Skip to main content

Advertisement

Log in

Predicting tumor consistency and extent of resection in non-functioning pituitary tumors

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

To (1) identify a radiological parameter to predict non-functioning pituitary tumor (NFPT) consistency, (2) examine the relationship between NFPT consistency and extent of resection (EOR), (3) investigate if tumor consistency predictors can anticipate EOR.

Methods

The ratio (T2SIR) between the T2 min signal intensity (SI) of the tumor and the T2 mean SI of the CSF was the main radiological parameter, being determined through a radiomic-voxel analysis and calculated using the following formula: T2SIR = [(T2 tumor mean SI – SD)/T2 CSF SI]. The tumor consistency was pathologically estimated as collagen percentage (CP). EOR of NFPTs was evaluated by exploiting a volumetric technique and its relationship with the following explanatory variables was explored: CP, Knosp-grade, tumor volume, inter-carotid distance, sphenoidal sinus morphology, Hardy-grade, suprasellar tumor extension.

Results

A statistically significant inverse correlation between T2SIR and CP was demonstrated (p = 0.0001), with high diagnostic power of T2SIR in predicting NFPT consistency (ROC curve analysis’ AUC = 0.88; p = 0.0001). The following predictors of EOR were identified in the univariate analysis: CP (p = 0.007), preoperative volume (p = 0.045), Knosp grade (p = 0.0001), tumor suprasellar extension (p = 0.044). The multivariate analysis demonstrated two variables as unique predictors of EOR: CP (p = 0.002) and Knosp grade (p = 0.001). The T2SIR was a significant predictor of EOR both in the univariate (p = 0.01) and multivariate model (p = 0.003).

Conclusion

This study offers the potential to improve NFPT preoperative surgical planning and patient counseling by employing the T2SIR as a preoperative predictor of tumor consistency and EOR. Meanwhile, tumor consistency and Knosp grade were found to play an important role in predicting EOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request. The raw data are not publicly available because of ethical restrictions.

References

  1. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. https://doi.org/10.1093/neuonc/noab106

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smith KA, Leever JD, Chamoun RB (2015) Prediction of consistency of pituitary adenomas by magnetic resonance imaging. J Neurol Surgery Part B Skull Base. https://doi.org/10.1055/s-0035-1549005

    Article  Google Scholar 

  4. AlMalki MH, Ahmad MM, Brema I et al (2020) Contemporary management of clinically non-functioning pituitary adenomas: a clinical review. Clin Med Insights Endocrinol Diabetes. https://doi.org/10.1177/1179551420932921

    Article  PubMed  PubMed Central  Google Scholar 

  5. Esposito D, Olsson DS, Ragnarsson O et al (2019) Non-functioning pituitary adenomas: indications for pituitary surgery and post-surgical management. Pituitary. https://doi.org/10.1007/s11102-019-00960-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Acitores Cancela A, Rodríguez Berrocal V, Pian H et al (2021) Clinical relevance of tumor consistency in pituitary adenoma. Hormones. https://doi.org/10.1007/s42000-021-00302-5

    Article  PubMed  Google Scholar 

  7. Iuchi T, Saeki N, Tanaka M et al (1998) MRI prediction of fibrous pituitary adenomas. Acta Neurochir (Wien). https://doi.org/10.1007/s007010050179

    Article  PubMed  Google Scholar 

  8. Thotakura AK, Patibandla MR, Panigrahi MK, Mahadevan A (2017) Is it really possible to predict the consistency of a pituitary adenoma preoperatively? Neurochirurgie. https://doi.org/10.1016/j.neuchi.2017.06.003

    Article  PubMed  Google Scholar 

  9. Zeynalova A, Kocak B, Durmaz ES et al (2019) Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology. https://doi.org/10.1007/s00234-019-02211-2

    Article  PubMed  Google Scholar 

  10. Micko ASG, Wöhrer A, Wolfsberger S, Knosp E (2015) Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg. https://doi.org/10.3171/2014.12.JNS141083

    Article  PubMed  Google Scholar 

  11. Alsaied AS (2017) Paranasal sinus anatomy: what the surgeon needs to know. Paranasal Sinuses. InTech, London

    Google Scholar 

  12. Araujo-Castro M, Acitores Cancela A, Vior C et al (2022) Radiological Knosp, Revised-Knosp, and Hardy-Wilson classifications for the prediction of surgical outcomes in the endoscopic endonasal surgery of pituitary adenomas: study of 228 cases. Front Oncol. https://doi.org/10.3389/fonc.2021.807040

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mooney MA, Sarris CE, Zhou JJ et al (2019) Proposal and validation of a simple grading scale (TRANSSPHER Grade) for predicting gross total resection of nonfunctioning pituitary macroadenomas after transsphenoidal surgery. Oper Neurosurg. https://doi.org/10.1093/ons/opy401

    Article  Google Scholar 

  14. Cuocolo R, Ugga L, Solari D et al (2020) Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology. https://doi.org/10.1007/s00234-020-02502-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Serra C, Burkhardt JK, Esposito G et al (2016) Pituitary surgery and volumetric assessment of extent of resection: a paradigm shift in the use of intraoperative magnetic resonance imaging. Neurosurg Focus. https://doi.org/10.3171/2015.12.FOCUS15564

    Article  PubMed  Google Scholar 

  16. Hughes JD, Koeller K, Rinaldo L et al (2018) Beyond gross total and subtotal: does volumetric resection matter in nonfunctioning pituitary macroadenomas? World Neurosurg. https://doi.org/10.1016/j.wneu.2018.05.077

    Article  PubMed  Google Scholar 

  17. Cushing H (1912) The Pituitary Body and Its Disorders. J.B. Lippincott, Philadelphia & London

    Google Scholar 

  18. Fang N, Wu Z, Jiang C et al (2019) Prediction of the consistency of pituitary adenomas based on multiphoton microscopy. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ab06ec

    Article  Google Scholar 

  19. Hu B, Mao Z, Du Q et al (2019) miR-93–5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2019.03.013

    Article  PubMed  Google Scholar 

  20. Wang H, Li W, Shi D et al (2009) Expression of TGFβ1 and pituitary adenoma fibrosis. Br J Neurosurg. https://doi.org/10.1080/02688690802617046

    Article  PubMed  Google Scholar 

  21. Wang H, Li WS, Shi DJ et al (2008) Correlation of MMP1 and TIMP1 expression with pituitary adenoma fibrosis. J Neurooncol. https://doi.org/10.1007/s11060-008-9647-9

    Article  PubMed  Google Scholar 

  22. Ding W, Huang Z, Zhou G et al (2021) Diffusion-weighted imaging for predicting tumor consistency and extent of resection in patients with pituitary adenoma. Neurosurg Rev. https://doi.org/10.1007/s10143-020-01469-y

    Article  PubMed  Google Scholar 

  23. Bahuleyan B, Raghuram L, Rajshekhar V, Chacko AG (2006) To assess the ability of MRI to predict consistency of pituitary macroadenomas. Br J Neurosurg. https://doi.org/10.1080/02688690601000717

    Article  PubMed  Google Scholar 

  24. Pierallini A, Caramia F, Falcone C et al (2006) Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging - initial experience. Radiology. https://doi.org/10.1148/radiol.2383042204

    Article  PubMed  Google Scholar 

  25. Wahlund LO, Barkhof F, Fazekas F et al (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. https://doi.org/10.1161/01.STR.32.6.1318

    Article  PubMed  Google Scholar 

  26. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S (2015) What are white matter hyperintensities made of ? Relevance to vascular cognitive impairment. J Am Heart Assoc. https://doi.org/10.1161/JAHA.114.001140

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chakrabortty S, Oi S, Yamaguchi M et al (1993) Growth Hormone producing pituitary adenomas: MR characteristics and pre- and postoperative evaluation. Neurol Med Chir (Tokyo). https://doi.org/10.2176/nmc.33.81

    Article  PubMed  Google Scholar 

  28. Chang EF, Zada G, Kim S et al (2008) Long-term recurrence and mortality after surgery and adjuvant radiotherapy for nonfunctional pituitary adenomas. J Neurosurg. https://doi.org/10.3171/JNS/2008/108/4/0736

    Article  PubMed  Google Scholar 

  29. Dekkers OM, Pereira AM, Roelfsema F et al (2006) Observation alone after transsphenoidal surgery for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2005-2552

    Article  PubMed  Google Scholar 

  30. Losa M, Mortini P, Barzaghi R et al (2008) Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. J Neurosurg. https://doi.org/10.3171/JNS/2008/108/3/0525

    Article  PubMed  Google Scholar 

  31. Sylvester PT, Evans JA, Zipfel GJ et al (2015) Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary. https://doi.org/10.1007/s11102-014-0560-2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rutkowski MJ, Chang KE, Cardinal T et al (2021) Development and clinical validation of a grading system for pituitary adenoma consistency. J Neurosurg. https://doi.org/10.3171/2020.4.JNS193288

    Article  PubMed  Google Scholar 

  33. Pérez-López C, Palpán AJ, Saez-Alegre M et al (2021) volumetric study of nonfunctioning pituitary adenomas: predictors of gross total resection. World Neurosurg. https://doi.org/10.1016/j.wneu.2020.12.020

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GF, ML, GAB, GC; Methodology: GF, ML, GAB, GM, EF, GC, EK; Formal analysis, data collection and investigation: GF, GC, GP, KK, EK, LR, MP, SB, MC; Writing—original draft preparation: GF, GAB; Writing—review and editing: All authors; Supervision: ML, GAB, GM, EF, FMT, SF; All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Giorgio Fiore.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiore, G., Bertani, G.A., Conte, G. et al. Predicting tumor consistency and extent of resection in non-functioning pituitary tumors. Pituitary 26, 209–220 (2023). https://doi.org/10.1007/s11102-023-01302-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-023-01302-x

Keywords

Navigation