Skip to main content
Log in

Novel approaches to bone comorbidity in Cushing’s disease: an update

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Skeletal complications are frequent and clinically relevant findings in Cushing’s disease (CD) since an uncoupled suppressed bone formation and enhanced bone resorption leads to a marked skeletal damage with a rapid increase of fracture risk. Reduced Bone Mineral Density (BMD) has been consistently reported and osteopenia or osteoporosis are typical findings in patients with CD. Vertebral Fractures (VFs) are frequently reported and may occur even in patients with an only mild reduction of BMD, representing nowadays a still under- or misdiagnosed comorbidity of these patients being frequently asymptomatic. A novel approach combining different available tools such as BMD evaluation and vertebral morphometry, in order to improve diagnosis, management, and follow-up of bone comorbidity in all patients affected by CD, is needed. This approach is foreseen to be a crucial part of management of patients with CD, particularly in Pituitary Tumor Center of Excellence since VFs, the landmark of the bone involvement, may occur early in the history of the disease and may represent a relevant risk factor for further fractures, reduced quality of life and survival and need for pharmacologic prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fleseriu M, Auchus R, Bancos I et al (2021) Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol 9(12):847–875. https://doi.org/10.1016/S2213-8587(21)00235-7

    Article  PubMed  Google Scholar 

  2. Frara S, Melin Uygur M, di Filippo L et al (2022) High prevalence of vertebral fractures associated with preoperative GH levels in patients with recent diagnosis of acromegaly. J Clin Endocrinol Metab 107(7):e2843–e2850. https://doi.org/10.1210/clinem/dgac183

    Article  PubMed  Google Scholar 

  3. Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18(10):1319–1328. https://doi.org/10.1007/s00198-007-0394-0

    Article  CAS  PubMed  Google Scholar 

  4. Chotiyarnwong P, McCloskey EV (2020) Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol 16(8):437–447. https://doi.org/10.1038/s41574-020-0341-0

    Article  PubMed  Google Scholar 

  5. Frara S, Allora A, di Filippo L et al (2021) Osteopathy in mild adrenal Cushing’s syndrome and Cushing disease. Best Pract Res Clin Endocrinol Metab 35(2):101515. https://doi.org/10.1016/j.beem.2021.101515

    Article  CAS  PubMed  Google Scholar 

  6. Manelli F, Giustina A (2000) Glucocorticoid-induced osteoporosis. Trends Endocrinol Metab 11(3):79–85. https://doi.org/10.1016/s1043-2760(00)00234-4

    Article  CAS  PubMed  Google Scholar 

  7. Mazziotti G, Giustina A (2013) Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol 9(5):265–276. https://doi.org/10.1038/nrendo.2013.5

    Article  CAS  PubMed  Google Scholar 

  8. Skversky AL, Kumar J, Abramowitz MK, Kaskel FJ, Melamed ML (2011) Association of glucocorticoid use and low 25-hydroxyvitamin D levels: results from the National Health and Nutrition Examination Survey (NHANES): 2001–2006. J Clin Endocrinol Metab 96(12):3838–3845. https://doi.org/10.1210/jc.2011-1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mazziotti G, Formenti AM, Adler RA et al (2016) Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine 54(3):603–611. https://doi.org/10.1007/s12020-016-1146-8

    Article  CAS  PubMed  Google Scholar 

  10. Canalis E, Bilezikian JP, Angeli A, Giustina A (2004) Perspectives on glucocorticoid-induced osteoporosis. Bone 34(4):593–598. https://doi.org/10.1016/j.bone.2003.11.026

    Article  CAS  PubMed  Google Scholar 

  11. Buckley L, Guyatt G, Fink HA et al (2017) (2017) American college of rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis [published correction appears in Arthritis Rheumatol 2017 Nov; 69(11):2246]. Arthritis Rheumatol. 69(8):1521–1537. https://doi.org/10.1002/art.40137

    Article  PubMed  Google Scholar 

  12. Bonadonna S, Burattin A, Nuzzo M et al (2005) Chronic glucocorticoid treatment alters spontaneous pulsatile parathyroid hormone secretory dynamics in human subjects. Eur J Endocrinol 152(2):199–205. https://doi.org/10.1530/eje.1.01841

    Article  CAS  PubMed  Google Scholar 

  13. Donini LM, Busetto L, Bischoff SC et al (2022) Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Clin Nutr 41(4):990–1000. https://doi.org/10.1016/j.clnu.2021.11.014

    Article  CAS  PubMed  Google Scholar 

  14. Chiodini I, Vainicher CE, Morelli V et al (2016) Mechanisms in endocrinology: endogenous subclinical hypercortisolism and bone: a clinical review. Eur J Endocrinol 175(6):R265–R282. https://doi.org/10.1530/EJE-16-0289

    Article  CAS  PubMed  Google Scholar 

  15. dos Santos CV, Vieira Neto L, Madeira M et al (2015) Bone density and microarchitecture in endogenous hypercortisolism. Clin Endocrinol (Oxf) 83(4):468–474. https://doi.org/10.1111/cen.12812

    Article  CAS  Google Scholar 

  16. Apaydın T, Yavuz DG (2021) Assessment of non-traumatic vertebral fractures in Cushing’s syndrome patients. J Endocrinol Invest 44(8):1767–1773. https://doi.org/10.1007/s40618-020-01496-y

    Article  CAS  PubMed  Google Scholar 

  17. Chiodini I, Carnevale V, Torlontano M et al (1998) Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess: study in eumenorrheic patients with Cushing’s syndrome. J Clin Endocrinol Metab 83(6):1863–1867. https://doi.org/10.1210/jcem.83.6.4880

    Article  CAS  PubMed  Google Scholar 

  18. Mazziotti G, Bilezikian J, Canalis E, Cocchi D, Giustina A (2012) New understanding and treatments for osteoporosis. Endocrine 41(1):58–69. https://doi.org/10.1007/s12020-011-9570-2

    Article  CAS  PubMed  Google Scholar 

  19. Belaya ZE, Hans D, Rozhinskaya LY et al (2015) The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing’s syndrome. Arch Osteoporos 10:44. https://doi.org/10.1007/s11657-015-0244-1

    Article  PubMed  Google Scholar 

  20. Mazziotti G, Frara S, Giustina A (2018) Pituitary diseases and bone. Endocr Rev 39(4):440–488. https://doi.org/10.1210/er.2018-00005

    Article  PubMed  Google Scholar 

  21. Formenti AM, Dalla Volta A, di Filippo L, Berruti A, Giustina A (2021) Effects of medical treatment of prostate cancer on bone health. Trends Endocrinol Metab 32(3):135–158. https://doi.org/10.1016/j.tem.2020.12.004

    Article  CAS  PubMed  Google Scholar 

  22. di Filippo L, Formenti AM, Doga M, Pedone E, Rovere-Querini P, Giustina A (2021) Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict disease outcomes. J Clin Endocrinol Metab 106(2):e602–e614. https://doi.org/10.1210/clinem/dgaa738

    Article  PubMed  Google Scholar 

  23. Tauchmanovà L, Pivonello R, Di Somma C et al (2006) Bone demineralization and vertebral fractures in endogenous cortisol excess: role of disease etiology and gonadal status. J Clin Endocrinol Metab 91(5):1779–1784. https://doi.org/10.1210/jc.2005-0582

    Article  CAS  PubMed  Google Scholar 

  24. Chiodini I, Guglielmi G, Battista C et al (2004) Spinal volumetric bone mineral density and vertebral fractures in female patients with adrenal incidentalomas: the effects of subclinical hypercortisolism and gonadal status. J Clin Endocrinol Metab 89(5):2237–2241. https://doi.org/10.1210/jc.2003-031413

    Article  CAS  PubMed  Google Scholar 

  25. Randazzo ME, Grossrubatscher E, Dalino Ciaramella P, Vanzulli A, Loli P (2012) Spontaneous recovery of bone mass after cure of endogenous hypercortisolism. Pituitary 15(2):193–201. https://doi.org/10.1007/s11102-011-0306-3

    Article  CAS  PubMed  Google Scholar 

  26. Vestergaard P, Lindholm J, Jørgensen JO et al (2002) Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur J Endocrinol 146(1):51–56. https://doi.org/10.1530/eje.0.1460051

    Article  CAS  PubMed  Google Scholar 

  27. Mancini T, Porcelli T, Giustina A (2010) Treatment of Cushing disease: overview and recent findings. Ther Clin Risk Manag. 6:505–516. https://doi.org/10.2147/TCRM.S12952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiloiro S, Giampietro A, Frara S et al (2020) Effects of Pegvisomant and Pasireotide LAR on Vertebral Fractures in Acromegaly Resistant to First-generation SRLs. J Clin Endocrinol Metab. 105(3):dgz054. https://doi.org/10.1210/clinem/dgz054

    Article  PubMed  Google Scholar 

  29. Fleseriu M, Castinetti F, Gadelha M et al (2022) Osilodrostat for the treatment of Cushing’s disease: efficacy, stability, and persistence—authors’ reply. Lancet Diabetes Endocrinol 10(6):385–387. https://doi.org/10.1016/S2213-8587(22)00135-8

    Article  PubMed  Google Scholar 

  30. Canalis E, Giustina A (2001) Glucocorticoid-induced osteoporosis: summary of a workshop. J Clin Endocrinol Metab 86(12):5681–5685. https://doi.org/10.1210/jcem.86.12.8066

    Article  CAS  PubMed  Google Scholar 

  31. Angeli A, Guglielmi G, Dovio A et al (2006) High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone 39(2):253–259. https://doi.org/10.1016/j.bone.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  32. Mazziotti G, Formenti AM, Frara S et al (2017) Management of endocrine disease: risk of overtreatment in patients with adrenal insufficiency: current and emerging aspects. Eur J Endocrinol 177(5):R231–R248. https://doi.org/10.1530/EJE-17-0154

    Article  CAS  PubMed  Google Scholar 

  33. Scillitani A, Mazziotti G, Di Somma C et al (2014) Treatment of skeletal impairment in patients with endogenous hypercortisolism: when and how? Osteoporos Int 25(2):441–446. https://doi.org/10.1007/s00198-013-2588-y

    Article  CAS  PubMed  Google Scholar 

  34. Giustina A, Bouillon R, Binkley N et al (2020) Controversies in vitamin D: a statement from the third international conference. JBMR Plus. 4(12):e10417. https://doi.org/10.1002/jbm4.10417

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bilezikian JP, Formenti AM, Adler RA et al (2021) Vitamin D: dosing, levels, form, and route of administration: does one approach fit all? Rev Endocr Metab Disord 22(4):1201–1218. https://doi.org/10.1007/s11154-021-09693-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pedersini R, Amoroso V, Maffezzoni F et al (2019) Association of fat body mass with vertebral fractures in postmenopausal women with early breast cancer undergoing adjuvant aromatase inhibitor therapy. JAMA Netw Open. 2(9):e1911080. https://doi.org/10.1001/jamanetworkopen.2019.11080

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hall GM, Daniels M, Doyle DV, Spector TD (1994) Effect of hormone replacement therapy on bone mass in rheumatoid arthritis patients treated with and without steroids. Arthritis Rheum 37(10):1499–1505. https://doi.org/10.1002/art.1780371014

    Article  CAS  PubMed  Google Scholar 

  38. Mok CC, Ying KY, To CH et al (2011) Raloxifene for prevention of glucocorticoid-induced bone loss: a 12-month randomised double-blinded placebo-controlled trial. Ann Rheum Dis 70(5):778–784. https://doi.org/10.1136/ard.2010.143453

    Article  CAS  PubMed  Google Scholar 

  39. Di Somma C, Colao A, Pivonello R et al (1998) Effectiveness of chronic treatment with alendronate in the osteoporosis of Cushing’s disease. Clin Endocrinol (Oxf) 48(5):655–662. https://doi.org/10.1046/j.1365-2265.1998.00486.x

    Article  Google Scholar 

  40. Mancini T, Doga M, Mazziotti G, Giustina A (2004) Cushing’s syndrome and bone. Pituitary 7(4):249–252. https://doi.org/10.1007/s11102-005-1051-2

    Article  PubMed  Google Scholar 

  41. Zilio M, Barbot M, Ceccato F et al (2014) Diagnosis and complications of Cushing’s disease: gender-related differences. Clin Endocrinol (Oxf) 80(3):403–410. https://doi.org/10.1111/cen.12299

    Article  CAS  Google Scholar 

  42. Kim SY, Davydov O, Hans D, Bockman R (2015) Insights on accelerated skeletal repair in Cushing’s disease. Bone Rep. 2:32–35. https://doi.org/10.1016/j.bonr.2015.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  43. Formenti AM, Maffezzoni F, Doga M, Mazziotti G, Giustina A (2017) Growth hormone deficiency in treated acromegaly and active Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab 31(1):79–90. https://doi.org/10.1016/j.beem.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  44. Giustina A, Bussi AR, Jacobello C, Wehrenberg WB (1995) Effects of recombinant human growth hormone (GH) on bone and intermediary metabolism in patients receiving chronic glucocorticoid treatment with suppressed endogenous GH response to GH-releasing hormone. J Clin Endocrinol Metab 80(1):122–129. https://doi.org/10.1210/jcem.80.1.7829600

    Article  CAS  PubMed  Google Scholar 

  45. Frara S, Rodriguez-Carnero G, Formenti AM, Martinez-Olmos MA, Giustina A, Casanueva FF (2020) Pituitary tumors centers of excellence. Endocrinol Metab Clin North Am 49(3):553–564. https://doi.org/10.1016/j.ecl.2020.05.010

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors (SF, LdF, MD, PL, FFC, and AG) contributed equally.

Corresponding author

Correspondence to Andrea Giustina.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Ethical approval from institutional ethics committee is not required for a review paper.

Financial interest

Author Andrea Giustina is consultant to company Abiogen SpA, Recordati SpA and Takeda Pharmaceutical Co; Author Andrea Giustina is grant recipient from Pfizer and Takeda Pharmaceutical Co.

Consent to participate

An Informed Consent is not applicable for a review paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frara, S., di Filippo, L., Doga, M. et al. Novel approaches to bone comorbidity in Cushing’s disease: an update. Pituitary 25, 754–759 (2022). https://doi.org/10.1007/s11102-022-01252-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-022-01252-w

Keywords

Navigation