Skip to main content
Log in

Clinical and prognostic significance of granulation patterns in somatotroph adenomas/tumors of the pituitary: a meta-analysis

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Introduction

Sparsely granulated somatotroph adenoma/tumor (SGST) is thought to be more clinically aggressive than densely granulated somatotroph adenoma/tumor (DGST). However, the literature is not entirely consistent as to the disparate demographic and behavioral features of these subtypes. In this study, we conducted a meta-analysis to further clarify the demographic, clinicopathological, prognostic, and molecular characteristics of SGST versus DGST.

Methods

We accessed two electronic databases to search for potential data. Pooled estimates of odds ratio (OR), mean difference (MD), and corresponding 95% confidence interval (CI) were calculated using the random-effect model.

Results

SGST was associated with younger patient age and lower male-to-female ratio (p < 0.001) compared to DGST. Clinically, SGST had larger tumor size and high rate of cavernous sinus and suprasellar extension (p < 0.001) than DGST. During postoperative follow-up, SGST was associated with a lower endocrinological remission rate (OR 0.60; 95% CI 0.40 to 0.90; p = 0.01) and a poorer response rate to SRL (OR 0.16; 95% CI 0.08–0.35; p < 0.001) in comparison to DGST. The prevalence of GSP mutations was significantly lower in SGST (OR 0.36; 95% CI 0.17 to 0.79; p = 0.01).

Conclusion

SGST and DGST were demographically, clinicopathologically, and molecularly different from each other with the former associated with adverse treatment outcomes and poor response to medical therapy. There are still gaps in translational studies that could help us better understand the behavior of these tumors and identify potential targets in the treatment of sparsely granulated tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mete O, Lopes MB (2017) Overview of the 2017 WHO classification of pituitary tumors. Endocr Pathol 28(3):228–243

    Article  CAS  PubMed  Google Scholar 

  2. Yamada S, Aiba T, Sano T et al (1993) Growth hormone-producing pituitary adenomas: correlations between clinical characteristics and morphology. Neurosurgery 33(1):20–27

    CAS  PubMed  Google Scholar 

  3. Obari A, Sano T, Ohyama K et al (2008) Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 19(2):82–91

    Article  PubMed  Google Scholar 

  4. Melmed S, Braunstein GD, Horvath E, Ezrin C, Kovacs K (1983) Pathophysiology of acromegaly. Endocr Rev 4(3):271–290

    Article  CAS  PubMed  Google Scholar 

  5. Bakhtiar Y, Hirano H, Arita K et al (2010) Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. Eur J Endocrinol 163(4):531–539

    Article  CAS  PubMed  Google Scholar 

  6. Brzana J, Yedinak CG, Gultekin SH, Delashaw JB, Fleseriu M (2013) Growth hormone granulation pattern and somatostatin receptor subtype 2A correlate with postoperative somatostatin receptor ligand response in acromegaly: a large single center experience. Pituitary 16(4):490–498

    Article  CAS  PubMed  Google Scholar 

  7. Kato M, Inoshita N, Sugiyama T et al (2012) Differential expression of genes related to drug responsiveness between sparsely and densely granulated somatotroph adenomas. Endocr J 59(3):221–228

    Article  CAS  PubMed  Google Scholar 

  8. Mori R, Inoshita N, Takahashi-Fujigasaki J et al (2013) Clinicopathological features of growth hormone-producing pituitary adenomas in 242 acromegaly patients: classification according to hormone production and cytokeratin distribution. ISRN Endocrinol 2013:723432

    Article  PubMed  PubMed Central  Google Scholar 

  9. Larkin S, Reddy R, Karavitaki N, Cudlip S, Wass J, Ansorge O (2013) Granulation pattern, but not GSP or GHR mutation, is associated with clinical characteristics in somatostatin-naive patients with somatotroph adenomas. Eur J Endocrinol 168(4):491–499

    Article  CAS  PubMed  Google Scholar 

  10. Lee CC, Vance ML, Lopes MB, Xu Z, Chen CJ, Sheehan J (2015) Stereotactic radiosurgery for acromegaly: outcomes by adenoma subtype. Pituitary 18(3):326–334

    Article  PubMed  Google Scholar 

  11. Bhayana S, Booth GL, Asa SL, Kovacs K, Ezzat S (2005) The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab 90(11):6290–6295

    Article  CAS  PubMed  Google Scholar 

  12. Sarkar S, Chacko AG, Chacko G (2014) An analysis of granulation patterns, MIB-1 proliferation indices and p53 expression in 101 patients with acromegaly. Acta Neurochir. 156(12):2221–2230 (discussion 2230)

    Article  PubMed  Google Scholar 

  13. Fougner SL, Casar-Borota O, Heck A, Berg JP, Bollerslev J (2012) Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin Endocrinol 76(1):96–102

    Article  CAS  Google Scholar 

  14. Giustina A, Chanson P, Bronstein MD et al (2010) A consensus on criteria for cure of acromegaly. J Clin Endocrinol Metab 95(7):3141–3148

    Article  CAS  PubMed  Google Scholar 

  15. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  16. Vuong HG, Dunn IF (2023) The clinicopathological features and prognosis of silent corticotroph tumors: an updated systematic review and meta-analysis. Endocrine

  17. Dehghani M, Davoodi Z, Bidari F et al (2021) Association of different pathologic subtypes of growth hormone producing pituitary adenoma and remission in acromegaly patients: a retrospective cohort study. BMC Endocr Disord 21(1):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Durmuş ET, Atmaca A, Kefeli M et al (2022) Age, GH/IGF-1 levels, tumor volume, T2 hypointensity, and tumor subtype rather than proliferation and invasion are all reliable predictors of biochemical response to somatostatin analogue therapy in patients with acromegaly: a clinicopathological study. Growth Horm IGF Res 67:101502

    Article  PubMed  Google Scholar 

  19. Heng L, Liu X, Jia D et al (2021) Preoperative prediction of granulation pattern subtypes in GH-secreting pituitary adenomas. Clin Endocrinol 95(1):134–142

    Article  CAS  Google Scholar 

  20. Iacovazzo D, Carlsen E, Lugli F et al (2016) Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur J Endocrinol 174(2):241–250

    Article  CAS  PubMed  Google Scholar 

  21. Kasuki L, Wildemberg LE, Neto LV, Marcondes J, Takiya CM, Gadelha MR (2013) Ki-67 is a predictor of acromegaly control with octreotide LAR independent of SSTR2 status and relates to cytokeratin pattern. Eur J Endocrinol 169(2):217–223

    Article  CAS  PubMed  Google Scholar 

  22. Park YW, Kang Y, Ahn SS et al (2020) Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary 23(6):691–700

    Article  CAS  PubMed  Google Scholar 

  23. Soukup J, Cesak T, Hornychova H et al (2021) Cytokeratin 8/18-negative somatotroph pituitary neuroendocrine tumours (PitNETs, adenomas) show variable morphological features and do not represent a clinicopathologically distinct entity. Histopathology 79(3):406–415

    Article  PubMed  Google Scholar 

  24. Swanson AA, Erickson D, Donegan DM et al (2021) Clinical, biological, radiological, and pathological comparison of sparsely and densely granulated somatotroph adenomas: a single center experience from a cohort of 131 patients with acromegaly. Pituitary 24(2):192–206

    Article  CAS  PubMed  Google Scholar 

  25. Tang Y, Xie T, Wu S et al (2021) Quantitative proteomics revealed the molecular characteristics of distinct types of granulated somatotroph adenomas. Endocrine 74(2):375–386

    Article  CAS  PubMed  Google Scholar 

  26. Mayr B, Buslei R, Theodoropoulou M, Stalla GK, Buchfelder M, Schöfl C (2013) Molecular and functional properties of densely and sparsely granulated GH-producing pituitary adenomas. Eur J Endocrinol 169(4):391–400

    Article  CAS  PubMed  Google Scholar 

  27. Melmed S, Kaiser UB, Lopes MB et al (2022) Clinical biology of the pituitary adenoma. Endocr Rev 43(6):1003–1037

    Article  PubMed  PubMed Central  Google Scholar 

  28. Melmed S (2006) Medical progress: acromegaly. N Engl J Med 355(24):2558–2573

    Article  CAS  PubMed  Google Scholar 

  29. Florio T, Morini M, Villa V et al (2003) Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology 144(4):1574–1584

    Article  CAS  PubMed  Google Scholar 

  30. Gadelha MR, Kasuki L, Korbonits M (2013) Novel pathway for somatostatin analogs in patients with acromegaly. Trends Endocrinol Metab 24(5):238–246

    Article  CAS  PubMed  Google Scholar 

  31. Córdoba-Chacón J, Gahete MD, Duran-Prado M et al (2010) Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cell Mol Life Sci 67(7):1147–1163

    Article  PubMed  Google Scholar 

  32. Durán-Prado M, Gahete MD, Martínez-Fuentes AJ et al (2009) Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J Clin Endocrinol Metab 94(7):2634–2643

    Article  PubMed  Google Scholar 

  33. Sano T, Rong QZ, Kagawa N, Yamada S (2004) Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas. Front Horm Res 32:127–132

    Article  CAS  PubMed  Google Scholar 

  34. Qian ZR, Sano T, Yoshimoto K et al (2007) Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol 20(12):1269–1277

    Article  CAS  PubMed  Google Scholar 

  35. Spada A, Arosio M, Bochicchio D et al (1990) Clinical, biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab 71(6):1421–1426

    Article  CAS  PubMed  Google Scholar 

  36. Efstathiadou ZA, Bargiota A, Chrisoulidou A et al (2015) Impact of gsp mutations in somatotroph pituitary adenomas on growth hormone response to somatostatin analogs: a meta-analysis. Pituitary 18(6):861–867

    Article  CAS  PubMed  Google Scholar 

  37. Mazal PR, Czech T, Sedivy R et al (2001) Prognostic relevance of intracytoplasmic cytokeratin pattern, hormone expression profile, and cell proliferation in pituitary adenomas of akromegalic patients. Clin Neuropathol 20(4):163-171

    Google Scholar 

Download references

Acknowledgements

None.

Disclosure

The authors have nothing to disclose.

Funding

This study receives no funding support.

Author information

Authors and Affiliations

Authors

Contributions

HGV: conceptualization, data curation, formal analysis, investigation, methodology, project administration, software, validation, writing original, review, and editing. IFD: conceptualization, project administration, validation, review, editing, and supervisions. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Ian F. Dunn.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, H.G., Dunn, I.F. Clinical and prognostic significance of granulation patterns in somatotroph adenomas/tumors of the pituitary: a meta-analysis. Pituitary 26, 653–659 (2023). https://doi.org/10.1007/s11102-023-01353-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-023-01353-0

Keywords

Navigation