senescence-associ-
ated carboxylesterase 101 (SAGs 101) genes were upregu-
lated after 72 hpi.

The phenylpropanoid and the flavonoid pathways seemed 
to also be specifically affected. Figure 8 displays the primary 
steps of the flavonoid synthesis pathway and the significantly 
regulated genes. It can be seen that genes in almost all the 
steps were upregulated. In particular, the genes encoding 
for chalcone isomerases (CHI), dihydroflavonol 4-reductase 
(DFR) and flavonol synthase (FLS) were strongly upregu-
lated at both time points, indicating that the synthesis of 
flavonols was induced. In addition, the pathway leading to 
the synthesis of proanthocyanidins (DFR, LDOX, ANR) was 
upregulated. The only downregulated genes in this inter-
action were two genes encoding UDPG-flavonoid glucosyl 
transferase (UFGT). This is a key enzyme in the synthesis of 
anthocyanins. In contrast to the reaction of PC to D. rosae, 
the reaction of PC to P. pannosa displayed a different gene 
regulation pattern. There were significantly upregulated 
genes, such as one of the flavanone 3-hydroxylase (F3H) 
genes, one FLS gene and one leucoanthocyanidin dioxyge-
nase (LDOX) gene. In particular, enzymes acting in the first 
steps of the flavonoid synthesis pathway (PAL, 4CL, CHS 
and CHI) seemed to remain unaffected or were even down-
regulated. In addition, the anthocyanidin reductase (ANR) 
gene leading to the synthesis of proanthocyanidins was sig-
nificantly downregulated.

Many genes encoding key enzymes in the phenylpro-
panoid pathway were upregulated in most of the cases at 
both time points, 24 hpi and 72 hpi, in response to D. 
rosae, with p-coumarate 3-hydroxylase (C3H), caffeic acid 
O-methyltransferase (COMT), caffeoyl-CoA O-methyl-
transferase (CCoAOMT) and cinnamoyl-CoA reductase 

Fig. 7  Venn diagram of signifi-
cantly regulated genes after D. 
rosae inoculation. Genes, that 
were significantly up- (A) and 
downregulated (B) compared to 
the control samples at different 
time points (0, 24, 72 hpi) are 
shown

Fig. 8  Overview of the regulation of the flavonoid biosynthesis path-
way. The primary steps in the flavonoid biosynthesis pathway and the 
regulation of genes in the pathway in response to the two pathogens 
are displayed. Each quadrat represents a gene. Significant changes 
in gene expression are indicated by thicker lines. Enzyme names are 
abbreviated as follows: PAL phenylalanine ammonia-lyase, C4H cin-
namate-4-hydroxylase, 4CL 4-coumaroyl-CoA-ligase, CHS chalcone 
synthase, CHI chalcone isomerase, F3H flavanone 3-hydroxylase, 
DFR dihydroflavonol 4-reductase, LDOX leucoanthocyanidin dioxy-
genase, UFGT UDPG-flavonoid glucosyl transferase, FLS flavonol 
synthase, LAR leucoanthocyanidin reductase, and ANR anthocyanidin 
reductase
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(CCR) showing the strongest upregulation (Fig. 9). Of par-
ticular interest are CCoAOMT and COMT, because they 
are involved in the synthesis of G- and S-lignin, which 
are the primary components of lignin in dicots (Vanholme 
et al. 2010). In addition to the biosynthic genes, several 
peroxidases and laccases, which are involved in the cross-
linking of lignin monomers, were upregulated. This path-
way seemed to be less affected in response to P. pannosa 
than in response to D. rosae. One CCR gene and a COMT 
gene showed higher levels of upregulation, but some key 
factors were also significantly downregulated. Notably, 
two genes encoding cinnamyl alcohol dehydrogenase 
(CAD) were significantly downregulated. This enzyme 
catalyzes one of the later steps in the synthesis of all three 
types of lignin monomers.

Among the exclusively regulated transcription factors 
WRKY 27, 40, 48 50 and 51 that are all known to increase 
resistance in other pathosystems were upregulated at 72 hpi, 
while WRKY 53 was strongly downregulated at both 24 hpi 
(14.5-fold) and at 72 hpi (10.5-fold). WRKY 33 was also 
downregulated at both time points (9.3 and 5.6-fold), while 
it was only regulated 2.2-fold in the interaction with P. pan-
nosa at 72 hpi.

In addition, six heat shock proteins (17.6 kDa class II 
heat shock protein, heat shock cognate protein 70-1, DNAJ 
heat shock family protein, heat shock protein 101 and two 
HSP20-like chaperones superfamily proteins) were only 
downregulated in response to D. rosae (Fig. 4).

Discussion

Fungal phytopathogens successfully colonize their hosts 
by manipulating the host defense mechanisms in different 
ways. To characterize the specific infection strategies based 
on the resulting transcriptomic changes in the early stages of 
infection with the hemibiotrophic D. rosae and the obligate 
biotrophic P. pannosa, we used next-generation sequenc-
ing based on the MACE (massive analysis of cDNA ends) 
approach.

A notable advantage of MACE compared to conven-
tional RNA-Seq technology is that only one read is pro-
duced for each cDNA molecule, which allows a precise 
quantification, especially transcripts expressed at low lev-
els. The sequencing (6–30 million reads per library) and 
mapping (76.3–92.9%) results (Supplementary Table 1) 

Fig. 9  Overview of the regulation of the phenylpropanoid biosynthe-
sis pathway. The primary steps in the phenylpropanoid biosynthesis 
pathway and the regulation of the genes in the pathway in response to 
the two pathogens are displayed. Significant changes in gene expres-
sion are marked with thicker lines. Enzyme names are abbreviated as 
follows: PAL phenylalanine ammonia-lyase, C4H cinnamate-4-hy-

droxylase, 4CL 4-coumaroyl-CoA-ligase, HCT hydroxycinnamoyl-
CoA shikimate/quinate hydroxycinnamoyl transferase, C3H p-cou-
marate 3-hydroxylase, CCoAOMT caffeoyl-CoA O-methyltransferase, 
CCR  cinnamoyl-CoA reductase, F5H ferulate 5-hydroxylase, COMT 
caffeic acid O-methyltransferase, and CAD cinnamyl alcohol dehy-
drogenase
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are comparable to those of other studies that applied this 
technique, e.g., Hradilová et al. (2017), applied the MACE 
technique to pea with an output of 8 to 15 million reads per 
library, and 12.3– 21.7 million reads per library were gener-
ated from the RNA of apple roots (Weiß et al. 2017).

The majority of significantly differentially expressed 
genes indicated by the MACE technique could be validated 
using RT-qPCR. Factoring that all three biological repeat 
experiments in the MACE analysis were derived from inde-
pendent inoculation experiments and that the validation 
included three additional independent inoculation experi-
ments, which introduced more biological and technical vari-
ability then conventional repeats, the correlation coefficient 
of 0.82 is surprisingly high. However, this might be due to 
the stringent conditions we applied to identify the differen-
tially expressed genes. However, the MACE data might still 
indicate effects, which have been caused by outliers in one 
biological repeat. Thus, for a meaningful interpretation of 
the data, all the repeats have to be considered separately, not 
just the mean fold changes.

The selected infection method using detached leaves 
offers particularly high standardization and control options. 
Furthermore, in past experiments the detached leaf assay 
was always highly correlated to experiments conducted on 
potted resistant and susceptible plants. However, we cannot 
exclude effects of the experimental procedure on the overall 
gene expression levels in our analyses in both controls and 
inoculated samples.

Common response to both pathogens

The transcriptomic changes of the susceptible rose variety 
PC in response to both D. rosae and P. pannosa indicate 
a general pathogen response, characterized by the upregu-
lation of PR10 genes, major allergens (Pru av1, Pru ar1, 
and Mal d 1) that belong to this class of PR-genes (Liu and 
Ekramoddoullah 2006) and chitinases. In addition, the GO 
terms enriched in the set of upregulated genes at 24 and 
72 hpi indicating that a defense response to the pathogens 
was in progress.

The upregulation of the PR genes is a strong indica-
tor of pathogen recognition (Bowles 1990). In particular, 
PR10 genes seem to play a central role in the response of 
the Rosaceae. Studies of the Rosaceae model plant Fra-
garia infected by pathogens with different lifestyles, such 
as the necrotrophic fungus Botrytis cinerea (González et al. 
2013), the obligate biotrophic powdery mildew fungus 
Podosphaera aphanis (Jambagi and Dunwell 2015) and the 
hemibiotrophic oomycete Phytophthora cactorum (Toljamo 
et al. 2016), showed a strong upregulation of PR10 genes 
or major allergens. Studies on apple (Malus) infected with 
Venturia inaequalis (apple scab) (Poupard et al. 2003; Cova 
et al. 2017) and treated with fungal elicitors (Pühringer et al. 

2000) also showed an upregulation of the PR10 genes. The 
biological functions of the PR10 gene family are not com-
pletely known, but, among other activities, antifungal activ-
ity has been described (Flores et al. 2002). The role of chi-
tinases in the defense response of plants has been analyzed 
extensively in different systems. They block hyphal growth, 
trigger other defense mechanisms through the release of 
elicitors and play a role in the so-called “hypersensitive 
response” (Grover 2012).

Consistent with the upregulation of the PR genes, the 
transcriptional activation of other defense related genes was 
observed as well. Heat shock factor (Hsf) 4 (also known 
as HsfB1) and HsfB3 were observed to be upregulated in 
response to both pathogens. Another example is the upregu-
lation of MYB108, a transcription factor whose expression is 
induced through Bortrytis infection (Mengiste et al. 2003).

These quick and conserved responses linked to both 
pathosystems might indicate the involvement of a PTI reac-
tion elicited by chitin or the penetration of the cuticle. Since 
we considered compatible interactions in this study, it can 
be concluded that the two fungi were indeed detected, but 
reactions initiated were not sufficient for resistance. For 
resistance, both the right timing and the level of defense are 
of paramount importance. A susceptible interaction may be 
caused by an inadequate response of the plant or even by 
direct manipulation of the defense mechanisms by the patho-
gen. In the next section, we discuss the present regulations 
against the background of a successful colonization and seek 
to highlight origins for the increase in susceptibility.

For example, MYC2 and MYC3 are key factors involved 
in defense reactions linked to the jasmonic acid pathway 
(Kazan and Manners 2013), and the triple mutant myc2 
myc3 myc4 cannot perform several JA-mediated defense 
responses against bacteria and insects (Fernández-Calvo 
et al. 2011). Their observed downregulation at 72 hpi is con-
sistent with an unregulated JA-mediated pathogen response. 
In addition, MYC2 seems to play a role during flavonoid 
biosynthesis and the JA pathway in the more closely related 
Malus × domestica (An et al. 2016).

Zinc finger proteins comprise a large and abundant fam-
ily of proteins that function in many aspects of plant growth 
and development as well as in defense response (Yu et al. 
2016; Ciftci-Yilmaz and Mittler 2008). The downregulation 
of the C2H2-type zinc finger family proteins and zinc finger 
(CCCH type) helicase family protein in response to both 
pathogens is consistent with the analyzed susceptible inter-
action. In addition, they provide starting points for factors 
that support a successful pathogen attack.

Plant hormones are an important part of the signaling 
cascade in response to biotic stress (e.g. Yang et al. 2015). 
A downregulated or disturbed auxin pathway may enhance 
susceptibility, as in the case for Arabidopsis mutants and 
their defense response to necrotrophic fungi (Llorente et al. 
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2008). Bouzroud et al. (2018) describe auxin responsive fac-
tors (ARFs) as part of biotic and abiotic stress signaling in 
Solanum. The role of ethylene as a defense regulator has 
been well established, primarily due to its function as a sign-
aling molecule in the defense against necrotrophic pathogens 
in combination with jasmonic acid. Although there are major 
contradictions in the ethylene-related expression patterns, 
which could indicate a disturbed signal transmission, our 
observation of the upregulated ethylene responsive ABR1 
genes indicates a negative impact on the abscisic acid (ABA) 
signaling pathway which might also contribute to suscepti-
bility (Pandey et al. 2005).

NDR1, which interacts with RPM1 Interacting Protein4 
(RIN4) to control the activation of disease resistance sign-
aling by the CC-NB-LRR class of resistance proteins, was 
downregulated in both pathosystems. It was shown that 
NDR1 in combination with RIN4 are needed to activate a 
number of disease resistance pathways against bacterial and 
fungal pathogens in Arabidopsis (Century et al. 1995; Day 
et al. 2006). Two NDR1-like sequences identified in soybean 
(GmNDR1a, b) were also shown to be required for resistance 
to Pseudomonas syringae (Selote et al. 2013).

The network of WRKY transcription factors is involved 
in many stress responses, and some are key factors in the 
defense response (Phukan et al. 2016). The downregulated 
WRKY33, although only weakly downregulated in the 
interaction with P. pannosa, provides further evidence of 
a repression of the defense responses. This was reported 
several times, including such pathogens as Botrytis and 
Alternaria as well as Pseudomonas syringae in Arabidopsis 
and Fusarium in tomato (Birkenbihl and Somssich 2011; 
Buscaill and Rivas 2014; Garner et al. 2016; Rushton et al. 
2010; Aamir et al. 2018). WRKY75 is a particularly inter-
esting transcription factor, because at 72 hpi it was exclu-
sively expressed in the inoculated samples. It is notable that 
this transcription factor was initially described only in the 
context of phosphate stress (Devaiah et al. 2007). However, 
descriptions connected with defense reaction could also be 
found in recent years (Encinas-Villarejo et al. 2009; Jiang 
et al. 2014).

Changes in the transcriptome specific 
to the interaction with P. pannosa

In contrast to the D. rosae infection the upregulation of 
PR10 and chitinase genes, and thus the reaction to P. pan-
nosa occurred only at 72 hpi instead of 24 hpi. In addition, 
the expression levels were often lower and no specific group 
of genes related to common defense functions was found to 
be upregulated exclusively in the reaction to P. pannosa. One 
of the reasons for the low number of significantly regulated 
genes at 24 hpi and the decreased expression levels could be 
that the inoculation density was lower for P. pannosa than 

for D. rosae. In addition, the infection zone was restricted 
to the epidermis with fewer penetration sites. Either fewer 
transcriptional changes were initiated as response or genes 
with low expression remained below our stringent criteria to 
select the DEGs. In addition to differences in the upregula-
tion of the PR genes a gene for a heat shock protein (Hsp) 
90.1 is upregulated specifically in response to P. pannosa. In 
wheat, Hsp90 genes were found to be essential for resistance 
to the stripe rust fungus (Wang et al. 2011, 2015).

A specific reaction to P. pannosa infection is that the 
genes involved in the light reaction of photosynthesis 
were downregulated more strongly than those in response 
to D. rosae, which is surprising, considering that P. pan-
nosa only infects epidermal cells, which are not photo-
synthetically active, while D. rosae infects also infects the 
cell layers below the epidermis. However, the downregula-
tion of the photosynthic genes is often observed in plant-
pathogen interactions (e.g., Cremer et al. 2013; Milli et al. 
2012; Balan et al. 2018). This reaction may be explained 
by a pathogen-induced source-sink transition of infected 
leaf tissues (Berger et al. 2007). In addition to their role to 
nourish pathogens, sugar transporters and sugar signaling 
have a large impact on the defense response of plants as 
described by Bezrutczyk et al. (2018). Interestingly, Morku-
nas and Ratajczak (2014) propose an increased resistance 
due to the high sugar levels in different pathosystems. For 
rice, it is well described that defective OsSWEET13 or 14 
genes, bidirectional sugar transporters, lead to the resist-
ance of rice against Xanthomonas oryzae pv. oryzae (e.g., 
Zhou et al. 2015; Blanvillain-Baufumé et al. 2017). In rose 
leaves infected with P. pannosa sugar transporters were 
upregulated, a first indication of the manipulation of the 
host metabolism by the fungus. However, further studies 
are needed to determine the influence of P. pannosa on pho-
tosynthesis and sugar metabolism.

Another process strongly regulated in response to P. 
pannosa and contributing to susceptibility was the cell wall 
modification process. Different factors, such as expansins, 
TBLs or FLAs, were downregulated in response to the path-
ogen. They are known to be involved in modification pro-
cesses such as cell wall loosening, plant cell expansion and 
secondary cell wall formation (Cosgrove 2000; Schindelman 
et al. 2001; Johnson et al. 2003; Van Sandt et al. 2007; Bis-
choff et al. 2010). The WAT1 genes might be of particular 
interest. Two WAT1 gene homologs were expressed in our 
samples, and one was downregulated with a generally low 
expression level also in the control leaves, while the other, 
which had a much higher expression level, was exclusively 
downregulated in response to P. pannosa at 72 hpi. WAT1 
was identified as an essential factor for secondary cell wall 
formation by loss-of-function mutations in Arabidopsis 
(Ranocha et al. 2010). In addition, wat1 mutants showed a 
dwarf phenotype and downregulation of almost all the genes 
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in the lignin biosynthetic pathway. The downregulation of 
the highly expressed WAT1 gene exclusively observed in 
response to P. pannosa might be an important factor leading 
to the observed differences in cell wall formation and the 
lignin pathway. Since it is not regulated in the interaction 
with D. rosae it constitutes one of the differences in the sup-
pression of the host response that contrasts with the infection 
strategy of the two pathogens. Interestingly, wat1 mutants 
also showed increased tissue-specific resistance to vascular 
pathogens (Denancé et al. 2013).

Many obligate biotrophs and hemibiotrophs induce host 
responses via the SA pathway in which one of the key fea-
tures is the transcriptional activation of the PR1 genes. We 
observed the downregulation of a PR1 gene after P. pannosa 
infection at both time points (Supplementary Table 4) and 
together with a lack of regulation of other the SA related 
genes, such as EDS1 and PAD4 homologs, this points to a 
suppression of part of the SA-based defense in the P. pan-
nosa-rose pathosystem (van Loon et al. 2006; Derksen et al. 
2013).

Surprisingly, we observed a large number of DEGs at the 
starting point at 0 hpi. This might be a temporary effect due 
to our inoculation method. After 24 h, the number of DEGs 
dropped to a similar level at the start point of the D. rosae 
inoculation before dramatically rising again. Of the total of 
131 upregulated genes only one (a putative RNA polymer-
ase) was still upregulated at 24 hpi and of the 142 down-
regulated, 16 still showed a significantly lower expression. 
During P. pannosa inoculation (see “Material and Meth-
ods”) the detached rose leaves lay for 30–60 min in an open 
inoculation box, which may have caused a generalized stress 
response and, in particular, osmotic stress. For example, the 
two aquaporin genes TIP1-2 and PIP2-1 were upregulated 
compared to the control, and PIP2-1 was upregulated in both 
the control and D. rosae-inoculated leaves.

Changes in the transcriptome specific 
to the interaction with D. rosae

The transcriptomic changes specific to the interaction with 
D. rosae include the upregulation of many genes encoding 
enzymes in the lignin biosynthetic and flavonoid pathways. 
The synthesis of lignin or lignin-like phenolic polymers 
is a common phenomenon in response to pathogens. For 
instance, Chinese cabbage plants infected with the necro-
trophic bacterium Erwinia carotovora accumulated high 
levels of lignin monomers, and 12 genes involved in lignin 
biosynthesis were upregulated (Zhang et al. 2007). Infection 
with the fungus Sclerotinia sclerotium led to the lignification 
of Camelina sativa cells and was correlated with upregula-
tion of the CCR genes (Eynck et al. 2012). In addition, the 
defense response of the model plant Arabidopsis thaliana 
infected with Pseudomonas syringae was accompanied by 

the upregulation of the CAD genes. Loss-of-function muta-
tions of these genes resulted in plants with a reduced resist-
ance to the pathogen (Tronchet et al. 2010). Lignin has dif-
ferent functions in plant defense. As part of the secondary 
cell wall, it provides a physical barrier against the entry of 
the pathogen. Simultaneously, it prevents the spread of path-
ogen toxins and enzymes into the neighboring cells and the 
transfer of water and nutrients from the host to the pathogen. 
In addition, cell wall components can have signaling func-
tions in defense (Miedes et al. 2014).

In addition, to the lignin biosynthetic pathway, genes 
encoding almost all enzymes of the flavonoid pathway were 
upregulated specifically in response to D. rosae. Products of 
the flavonoid pathway have various functions in plants. For 
example, they act as chemical messengers that interact with 
insects and microbes and function as pigments to attract pol-
linators or protect against UV light. More importantly, many 
phytoalexins are synthesized by this pathway (Piasecka et al. 
2015; Falcone Ferreyra et al. 2012). In Fragaria, catechin 
and catechin-derived proanthocyanidins have been shown 
to be involved in the defense response to Alternaria alter-
nata and B. cinerea in infected leaves and fruits, respectively 
(Yamamoto et al. 2000; Puhl and Treutter 2008). In addition, 
a recent transcriptomic study of roots infected with P. cacto-
rum showed an upregulation of the flavonoid pathway genes 
leading to these products (Toljamo et al. 2016). Interestingly, 
in our data, FLS genes were highly upregulated, indicat-
ing that the synthesis of flavonols is more important in the 
response to D. rosae than in the response to P. pannosa. In 
plants, flavonols function as antioxidants during high light 
conditions and as detoxifying agents against reactive oxy-
gen species (ROS), which might explain their role in plant 
defense (Pollastri and Tattini 2011). Metabolic analyses 
focusing on this group of metabolites might be needed to 
confirm the induction of this pathway in the rose–D. rosae 
interaction.

Different SA response genes were exclusively upregulated 
in response to D. rosae. PAD4, EDS1 and SAG101 cooper-
ate to stimulate the production of SA and are essential for 
SA-mediated pathogen responses (Zhou et al. 1998; Feys 
et al. 2005; Rietz et al. 2011), which are typically character-
ized by the upregulation of the PR1, PR2 and PR5 genes. 
PR1 and different thaumatins (PR5) were also exclusively 
upregulated in response to D. rosae, except for one PR5 
paralog that was also upregulated in response to P. pannosa. 
This could be an indication that the additional D. rosae-
specific stress responses are regulated by the SA-mediated 
signaling pathway, which is either suppressed during the 
interaction with P. pannosa or not upregulated in the P. 
pannosa pathosystem because D. rosae is recognized dif-
ferently and signaling and desired resistance is attempted via 
other pathways. Interestingly, it is described, e.g. for tomato 
(Rahman et al. 2012), that the SA pathways may promote 
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necrotrophic disease development, possibly by antagonizing 
JA. That could also be helpful for the later stages of the D. 
rosae infection. In addition, Cui et al. (2018) proposed that 
EDS1/PAD4 suppresses MYC2 and therefore the JA path-
way, which could explain the stronger downregulation of the 
leaves infected with D. rosae that was observed.

All of these reactions could be based on a partial ETI 
reaction, in which specific effectors of D. rosae are detected. 
We know from previous experiments that there are more 
than 20 genes in the rose genome that are similar to the 
resistance-mediating muRdr1A gene of the Rdr1-locus 
(Terefe-Ayana et al. 2011) but do not mediate a full resist-
ance. However, they might function to activate a partial ETI 
reaction, leading to the differences in the reaction of roses 
to the pathogens observed.

An indication of the specific interference of black 
spot with host resistance is the strong downregulation of 
WRKY33 and 53 known to have a function in resistance 
(Birkenbihl and Somssich 2011). In particular the down-
regulation of WRKY 33 and WRKY 53 transcription factors 
related to resistance and the upregulation of WRKYs 27, 40, 
50 and 51 as repressors of resistance is interesting, since it 
indicates major differences in how both pathogens interfere 
with the SA-inducible host resistance response.

In addition, the specific downregulation of six heat 
shock proteins in response to D. rosae (17.6 kDa class II 
heat shock protein, heat shock cognate protein 70-1, DNAJ 
heat shock family protein, heat shock protein 101 and two 
HSP20-like chaperones superfamily proteins) can be rec-
onciled with the current susceptible interaction, since their 
regulation might may decrease the strength or the timing of 
the defense response (Park and Seo 2015; Lee et al. 2012).

Conclusions

With this first analysis of the rose defense transcriptome, 
we showed contrasting responses of the host to two fungal 
pathogens, the hemibiotrophic D. rosae and the biotrophic 
P. pannosa displaying different lifestyles. In addition to a 
common response to both pathogens, characterized by an 
upregulation of the PR10 genes and chitinases, processes 
such as photosynthesis and cell wall modification were pri-
marily downregulated in response to P. pannosa, while the 
secondary metabolism in form of the phenylpropanoid and 
flavonoid pathway was primarily upregulated in response 
to D. rosae. Surprisingly, PR1 and components of the SA-
pathway were exclusively upregulated in response to the 
hemibiotrophic D. rosae and not, as often observed in other 
biotrophic systems, also in the interaction with P. pannosa. 
In contrast, the transcriptional regulation of some factors 
known to interfere with host resistances was distinct for 
both pathogens. This information is an important first step to 

understand the response to both rose pathogens and revealed 
many processes, which merit analysis in more detail.
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