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Abstract Macroalgae have been recently used for

different applications in the food, cosmetic and

pharmaceutical industry since they do not compete

for land and freshwater against other resources.

Moreover, they have been highlighted as a potential

source of bioactive compounds. Red algae (Rhodo-

phyta) are the largest group of seaweeds, including

around 6000 different species, thus it can be hypoth-

esized that they are a potential source of bioactive

compounds. Sulfated polysaccharides, mainly agar

and carrageenans, are the most relevant and exploited

compounds of red algae. Other potential molecules are

essential fatty acids, phycobiliproteins, vitamins,

minerals, and other secondary metabolites. All these

compounds have been demonstrated to exert several

biological activities, among which antioxidant, anti-

inflammatory, antitumor, and antimicrobial properties

can be highlighted. Nevertheless, these properties

need to be further tested on in vivo experiments and go

in-depth in the study of the mechanism of action of the

specific molecules and the understanding of the

structure–activity relation. At last, the extraction

technologies are essential for the correct isolation of

the molecules, in a cost-effective way, to facilitate the

scale-up of the processes and their further application

by the industry. This manuscript is aimed at describing

the fundamental composition of red algae and their

most studied biological properties to pave the way to

the utilization of this underused resource.
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HDL-C High-density lipoprotein cholesterol

MAA Mycosporine-like amino acids

Biological properties and molecular markers

RSA Free-radical scavenging activity

ROS Reactive oxygen species

DPPH 2,2-Diphenyl-pycril-hydrazyl

ABTS Hydrogen peroxide-mediated 2,2-azinobis-

(3-ethylbenzothiazoline-6-sulfonate)

FRAP Ferric reduction antioxidant power assay

ORAC Oxygen Radical Absorbance Capacity

TBARS Thiobarbituric acid reactive substances

assay

CKs Cytokines

LPS Lipopolysaccharide

COX-1 Cyclooxygenase-1

COX-2 Cyclooxygenase-2

5-LOX Lipoxygenase

TNF-a Tumor necrosis factor alpha

ILs Interleukins

NO Nitric oxide

PTP1B Protein tyrosine phosphatase 1B

DPP4 Dipeptidyl peptidase-4

TVR Tumor volume reduction

HSV-1 Herpes simplex virus-1

HIV Human immunodeficiency virus

AChE Acetylcholinesterase

BuChE Butyrylcholinesterase

Extraction technologies

SLE Solid-liquid extraction

PLE Pressurized liquid-assisted exaction

SFE Supercritical fluid extraction

MAE Microwave assisted extraction

EAE Enzymatic assisted extraction

Introduction

Marine biotechnology (also called blue biotechnol-

ogy) consists of the application of biological resources

from the sea for industrial, medical or environmental

purposes (Thompson et al. 2017), which constitutes a

precious economical sector presenting a yearly turn-

over of 3.93 $ together with great expectations,

including many different subjects and organisms

which could report benefits to the industry (Bloch

and Tardieu-Guigues 2014; Thompson et al. 2017).

Among them, micro- and macro-algae have gained

much attention as natural sources of bioactive com-

pounds that exhibit a great applicability as dietary

ingredients and other industrial processes (Bloch and

Tardieu-Guigues 2014; Sudhakar et al. 2018). On

these bases, seaweeds have been consumed for many

years in Asian countries, since they constitute a rich

source of fiber, vitamins, minerals and antioxidants,

thus prompting an increase in their consumption and,

consequently, promoting intense efforts on the char-

acterization of their health-enhancing properties (Car-

dozo et al. 2007; Gómez-Ordóñez et al. 2012; Cian

et al. 2015; Rudtanatip et al. 2018; Gurpilhares et al.

2019).

Macroalgae are becoming of great importance

within the aquaculture industry, as they are a potential

feeding for marine organisms, including corals

(Gurgel and Lopez-Bautista 2007), and they do not

compete against other resources proceeding from the

land and freshwater. Moreover, macroalgae are

remarkable for their rapid growth rate and high

polysaccharides content, becoming great candidates

for biofuel production (Sudhakar et al. 2018). In

addition, their associated positive effects on health and

biological activities must be highlighted as of great

importance on food, pharmaceutical and cosmetic

fields (Gurpilhares et al. 2019). Concerning their

classification, marine macroalgae are classified into

three groups, according to their main pigments as

green (Chlorophyta), red (Rhodophyta) and brown

algae (Phaeophyta) (Mohamed et al. 2012; Belghit

et al. 2017; Davies et al. 2019). Regarding their

chemical composition, macroalgae exhibit a high

content of water, carbohydrates and proteins and a

low lipid percentage (Sudhakar et al. 2018). Consid-

ering their differential composition, the phylum

Rhodophyta presents the highest proportion of bioac-

tive compounds, accounting for more than 1600

individual compounds, representing the 53% of

bioactive compounds reported in algae (Leal et al.

2013).

Additionally, red algae form the largest group of

seaweeds, including around 6,000 different species.

With respect of biological aspects, red seaweeds are

smaller than green and brown algae, being usually

found in equatorial regions along intertidal areas and

beyond. Due to their color-based classification, red

algae contain a specific combination of pigments, i.e.:

chlorophyll a and d, carotenoids and phycobiliproteins

(Gurgel and Lopez-Bautista 2007; Cian et al. 2015).

123

1510 Phytochem Rev (2023) 22:1509–1540



Considering their nutritional composition, red algae

have been proposed to be incorporated to the human

diet because they present the highest levels of proteins

among algae, and huge amounts of carbohydrates and

minerals (Belghit et al. 2017; Øverland et al. 2019;

Torres et al. 2019), as depicted in Fig. 1. In particular,

the families Gelidiaceae and Gracilariaceae have

been revealed as economically interesting, as they are

the major sources of agar and carrageenans, reaching

worldwide production yields of 10,000 tons and

25,000 tons, respectively, valued at 200 $ million

each (Cardozo et al. 2007). Consequently, the culti-

vation of red seaweeds is mainly aimed at the

production of carrageenans, traditionally extracted

from Chondrus crispus wild populations in Canada,

Ireland, Portugal, Spain and France and from Giga-

rtina collected in South America and Southern

Europe. However, the growing demands of car-

rageenans motivated the establishment of macroalgae

farming systems with Euchema sp. in Philippines

(Valderrama et al. 2013; Hedberg et al. 2018),

becoming the major producer worldwide and spread-

ing macroalgae cultivation along other Asian coun-

tries, promoting the production of Porphyra sp. (nori),

Kappaphycus alvarezii and Eucheuma denticulatum

(Valderrama et al. 2013). According to the Food and

Agriculture Organization (FAO), in the last decade red

macroalgae production reached almost 9 million wet

tons, representing the 47% of the total production of

cultivated seaweeds (Valderrama et al. 2013).

On these bases, due to the positive nutritional and

economic impact attributed to red algae, greater

efforts are required to promote their exploitation and

diffusion along Western countries. Thus, this review is

aimed at describing the chemical composition of red

algae, with a special focus on compounds with health-

enhancing properties. Consequently, a deep descrip-

tion of the biological properties associated with red

algae extracts is provided, focusing on their antioxi-

dant, antimicrobial, anticancer, anti-inflammatory,

antidiabetic, and metabolic regulator activities. Fur-

thermore, a detailed insight on the extraction method-

ologies applied to the isolation and production of

bioactive compounds is also described, with the aim of

providing evidence on the beneficial properties of

these marine organisms to be incorporated into

different food, cosmetic, and pharmaceutical

formulations.

Fig. 1 Main bioactive compounds of red algae
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Chemical composition of red algae

Marine algae are great candidates for being included in

dietary regimes due to their nutritional and chemical

composition. Over 3000 marine natural products

extracted from them have been largely identified (Leal

et al. 2013; Belghit et al. 2017). However, seaweeds have

not been commonly exploited with pharmaceutical and/

or nutraceutical purposes, but a growing interest, led by

the traditional consumption in Asian countries, has

promoted the research of chemical constituents from

algae (Sangha et al. 2013). Consequently, a structural

and functional characterization of red seaweed con-

stituents, which are responsible for the biological

properties associated with these organisms, should be

performed to assess their incorporation into the diet.

Taken all together, the chemical composition of red

seaweeds is composed of carbohydrates, lipids, proteins,

peptides, vitamins, minerals and secondary metabolites

(Barbalace et al. 2019; Torres et al. 2019). Figure 1

summarized the most relevant constituents found in red

seaweeds. In Table 1, main applications of these

constituents have been compiled.

Carbohydrates

Although monosaccharides have been reported in red

algae, little attention has been paid to these molecules,

being poorly characterized. In this sense, several free

sugars have been found in red algae including fucose,

xylose, mannose, galactose, and glucose (Gómez-

Ordóñez et al. 2010, 2014). On the contrary, polysac-

charides constitute the major constituents in marine

algae, including the red ones, which enables the

enhancement of the commercial value of red algae,

thanks to their potential applications in the food industry,

where they are usually exploited as an efficient source of

dietary fiber, but also in both the pharmaceutical and

biomedical industries. According to their prevalence in

algal sources, agar and carrageenan, both sulfated

polysaccharides known as phycocollooids, are the most

relevant carbohydrates in red seaweeds, accounting for

up to 40–50% of the dry weight (Torres et al. 2019),

followed by other polysaccharides found in significantly

lower amounts, such as xylans, sulphated galactans and

porphyrans (Øverland et al. 2019).

Thus, carrageenan has been reported as the major

representative of red marine algae, representing the

most relevant constituent of algal cell walls. This

polysaccharide is a sulfated polygalactan mainly

formed by a- and b-D-galactopyranose subunits

linked by two different types of glycosidic bonds: a
(1 ? 3) and b (1 ? 4). According to the configura-

tion and proportion of such bonds, different kind of

carrageenans have been identified, accounting for

more than 15 types with industrial relevance currently

described (Prado-Fernández et al. 2003; Hilliou et al.

2006; Cunha and Grenha 2016), being divided into

three groups, as a general rule: kappa, iota and lambda,

j, i, k carrageenans, respectively. Such carrageenan

classification mostly owes to structural purposes and

the heterogeneous existence of chemical substitutions,

which lead to specific physicochemical properties that

contribute to the differential features and applicability

associated with their derivative products (Cunha and

Grenha 2016). Furthermore, specific distributions of

carrageenans have been attributed to individual algal

species. For instance, C. crispus presents a mixture of

both j- and k-carrageenans that cannot be separated

during their large-scale extraction procedure. Indeed,

for the production of individual compounds, different

algal sources are employed, since j-carrageenan is

usually extracted from Kappaphycus alvarezii,

whereas k- carrageenan is isolated from different

species from the genus Gigartina (Cunha and Grenha

2016; Torres et al. 2019). Considering its food

application, carrageenans have been identified as

Generally Recognized As Safe (GRAS), so they have

been collectively approved for their use on human

consumption. Due to their chemical nature as complex

polysaccharides, carrageenans cannot be digested by

human digestive tract, although they can be fermented

by the colonic microbiota (Gómez-Ordóñez et al.

2012). On these bases, to date, these substances are not

known for their potential to be added to human diet

(Necas and Bartosikova 2013; Torres et al. 2019).

Instead, carrageenans are well-known for their addi-

tional properties that guide their industrial applica-

tions as gelling, stabilizing and emulsifying agents

(Cunha and Grenha 2016; Sudhakar et al. 2018).

Besides such food-related properties, a number of

reports have also listed several bioactivities attributed

to carrageenans, including anticoagulant, antiviral,

antioxidant and antitumoral effects, together with

immunomodulatory and cholesterol-lowering proper-

ties (Pangestuti and Kim 2014; Cunha and Grenha

2016).
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Table 1 Applications related to the main compounds found in red algae

Compound Application Reference

Carrageenan Jellifying, stabilizing and emulsifying properties Cunha and Grenha (2016)

Antioxidant activity Silva et al. (2012), Gómez-Ordóñez et al.

(2014), Cian et al. (2015)

Antithrombotic, anti-inflammatory and

antidiabetic activities

Holdt and Kraan (2011), Gómez-Ordóñez

et al. (2012), Cian et al. (2015)

Oil binding properties and emulsifier Suleria et al. (2016)

Antitumor, antiviral, anticoagulant and

immunomodulation activities

Cardozo et al. (2007), Gómez-Ordóñez

et al. (2012), Mohamed et al. (2012),

Silva et al. (2012), Cunha and Grenha

(2016), Davies et al. (2019), Torres

et al. (2019)

Cholesterol and lipid-lowering effects Mohamed et al. (2012)

Serum cholesterol and triglyceride levels

reduction

Silva et al. (2012)

Agar Gelling and stabilizing properties Davies et al. (2019)

Texture improvement and stabilizing properties Suleria et al. (2016)

Viscosifying and emulsifying properties

Anticoagulant

Maciel et al. (2016)

Antitumor, anti-aggregation, antioxidant, UV

rays’ absorption

Holdt and Kraan (2011)

Polar lipids, PUFAs

and sulfolipids

Anti-inflammatory, immunomodulatory, anti-

angiogenic, and neuroprotective, antimicrobial,

antifungal properties

Maciel et al. (2016), Belghit et al. (2017),

Gurpilhares et al. (2019)

Reducing coronary diseases, diabetes, and

osteoarthritis

Mohamed et al. (2012)

Lectins Carcinoma inhibition. Anti-HIV, anti-influenza,

anti-coronavirus, anti-hepatitis, anti- herpes

simplex virus, miscellaneous, anti-cancer, anti-

nociceptive, anti-inflammatory, anti-microbial,

anti-encephalitis

Holdt and Kraan (2011), Singh and Walia

(2018)

Phycobiliprotein Natural food colorant Suleria et al. (2016)

Fluorescent pigments: medical reagents Sudhakar et al. (2018)

Antioxidant properties, prevention of

neurodegenerative diseases, cancer and gastric

ulcers

Mohamed et al. (2012)

Anti-inflammatory, antioxidant, antiviral,

antitumor, serum lipid reducing,

neuroprotective, hypercholesterolemic, liver

protecting, hepatoprotective

Holdt and Kraan (2011)

Sulfated polysaccharides Immune stimulant effect Rudtanatip et al. (2018)

LDL cholesterol reduction and HDL increase Mohamed et al. (2012)

Porphyran Anti-allergic activity, scavenging free radical

activity, antitumor activities

Mohamed et al. (2012), Davies et al.

(2019), Øverland et al. (2019)

Elevation of primary antibody response,

macrophages stimulation and Th-2 type

immune system suppression without affecting

Th-1 type immune system

Mohamed et al. (2012)

Anticoagulant, anti-hypercholesterolemic,

antitumor

Holdt and Kraan (2011)

Hepatoprotective properties Mohamed et al. (2012)
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In addition to carrageenans, agar constitutes

another relevant polysaccharide from algae. Concern-

ing its chemical structure, agar is a type of phycocol-

loid belonging to galactan family composed by a
(1 ? 4)-3,6-anhydro-L-galactose and b (1 ? 3)-D-

galactose residues, accompanied by a slight sulfate

content. The agar proportions with respect to total

algal weight vary among the species and its abundance

and quality are also highly dependent of environmen-

tal factors and seasonal variations, together with the

physicochemical composition of each alga (Cardozo

et al. 2007). With respect to its applicability, agar has

been identified as GRAS, being already assessed as a

safe additive to be incorporated into different food

matrices. Thus, regarding its possible incorporation to

diet, and keeping in mind its polysaccharidic nature, it

cannot be digested by the human gastrointestinal tract,

as it occurred with carrageenans, although it can

metabolized by intestinal bacteria to give rise to

D-galactose (Sudhakar et al. 2018). Hence, both

polysaccharides have been suggested to promote

prebiotic effects, improving the performance of

human digestion (Mohamed et al. 2012; Cian et al.

2015). Concerning its physicochemical properties as

food additives, agar is mainly used as a gelling and

stabilizing agent, as currently found for many food

matrices, but it has also been exploited as cryoprotec-

tants and solidifying agents, incorporated as ingredi-

ents of growth media for the in vitro culture of

different organisms, including plants and microorgan-

isms (Sudhakar et al. 2018; Torres et al. 2019).

Lipids

In general, marine algae present a low content of

lipids, which ranges between 1 and 5% of total dry

weight. However, they do possess a high proportion of

poly-unsaturated fatty acids (PUFAs) (Belghit et al.

2017; Praveen et al. 2019) and other lipids like sterols

but also make part of different heterogeneous com-

pounds, such as glycolipids and phospholipids (Torres

et al. 2019). Among fatty acids, marine algae are rich

in essential fatty acids, especially omega-3 fatty acids

(x-3). In particular, red macroalgae contain C-20 x-3

PUFAs, including eicosapentaenoic acid, a-linolenic

acid, and docosahexaenoic acid (Maciel et al. 2016;

Torres et al. 2019). Furthermore, besides x-3 PUFAs,

omega-6 fatty acids (x-6) have been found in red algae

in a much lesser extent, being mostly represented by

arachidonic acid. As a result, they show a very low x-

6/x-3 rate, suggesting a healthy lipid profile in which

the prevalence of x-3 PUFAs over x-6 indicates an

efficient profile with beneficial properties on the

prevention of cardiovascular diseases, osteoarthritis

and diabetes, together with enhanced anti-inflamma-

tory and anti-thrombotic properties (Macartain et al.

2007; Maciel et al. 2016). Moreover, besides such

bioactivities, additional biological properties have

been associated with those essential fatty acids derived

from marine sources, including red algae, acting as

antifungal, antibacterial, antiviral and antitumor

agents (Pereira 2011; Torres et al. 2019).

Table 1 continued

Compound Application Reference

Fatty acids Antifungal activity De Corato et al. (2017)

Pigments and MAA Photo-protective compounds. Antioxidant

properties

Cardozo et al. (2007), Lalegerie et al.

(2019)

Anticancer, anti-proliferative and antitumor

effects

Mohamed et al. (2012)

Phloroglucinol Anti-allergic, antifungal, antimicrobial and anti-

feeding

Gómez-Ordóñez et al. (2012)

Soluble dietary fiber Retard digestion and glucose absorption Mohamed et al. (2012)

Prebiotic Cian et al. (2015)

Iodine Antioxidant, anti-goiter and anticancer Mohamed et al. (2012)

Glycolipids Antimicrobial, antifungal, antitumor, antiviral,

anti-inflammatory activities

Maciel et al. (2016)
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Proteins and peptides

Among the different algae classes found in marine

ecosystems, red seaweeds exhibit the highest content

of proteins, followed by green and, finally, brown

algae (Belghit et al. 2017; Øverland et al. 2019). As a

general rule, the protein content of algae usually

ranges between 5 and 20%, although red algae may

achieve greater proportions, with maximum values

reaching 47% of total dry weight (Cian et al. 2015;

Rudtanatip et al. 2018; Praveen et al. 2019). Never-

theless, proteins depict a species-dependent occur-

rence, considering that some species, such as those

from Gracilaria genus present a low protein content

below 5%, whereas others like Pyropia tenera shows a

protein content of 37% of dry weight. Moreover, it

should be noted that protein content also shows a

significant influence on several experimental, envi-

ronmental and geographical factors, such as the

extraction and purification procedures, seasonal vari-

ations and the collection area (Holdt and Kraan 2011).

Concerning the amino acidic composition of red

algae proteins, a high content of essential amino acids

has been reported, being aspartic acid and glutamic

acid the most prevalent residues, accounting for up to

22–44% of total amino acids making part of red algae

proteins (Cian et al. 2015). Thus, such elevated

proportion of acidic amino acids has been identified

as a specific trait of red seaweeds, being responsible

for their organoleptic characteristics, such as flavor

and taste (Cian et al. 2015). Moreover, with respect of

total proteins, phycobiliproteins constitute the most

prevalent proteins in red seaweeds achieving values up

to 50% of total protein content, and causing the

reddish coloration attributed to these species (Niu

et al. 2007). Among phycobiliproteins, phycoerythrin

and phycocyanin, together with their combination,

have been reported as the major constituents of this

family of biomolecules (Cian et al. 2015). Deriving

from proteins, bioactive peptides have been isolated in

different red algal sources, mostly in Palmaria spp.

and Porphyra spp., although a limited application of

these molecules was observed, being only exploited as

food additives in a number of functional foods

commercialized in Asian countries (Lafarga et al.

2020). In a lesser extent, lectins have been also

identified as versatile proteins widely distributed in

red algae, acting as cell signaling mediators and

antimicrobial compounds (Liao et al. 2003).

Vitamins and minerals

In addition to the above-mentioned macronutrients

associated with red seaweeds, these organisms also

contain several nutrients found in very scarce concen-

trations but developing a significant beneficial effect

on human health. Among these nutrients, vitamins

play a major role, as great variety of these compounds

have been isolated from red algae, including both

water-soluble vitamins, B1, B2, B12, and C) and lipid-

soluble vitamins, such as pro-vitamin A (b-carotene)

and vitamin E (Škrovánková 2011). Indeed, vitamins

from marine sources have been already used for the

enrichment of functional foods (Figure 1).

Besides such organic micronutrients, minerals have

been also reported in red seaweeds as inorganic

micronutrients. Due to their marine habitats, red algae

are able to accumulate great mineral concentrations,

proceeding from seawater (Rosemary et al. 2019). In

this sense, Na, K, Ca, and Mg, have been identified in

high concentrations, ranging 0.4–4 g per 100 g of red

seaweeds, such as Chondrus spp. and Nori, whereas

trace elements, such as Fe, Zn, Mn, and Cu have been

reported, as well, in concentrations up to 10 mg per

100 g (Rupérez 2002). Moreover, special attention has

been paid to iodine, since this essential mineral has

been also reported in significant amounts inGracilaria

lemaeniformis, contributing to the promotion of thy-

roid function (Wen et al. 2006).

Secondary metabolites

Besides the previously described compounds from red

algae, as part of their primary metabolism, these

seaweeds also biosynthesize different compounds

with associated biological activities as a result of their

secondary metabolism, committed to the development

of defensive and adaptative responses against envi-

ronmental stresses. In the particular case of red

seaweeds, multiple reports have indicated the presence

of phenolic compounds, terpenoids, and alkaloids as

the most prevalent secondary metabolites (Aziz et al.

2020).

Among phenolic compounds, ubiquitously found

natural phenolics, mostly phenolic acids and flavo-

noids are present in red seaweeds, together with other

phenolic compounds characteristic of marine sources,

such as phlorotannins and bromophenols, all charac-

terized by their potent antioxidant associated activity.
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Thus, phenolic acids reported in red algae are p-

coumaric acid, caffeic acid, salicylic acid, hypogallic

acid, and chlorogenic acid (Kazłowska et al. 2010;

Onofrejová et al. 2010). In the same way, multiple

flavonoids have been also identified, mostly flavonols

and flavan-3-ols, like rutin and catechin from Por-

phyra dentata (Kazłowska et al. 2010), and quercetin,

rutin and catechin from Euchema cottonii (Namvar

et al. 2012). Despite being reported as exclusive of

brown algae, phlorotannins have been also recently

associated with red algae (Aziz et al. 2020). These

polymers of phloroglucinol have caught the attention

of many researchers due to their function as bioactive

compounds restricted to marine sources. On the

contrary, little is known about bromophenols, which

contribute to seaweed flavor but have been also

reported as secondary metabolites, thus requiring

further studies aiming at their characterization as

bioactive compounds (Cotas et al. 2020). Besides

phenolics, another compounds proceeding from the

polyketide biosynthetic pathway are furanones, which

have been largely determined in different red algae

combining their involvement in settlement and their

effectiveness as bioactive compounds (Dworjanyn

et al. 2006).

In the case of terpenoids, several compounds with

different isoprene polymerization degree have been

found in red seaweeds, ranging from sesquiterpenoids

to tetraterpenoids. Thus, in the case of red algae, most

terpenoids are biosynthesized in response to the attack

of herbivores and pathogenic microorganisms (Philip-

pus et al. 2018). Nevertheless, on top of these

compounds, carotenoids are considered one of the

major terpenoids found in red algae, also contributing

to their special pigmentation, being mainly repre-

sented by a- and b-carotene, lutein, and zeaxanthin.

Among them, b-carotene gained much interest in the

field of food industry because of its behavior as a

natural colorant and antioxidant, being suggested as a

promising candidate for its addition to food matrices

(Holdt and Kraan 2011).

With respect to alkaloids, limited information is

available in seaweed sources from the literature.

However, previous evidence has pointed at these

nitrogen-containing compounds as excellent anti-

inflammatory compounds of marine origin, which

prompted the research on their isolation and charac-

terization (Souza et al. 2020). In this sense, red algae

from Gracilaria genus have been identified as

excellent sources of these marine alkaloids, together

with those from Laurencia genus in a lesser extent,

whose anti-inflammatory and antimicrobial mecha-

nisms of action have been widely characterized, being

azocinyl morpholinone the major compound (de

Almeida et al. 2011).

Biological properties

Antioxidant activity

Several reports have indicated that extracts derived

from different red algae species promote a potent

antioxidant activity throughout different mechanisms,

including free-radical and reactive oxygen species

(ROS) scavenging activity, inhibition of lipid oxida-

tion, and metal chelation. It is important to highlight

that this activity has been proved by different assays,

showing a strong dependence on the species and the

experimental procedure employed for the perfor-

mance of plant extracts (Rodrigues et al. 2015c).

Moreover, among the different compounds isolated

from red seaweeds, phenolic compounds, especially

phenolic acids and flavonoids, and sulphated polysac-

charides, mostly carrageenans, have been identified as

the major responsible of the antioxidant activity

associated with these species. Table 2 shows an

overview of the antioxidant activity determined in

different red algal extracts. Thus, the phenolic com-

pounds-enriched extracts from different Rodophyta

species were assessed in terms of free-radical scav-

enging activity (RSA), as determined by 2,2-diphenyl-

pycril-hydrazyl (DPPH), and hydrogen peroxide-me-

diated 2,2-azinobis-(3-ethylbenzothiazoline-6-sul-

fonate) (ABTS) oxidation of the extracts from

Porphyra tenera (Onofrejová et al. 2010), Gracilaria

verrucosa (de Almeida et al. 2011), Gracilaria

arcuata (Agatonovic-Kustrin and Morton 2017), and

Palmaria palmata (Wang et al. 2010; Hardouin et al.

2014). In the same way, polysaccharides from red

algae have been revealed as potent antioxidant com-

pounds, according to the results found for the extracts

from Mastocarpus stellatus (Gómez-Ordóñez et al.

2014) and Pterocladia capillacea (Fleita et al. 2015),

by means of DPPH scavenging. On the other hand, the

antioxidant properties of red algal extracts in terms of

metal chelation and reducing power were assessed via

the determination of ferric reduction antioxidant
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Table 2 Antioxidant and anti-inflammatory properties of red algae

Species Extraction (solvent) Compound Activity References

Antioxidant

Porphyra tenera PLE (50% MeOH) PA TEAC = 20–25 lmol/g Onofrejová et al.

(2010)

Gracilaria birdiae UAE (0.1 M NaOH) SP Total antioxidant

capacity = 41.6–75.9 mg/g AAE

Fidelis et al. (2014)

Porphyra yezoensis UAE (W) PF Scavenging activity on hydroxyl

(0.065 mg/mL) and superoxide

radical (0.182 mg/mL)

Zhou et al. (2012)

Mastocarpus stellatus SLE (W) Carrageenans FRAP (44.9 lmol TE/g) Gómez-Ordóñez et al.

(2014)

Gigartina spp. EAE (alkaline

protease)

Fucoidan Inhibition of superoxide radical

(IC50 = 0.058 mg/mL).

Peroxidation (IC50 = 1.250 mg/

mL)

Rocha De Souza et al.

(2007)

Gracilaria arcuata SLE (EtOH) PC, sterols DPPH (27.3 GAE mg/100 g) Agatonovic-Kustrin

and Morton (2017)

Palmaria palmata EAE (proteases &

cellulases, W)

TPC DPPH (EC50 = 0.6–1.9 mg/mL)

ORAC (35.8 mmol TE/g extract)

Wang et al. (2010)

Pterocladia capillacea EAE (glucanase &

galactosidase)

PF DPPH (Top value = 91.5% at

1000 mg/mL)

Fleita et al. (2015)

Palmaria palmata HHPE ? EAE

(polysaccharidases)

TPC ORAC (4–12 lg TE/g) Suwal et al. (2019)

Solieria chordalis PF, Proteins ORAC (15–20 lg TE/g)

Anti-inflammatory

Gracilaria caudata HAE (W) SP MPO activity, CKs levels

reduction

Chaves et al. (2013)

Solieria filiformis SLE (0.1 M

NaCOOH buffer,

papain digestion)

SP Inhibition of nociceptive effects De Araújo et al. (2011)

Chondrus verrucosus HAE (0.17 M HCl) SP Inhibition of RBL-2H3 cell line He et al. (2019)

Gelidium pacificum HAE, (W, 95%

EtOH)

SP Inhibition o NO production from

LPS-induced THP-1 cell line

Cui et al. (2019)

Gracilaria salicornia SLE (EtOAc:MeOH,

1:1)

Chromenyl

compounds

Inhibition of anti-inflammatory

enzymes: COX-2, 5-LOX

Antony and

Chakraborty (2019)

Gracilaria birdiae SLE (0.1 M

NaCOOH buffer,

papain digestion)

SP Inhibition of HO-1 pathway De Sousa Oliveira

Vanderlei et al.

(2011)

Gracilaria cornea SLE (0.1 M

NaCOOH buffer,

papain digestion)

SP Inhibition of nociceptive effects,

neutrophil migration, and

oedema

Coura et al. (2012)

Gracilaria opuntia HAE (W) SP Inhibition of anti-inflammatory

enzymes: COX-1, 5-LOX

Makkar and

Chakraborty (2017)

Kappaphycus alvarezii SLE (MeOH:EtOAc,

1:1)

Terpenoids Inhibition of inflammatory

enzymes: COX, LOX

Chatter et al. (2011),

Makkar and

Chakraborty (2018)

Laurencia glandulifera n.d Neorogioltriol

(diterpenoid)

Inhibition of edema in vivo,

activity against LPS-induced

macrophages, inhibition of NF-

kB activation, TNF-a and NO

levels and COX-2

Chatter et al. (2011),

Makkar and

Chakraborty (2018)
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power assay (FRAP) and the ferrous chelating ability

determination, being reported in extracts derived from

Gracilaria birdiae (Fidelis et al. 2014), M. stellatus

(Gómez-Ordóñez et al. 2014), and P. palmata (Yuan

et al. 2005; Wang et al. 2010; Hardouin et al. 2014).

Once again, both phenolic compounds and car-

rageenans have been suggested as responsible for the

development of such bioactivity (Table 2). Further-

more, both compounds were reported to scavenge

ROS, shown by the Oxygen Radical Absorbance

Capacity (ORAC) determination, and inhibit lipid

peroxidation through the thiobarbituric acid reactive

substances assay (TBARS), as recorded in extracts

from different species, such as G. birdiae (Fidelis et al.

2014), Porphyra yezoensis (Zhou et al. 2012),

Gigartina spp. (Rocha De Souza et al. 2007), P.

palmata (Yuan et al. 2005; Wang et al. 2010; Hardouin

et al. 2014) and Soliera chordalis (Suwal et al. 2019).

Anti-inflammatory activity

Inflammation constitutes a multifactorial physiologi-

cal process, developed by the immune system, closely

related to oxidative stress, and contributing to cancer

onset. Consequently, greater efforts should be directed

to alleviate inflammation-related phenomena. In this

sense, red algae extracts have been reported to

promote a multifaceted anti-inflammatory activity, as

presented in Table 2, by the regulation of several

phenomena, including the alleviation of inflammation-

associated nociceptive effects, the inhibition of pro-

inflammatory enzymes and cytokines (CKs), the

inhibition of leukocyte migration, the regulation of

cell signaling pathways involved in the onset of

inflammation, and the promotion of anti-inflammatory

CKs. Once again, sulphated polysaccharides, espe-

cially carrageenans, and proteins, such as lectins and

phycobiliproteins, were assigned as the major respon-

sible for the anti-inflammatory effects attributed to red

algae (Table 2). Indeed, such effects have been

demonstrated in both in vitro models, as it is the case

of lipopolysaccharide (LPS)-induced RAW 264.7

macrophages, and in vivo, mostly murine models.

Thus, carrageenan-enriched extracts from different

Rhodophyta species have been assessed in terms of

anti-inflammatory effects, as it was observed by

Gracilaria caudata (Chaves et al. 2013), Solieria

filiformis (De Araújo et al. 2011), Chondrus verruco-

sus (He et al. 2019), Gelidium pacificum (Cui et al.

2019), different species from Gracilaria genus

(Gracilaria salicornia (Antony and Chakraborty

2019), G. birdiae (De Sousa Oliveira Vanderlei et al.

2011), G. cornea (Coura et al. 2012), and Gracilaria

opuntia (Makkar and Chakraborty 2017)). Among the

Table 2 continued

Species Extraction

(solvent)

Compound Activity References

Palmaria
palmata

SLE (MeOH/

CHCl3)

Phospholipids Inhibition of NO production by LPS-induced

macrophages

Banskota et al.

(2014)

Laurencia
snackeyi

SLE (MeOH) Halogenated

monoterpenes

CKs, TNF- a, Il-1b, and IL-6 levels reduction Wijesinghe et al.

(2014)

Porphyra
columbina

SLE (W) PB Upregulation of CKs: IL-10 Cian et al. (2012)

PLE, Pressurized liquid extraction; UAE, Ultrasound assisted extraction; SLE, Solid–liquid extraction; EAE, Enzyme assisted

extraction, High hydrostatic pressure extraction; HAE, Heat assisted extraction; W, Water; TPC, Total phenolic compounds; PA,

Phenolic acids; PC, Phenolic compounds; PB, Phycobiliproteins; SP, Sulfated polysaccharides; PF, Polysaccharide fraction; AAE,

Ascorbic acid equivalent; TE, Trolox equivalents; GAE, Gallic acid equivalent; DPPH, 2-diphenyl-1-picrylhydrazyl; ORAC, Oxygen

Radical Absorbance Capacity; TEAC, Trolox equivalent antioxidant capacity; MPO, Myeloperoxidase; NO, Nitric oxide; HO-1,

Hemoxygenase-1; LPS, Lipopolysaccharide; COX-2, Cyclooxygenase-2; 5-LOX, 5-lipoxygenase; CKs, Cytokines; TNF-a, Tumor

necrosis factor; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; IL, Interleukin
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different effects attributed to these extracts, the most

relevant pro-inflammatory enzymes inhibited were

cyclooxygenases-1 and -2 (COX) and lipoxygenase

(5-LOX) and myeloperoxidase. In addition, lipid-

enriched extracts from Kappaphycus alvarezii [92],

Laurencia grandulifera [93], P. palmata (Banskota

et al. 2014), and Laurencia snackeyi (Wijesinghe et al.

2014) enabled the reduction of the expression of pro-

inflammatory CKs i.e.: tumor necrosis factor alpha

(TNF-a), and interleukins (ILs) 1b and 6, the inhibi-

tion of nitric oxide (NO) production. Additionally, the

phycobiliprotein-enriched extracts of Porphyra

columbina were recorded in the basis of the up-

regulation of anti-inflammatory CKs, such as IL-10

(Cian et al. 2012).

In general, the combined determination of antiox-

idant, anticancer, and anti-inflammatory activities

from red seaweed extracts could face the further

determination of these species as promising natural

sources of cancer chemopreventive agents (Garcı́a-

Pérez et al. 2019).

Metabolic activity

Nowadays, diabetes and cardiovascular diseases are

one of the most important global health problems,

since they are the main responsible for premature

deaths between 30 and 70 years, together with cancer

(World Health Organization 2019). In this context,

numerous studies have pointed at red macroalgae as

natural sources of compounds devoted to the preven-

tion and treatment of metabolic and chronic diseases,

as it is the case of diabetes and obesity. Several authors

have highlighted the existence of multiple compounds

isolated from red macroalgae with the ability of

regulating the hyperglycemia caused by diabetes, as

reported by both in vivo and in vitro models,

indicating that red algae are interesting candidates

for the development of novel drugs for the treatment of

this metabolic disorder (Ezzat et al. 2018). Thus,

different mechanisms of actions have been proposed

for the anti-diabetic effects of red algae extracts, as

shown in Table 3. In summary, three major mecha-

nisms have been described for the anti-diabetic

activity of red algae extracts, including the inhibition

of insulin cell-signaling repressors, such as protein

tyrosine phosphatase 1B (PTP1B) (Wang et al.

2015b), reduction of circulating glucose levels, and

the inhibition of saccharidases, involved in the

synthesis of free monosaccharides, as it is the case

of a-amylase, a-glucosidase, aldose reductase or

dipeptidyl peptidase-4 (DPP4) (Table 3). Among the

different compounds from red algae responsible for

such bioactivity, bromophenols play a fundamental

role, on top of other molecules, like sulphated

polysaccharides and proteins.

Thus, bromophenols have been reported as multi-

faceted antidiabetic agents, developing different

mechanisms which include the inhibition of PTP1B

by both in vivo and in vitro models, as found for

Rhodomela confervoides (Shi et al. 2012), Odonthalia

corymbifera (Xu et al. 2016), and Symphyocladia

latiuscula (Liu et al. 2011), and the enzymatic

inhibition of a-glucosidase by Polyopes lancifolia

and Grateloupia elliptica extracts (Kim et al.

2008, 2010), and aldose reductase by S. latiuscula

extracts (Wang et al. 2005). Besides bromophenols,

the inhibition of enzymes related with type-2 diabetes

has been reported to sulphated polysaccharides from

K. alvarezii and G. opuntia extracts, exhibiting a

potent inhibition of a-amylase, a-glucosidase, and

DPP-4 (Makkar and Chakraborty 2017), and the

protein hydrolysate from P. palmata, acting as

inhibitor of DPP-4 (Harnedy and FitzGerald 2013).

Concerning anti-hyperlipidemic effects of red sea-

weed extracts, strong evidence has been reported on

rodent in vivo models, as well as in vitro systems.

Therefore, the dietary administration of several

species, such as Gracilaria changii (Chan et al.

2014), K. alvarezii (Matanjun et al. 2010), Gigartina

pistillata (Villanueva et al. 2014), P. tenera (Bocane-

gra et al. 2008), and P. umbilicalis (Moreira et al.

2010) on hypercholesterolemic rodent models have

promoted the reduction in the plasmatic levels of total

cholesterol (TC), low-density lipoprotein cholesterol

(LDL-C), and triacylglycerols (TAG), as well as the

increase in high-density lipoprotein cholesterol (HDL-

C). Moreover, red algal extracts were shown to

decrease the hepatic accumulation of cholesterol,

reduce the atherogenic index, inhibit lipid peroxida-

tion, and alleviate the obesity-related oxidative stress

in the same in vivo models (Chan et al. 2015; Patil

et al. 2018). With respect to individual compounds,

sulphated polysaccharides, especially porphyran, were

revealed as the major responsible of the above-

mentioned mechanisms, together with the increase

on fecal excretion of cholesterol and the reduction of

the apolipoprotein B 100 level in vitro, as found for
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Table 3 Antidiabetic and lipid metabolism related activities of red algae

Species Extraction (solvent) Compound Activity References

Antidiabetic

Rhodomela
confervoides

Synthetic derivation Bromophenols Inhibition of PTP1B in vitro and

in vivo

Shi et al. (2012)

Odonthalia
corymbifera

Isolation of bis(2,3-dibromo-

4,5-dihydroxybenzyl) ether

Bromophenols Inhibition of PTP1B in vitro and

in vivo

Xu et al. (2016)

Symphyocladia
latiuscula

SLE (95% EtOH) Bromophenols Inhibition of PTP1B in vitro Liu et al. (2011)

Kappaphycus
alvarezii/
Gracilaria opuntia

HAE (W) SP Inhibition of a-amylase, a -

glucosidase and DPP-4

Makkar and

Chakraborty

(2017)

Symphyocladia
latiuscula

SLE (95% EtOH) Bromophenols Inhibition of aldose reductase Wang et al. (2005)

Polyopes lancifolia SLE (80% MeOH) Bromophenols Inhibition of a -glucosidase,

sucrase and maltase

Kim et al. (2010)

Grateloupia elliptica SLE (75% MeOH) Bromophenols Inhibition of a -glucosidase Kim et al. (2008)

Palmaria palmata SLE (W, alkaline hydrolysis

0.12 M NaOH)

Protein

hydrolysate

Inhibition of DPP-4 Harnedy and

FitzGerald (2013)

Lipid metabolism

Gracilaria changii Powdered, directly

administered to animals

Whole algae Reduction of plasma levels of TC,

LDL-C, TAG and atherogenic

index

Chan et al. (2014)

Kappaphycus
alvarezii

Powdered, directly

administered to animals

Whole algae Reduction of plasma levels of TC,

LDL-C, TAG, lipid peroxidation,

increase of HDL levels

Matanjun et al.

(2010)

Gigartina pistillata Powdered, directly

administered to animals

Whole algae Reduction of plasma levels of TC,

LDL-C, TAG, and hepatic TAG

levels

Villanueva et al.

(2014)

Porphyra tenera Powdered, directly

administered to animals

Whole algae Reduction of plasma levels of TC Bocanegra et al.

(2008)

Porphyra umbilicalis Powdered, directly

administered to animals

Whole algae Reduction of plasma level of TC,

alleviation of obesity-related

oxidative stress

Moreira et al. (2010)

Melanothamnus
afaqhusainii

SLE (EtOH) SP Reduction of plasma levels of TC,

LDL-C, TAG, increase of HDL-

C levels

Ruqqia et al. (2014)

Porphyra yezoensisc HAE (W) SP Increase of fecal excretion of

cholesterol

Tsuge et al. (2004)

Porphyra sp. Porphyran isolation SP Reduction of ApoB100 levels

in vitro

Inoue et al. (2009)

Prophyra haitanensis Oxidative degradation SP Reduction of TC, TC and LDL-C,

increase of HDL-C

Wang et al. (2017)

SLE, Solid–liquid Extraction; HAE, Heat Assisted Extraction; W, Water; SP, Sulfated polysaccharides; PTP1B, protein-tyrosine

phosphatase 1B; DPP4, Dipeptidyl peptidase-4; TC, total cholesterol; LDL-C, low density lipoprotein cholesterol; TAG,

triglycerides; HDL-C, high density lipoprotein cholesterol
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Melanothamnus afaqhusainii (Ruqqia et al. 2014) and

several Porphyra species (Inoue et al. 2009), such as

P. yezoensis (Tsuge et al. 2004) and P. haitanensis

(Wang et al. 2017). On these bases, carrageenans were

also reported for their hypocholesterolemic properties

(Panlasigui et al. 2003). Keeping all this in mind, the

consumption of red seaweeds can be regarded as a

beneficial approach to alleviate the physiological

complications attributed to chronic metabolic dis-

eases, such as type-2 diabetes and hypercholes-

terolemia, with positive implications on the

development of currently critical diseases, as it is the

case of obesity and cardiovascular diseases.

Antitumor activity

Seaweed secondary metabolites have been reported to

show antitumor activity, thus showing the potential of

a novel source of natural pharmaceuticals (Ahmed

et al. 2011). This is the case of halogenated metabo-

lites and sulphated polysaccharides, mostly. Such

efficiency, as antitumor agents from red seaweeds, has

been assessed towards a plethora of cancer cell lines

from human neoplastic diseases. Table 4 contains a

summary of the different studies committed to the

description of anticancer activity of red algae extracts.

Different authors have pointed at brominated

compounds from Callophycus serratus (Kubanek

et al. 2006) Laurencia obtusa (Iliopoulou et al.

2003), Plocamium cartilagineum (De Inés et al.

2004), Polysiphonia lanosa (Shoeib et al. 2004),

Portieria hornemanii (Fuller et al. 1992), and Sphae-

rococcus coronopifolius (Smyrniotopoulos et al. 2010;

Rodrigues et al. 2015a). As a result, a panel of diverse

cancer cell lines has been proved to be affected by

halogenated compounds-enriched extracts, including

leukemia, lung, breast, colon, and cervix cancer cell

lines. Accordingly, sulphated polysaccharides, such as

carrageenans, have been also reported as efficient

anticancer agents, being conducted in different red

seaweed species, i.e.: Champia feldmannii (Lins et al.

2009), Gelidium amansii (Chen et al. 2004; Shao et al.

2013), Gracilaria caudata (Costa et al. 2010), Hypnea

mascifformis (Souza et al. 2018), and Jania rubens

(Gheda et al. 2018). In a lesser extent, polyphenols

from E. cottonii (Namvar et al. 2012) extracts, and

lectins from Euchema serra (Sugahara et al. 2001;

Hayashi et al. 2012) and S. filiformis (Chaves et al.

2018) have been reported in the basis of their

antitumor activity.

The anticancer activity reported on red algae

extracts have been conducted under in vitro conditions

and little information on in vivo models is currently

available. However, some studies have proven the

activity of certain compounds in tumor volume

reduction (TVR) (Campos et al. 2012; Namvar et al.

2012) and in combination with 5-Fluoroacil, a drug

used in chemotherapy (Zhou et al. 2005, 2006; Lins

et al. 2009). Also, similar percentages of TVR were

reported when using elatol extracted from Laurencia

microcladia (71%) compared to positive control

cisplatin (81%) (Campos et al. 2012) (Table 4).

Further studies are required, in this sense, to ensure

their effectiveness in humans, and molecular insights

are equally desired to elucidate the specific mecha-

nism of action of anticancer compounds, to facilitate

their consideration as official food and pharmaceutical

ingredients.

Antimicrobial activity

Antimicrobial activity has been attributed to different

compounds derived from red seaweeds, being

regarded as effective antibacterial, antifungal, and

antiviral compounds, especially glycolipids, lectins,

terpenoids and furanones, as well as different halo-

genated metabolites. Table 5 shows an overview of the

effectiveness of red algae extracts as sources of

antimicrobial compounds. Concerning antibacterial

activity, several red algae species have been shown to

promote a relevant effectiveness towards both

Gram ? and Gram—bacteria, as it is the case of C.

crispus, Gelidium latifolium, P. palmata, Ceramium

rubrum, Cryptopleura ramosa, Laurencia pinnatifida

and Polysiphonia lanosa (Hellio et al. 2001).

For instance, halogenated acetogenins of genus

Laurencia have shown a multifaceted antimicrobial

activity against a wide range of bacteria, including

those fromClostridium and Salmonella genera, as well

as other pathogenic species, such as Proteus mirabilis

and Klebsiella pneumoniae (Vairappan et al. 2001;

Vairappan 2003). Regarding the fractions rich in polar

glycolipids from the algae Chondria armata, these

compounds exhibited not only a potent antimicrobial

activity against Klebsiella sp., but also a relevant

antifungal activity against Candida albicans and

Cryptococcus neoformans (Al-Fadhli et al. 2006).
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Concerning other lipidic substances, extracts from

Laurencia papillosa and Galaxoura cylindriea

enriched with sulpholipids were effective against

Escherichia coli and Bacillus subtilis, as well as

antiviral activity against herpes simplex virus-1 (HSV-

1) (El Baz et al. 2013). Moreover, fatty acids from

Gracilaria edulis extracts promoted an intense effec-

tiveness against marine pathogens, such as those of

Vibrio sp., thus contributing to the prevention of

infectious diseases in the field of aquaculture (Kasa-

nah et al. 2019). In parallel, the combination of

Bacillus amyloliquefaciens associated with Laurencia

papillosa has proved to inhibit the growth of some

marine vibrios and the bacteria Aeromonas hydro-

philla, being both typical food pathogens (Chakra-

borty et al. 2017). Furthermore, protein extracts

isolated from red algal sources have been reported as

natural antibacterials too. Thus, extracts from Graci-

laria fisheri promoted an antibacterial activity against

Vibrio parahaemolyticus, which is considered the

etiologic agent of the shrimp acute hepatopancreatic

necrosis disease (Boonsri et al. 2017). Among pro-

teins, lectins have emerged as interesting antimicro-

bials, as those from Soliera filiformis, which depict a

wide range of effectiveness against different patho-

gens, including Serratia marcescens, Salmonella

typhi, K. pneumoniae, Enterobacter aerogenes, Pro-

teus sp., and Pseudomonas aeruginosa (Holanda et al.

2005). Not only proteins have been detected because

of their role as antimicrobial, since algal peptides have

also shown the same bioactivity, as reported for

Porphyra yezoensis inhibiting the growth of Staphy-

loccocus aureus (Jiao et al. 2019). At last, furanones

have been identified as another relevant family of

compounds with associated antimicrobial activity

from red algal sources, as demonstrated for Delisea

pulchra extracts against Escherichia coli and Campy-

lobacter jejuni (Manefield et al. 2001; Castillo et al.

2015).

In the case of antifungal activity (Table 5), besides

the already mentioned activity of glycolipids-enriched

Chondria armata extracts against human fungal

pathogens (Al-Fadhli et al. 2006), the protein extracts

from Hypnea musciformis showed the same effective-

ness against different agricultural pathogens, such as

Trichophyton rubrum and Colletotrichum lindemu-

nthianum (Melo et al. 1997). In the same way, another

crop pathogens, like Botrytis cinerea, Monilinia laxa,

and Penicillium digitatum were inhibited by the fatty

acids and polysaccharide fractions of Porphyra umbil-

icalis and related species, thus suggesting a promising

effect of red seaweed extracts as preventive agents of

agricultural diseases (De Corato et al. 2017).

Finally, the antiviral activity of red algal extracts

has been widely reported in terms of HSV-1 growth

inhibition as stated before. Generally, polysaccha-

rides, mostly carrageenans, and lectins are the major

responsible of such bioactivity (Table 5). Thus,

extracts from different Rhodophyta species, such as

Gracilaria sp., Nothogenia fastigiata, and Mastocar-

pus stellatus have been assessed in terms of their

effectiveness against HSV-1 and HSV-2 (Baba et al.

1988; Damonte et al. 1994; De Clercq 2000;

Mazumder et al. 2002; Bouhlal et al. 2010; Soares

et al. 2012; Gómez-Ordóñez et al. 2014). Additionally,

the same extracts reported a potent activity against

cytomegalovirus, vesicular stomatitis virus, and sev-

eral respiratory viruses, such as respiratory syncytial

virus and influenza viruses A and B (Damonte et al.

1994; De Clercq 2000; Bouhlal et al. 2010). Further-

more, the antiviral activity against human immunod-

eficiency virus (HIV) of red algal extracts has been

attributed to the presence of sulphated polysaccharides

and lectins, as observed for Schizymenia pacifica

(Nakashima et al. 1987). Additionally, algal lectins

obtained by recombinant production showed a signif-

icant activity against hepatitis C virus, as validated in

both in vitro and in vivo models (Meuleman et al.

2011; Takebe et al. 2013; Barton et al. 2014).

Overall, the pleiotropic effects of algal extracts as

antimicrobial agents may lead to their exploitation as

natural ingredients to be incorporated in both food and

pharmaceutical preparations for the treatment of

multiple infectious diseases. In addition, the widely

reported activity against sea and agricultural patho-

gens open new perspectives in the field of algae

valorization for their consideration as natural sources

of antibiotics and antivirals.

Other activities

In addition to the previously described bioactivities

associated with red seaweeds, their deriving extracts

have been reported in terms of supplementary prop-

erties, conferring health-enhancing effects. As a

matter of fact, sulphated polysaccharides from Botry-

ocladia occidentalis extracts were shown to exert a

strong anticoagulant and antithrombotic activity in
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low doses (Farias et al. 2000; Fonseca et al. 2008). In

the same way, sulphated polysaccharides with antico-

agulant activities have been also found in other

species, such as Schizymenia binderi, Porphyra hai-

tanensis, Gracilaria debilis, and Grateloupia indica

(Sen et al. 1994; Zúñiga et al. 2006; Zhang et al. 2010;

Sudharsan et al. 2015). Moreover, the photoprotective

effects of pigments from red algae, including carote-

noids, together with phenolic compounds, and mycos-

porine-like amino acids (MAA) have prompted the

consideration of derived extracts as efficient additives

to be used in already commercialized cosmetic

preparations, reporting the effectiveness of such

compounds isolated from Hydropuntia cornea,

Gracilariopsis longissima, and Porphyra umbilicalis

(Álvarez-Gómez et al. 2019). In the case of additional

health-promoting properties, red seaweed extracts

have been identified as natural sources of neuropro-

tective agents. Hence, neuroprotection of red algae

extracts was reported in terms of acetylcholinesterase

(AChE) and butyrylcholinesterase (BuChE), two

enzymes closely related with Alzheimer’s and Parkin-

son’s diseases. For instance, AChE activity has been

studied in different compounds extracted from algae

which has verified this neuroprotective activity, such

as phytol from Gelidiella acerosa (tested both in

in vitro and in vivo experiments) (Syad et al. 2016) or

methanol extracts from Hypnea valentiae, Gracilaria

edulis (Suganthy et al. 2010), Amphiroa spp. (Stirk

et al. 2007). Finally, the hepatoprotective activity of

red algae extracts has been also indicated to be

associated with the prevention of oxidative stress. For

instance, the oral administration of Hypnea musci-

formis ethanolic extract promoted hepatoprotective

activity in liver damage-induced rodent models

(Bupesh et al. 2012). Moreover, similar effects were

observed by the polyphenol-enriched extracts from

Bryothamnion triquetrum, (Novoa et al. 2019), the

ethanol extract from Eucheuma cottonii (Wardani

et al. 2017), and the polysaccharide fraction from

Porphyra yezoensis (Guo et al. 2007).

Extraction technologies for bioactive compounds

The bioactive compounds of red seaweeds have been

extracted using diverse techniques. Usually, the first

step of the extraction process involves a pre-treatment

stage with the aim of disrupting algal cell walls and

improving the extraction yield (Michalak and Choj-

nacka 2014). Such pre-treatments can be classified as

mechanical, physical, chemical, thermal and enzy-

matic methods (Fig. 2), and they are highly influenced

by the physicochemical nature of target compounds

(Michalak and Chojnacka 2014; Jacobsen et al. 2019).

A summary of the extraction procedures employed in

different studies were included in Table 6.

Solid–liquid Extraction

Solid–liquid extraction (SLE) is the simplest and most

inexpensive method to extract bioactive compounds,

thus being considered as the most widely applied

methodology on red seaweed extracts. During SLE

protocols, solvent penetrates a pulverized tissue,

dissolving the soluble compounds without applying

other assisting mechanisms. Maceration or percolation

are examples of this type of extraction, in which

different organic solvents are used, depending on the

solubility of the target compounds. Some of the most

used solvents are water, methanol, ethanol, ethyl

acetate, either alone or mixed in different proportions

(Heffernan et al. 2014; Ben Saad et al. 2019).

However, this system presents several disadvantages,

such as the high amount of pure solvents, high

evaporation rates, low selectivity towards compounds,

and long extraction times (Jacobsen et al. 2019).

Consequently, SLE also generates high amounts of

Fig. 2 Extraction procedure and different systems for red algae

123

1528 Phytochem Rev (2023) 22:1509–1540



T
a
b
le

6
E

x
tr

ac
ti

o
n

m
et

h
o

d
o

lo
g

ie
s

an
d

co
n

d
it

io
n

s
fo

r
b

io
ac

ti
v

e
co

m
p

o
u

n
d

s
o

f
re

d
al

g
ae

S
p

ec
ie

s
S

o
lv

en
t

C
o

m
p

o
u

n
d

R
ec

o
v

er
y

B
io

ac
ti

v
it

y
R

ef
er

en
ce

s

S
o

li
d

/l
iq

u
id

ex
tr

ac
ti

o
n

S
o
li
er
ia

ch
o
rd
a
li
s

C
/M

L
ip

id
s

n
s

A
n

ti
o

x
id

an
t

T
er

m
e

et
al

.

(2
0

1
8

)

A
ls
id
iu
m

co
ra
ll
in
u
m

E
/W

;
M

/E
A

C
h

lo
ro

p
h

y
ll

a,
b

an
d

b-
ca

ro
te

n
e

3
6

0
.3

8
an

d
2

6
4

.2
4

m
g

/1
0

0
g

D
W

//
9

3
.4

5
m

g
/1

0
0

g
ex

tr
ac

t

A
n

ti
o

x
id

an
t,

A
n

ti
b

ac
te

ri
al

B
en

S
aa

d
et

al
.

(2
0

1
9

)

G
ra
ci
la
ri
a

sp
.

C
C

(i
o

n
ic

li
q

u
id

)
P

B
4

6
.5

%
n

s
M

ar
ti

n
s

et
al

.

(2
0

1
6

)

G
ra
ci
la
ri
a
g
ra
ci
li
s

C
o

ld
w

at
er

//
H

o
t

w
at

er
//

E
/W

(8
0

:2
0

)
//

M
/W

(7
0

:3
0

)

P
C

4
.7

6
l

g
G

A
E

//
5

.3
6

//
3

.4
9

//
4

.9
1

A
n

ti
o

x
id

an
t

H
ef

fe
rn

an

et
al

.
(2

0
1

4
)

P
re

ss
u

ri
ze

d
L

iq
u

id
A

ss
is

te
d

E
x

tr
ac

ti
o

n
(P

L
A

E
)

H
yp
n
ea

m
u
sc
if
o
rm

is
W

,
2

1
0
�C

P
C

3
9

.5
7

m
g

G
A

E
/g

A
n

ti
o

x
id

an
t

P
an

g
es

tu
ti

et
al

.
(2

0
1

9
)

G
ra
ci
la
ri
a
g
ra
ci
li
s

W
//

E
/W

(8
0

:2
0

)
//

M
/W

(7
0

:3
0

)
//

1
2

0
�C

,
1

0
.3

4
M

P
a

P
C

2
.7

9
//

2
.4

4
//

3
.5

0
l

g
G

A
E

A
n

ti
o

x
id

an
t

H
ef

fe
rn

an

et
al

.
(2

0
1

4
)

P
o
rp
h
yr
a
te
n
er
a

M
/W

.
1

3
0
�C

,
1

3
M

P
a

P
C

1
9

1
1

n
g

/g
A

n
ti

o
x

id
an

t
O

n
o

fr
ej

o
v

á
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waste that may lead to a negative environmental

impact.

As described in Table 6, numerous studies have

used SLE to extract biological compounds from red

seaweeds, such as pigments, lipids, phenolic com-

pounds, phycobiliproteins and polysaccharides (Mar-

tins et al. 2016; Terme et al. 2018; Ben Saad et al.

2019; Jacobsen et al. 2019).

Pressurized Liquid Assisted Extraction

Pressurized liquid-assisted exaction (PLE) constitutes

an extraction methodology in which solvent preserves

the liquid state above its boiling point, by applying

high pressure (Michalak and Chojnacka 2014). Dif-

ferent solvents may be used in this extraction, such as

water, methanol, and ethanol (Kadam et al. 2015b).

Generally, the experimental conditions employed in

PLE procedures include a high range of temperatures

(120–210 �C), while pressure varies between 10 and

20 MPa (Onofrejová et al. 2010; Heffernan et al.

2014; Pangestuti et al. 2019). This type of extraction is

more selective and efficient than SLE and requires

significant lower amounts of solvents and shorter

extraction times. Nevertheless, due to harsh conditions

applied on PLE, this methodology is limited by the

thermolabile properties of the compounds subjected to

extraction (Kadam et al. 2015a; Jacobsen et al. 2019).

Different compounds have been extracted from red

algae using this technique, such as phenolic com-

pounds, carbohydrates and proteins (Onofrejová et al.

2010; Heffernan et al. 2014; Gallego et al. 2019;

Pangestuti et al. 2019).

Supercritical Fluid Extraction

Supercritical fluid extraction (SFE), is a novel extrac-

tion methodology in which solvents are subjected to

high temperatures and pressures to reach a gas–liquid

equilibrium, thus improving the extraction yield

(Michalak and Chojnacka 2014). The most used

solvent in SFE is carbon dioxide (CO2) thanks to its

availability, low cost, chemical innocuity, and low

critical requirements in terms of temperature and

pressure conditions (Michalak and Chojnacka 2014;

Jacobsen et al. 2019). Pressure values usually range

between 29 and 35 MPa, while temperatures varies

between 40 and 50 �C, making SFE a suitable tech-

nique for the extraction of thermo-labile compounds

(Jacobsen et al. 2019). On the other hand, the main

drawback of this methodology is the expensive

equipment required. Concerning red algae, SFE has

been employed to extract specially lipophilic sub-

stances, such as glycolipids, phospholipids, and x-3

fatty acids (Herrero et al. 2006; Klejdus et al. 2010;

Michalak and Chojnacka 2014; Terme et al. 2018).

Microwave Assisted Extraction

Microwave assisted extraction (MAE) is based on the

application of electromagnetic radiation with a fre-

quency between 300 MHz and 300 GHz to heat

intracellular liquids, which exert pressure on the cell

walls and leads to their breakdown. Then, the intra-

cellular compounds are released into the solvent,

improving the extraction efficiency (Michalak and

Chojnacka 2014). In general, the most used solvent on

MAE methodology is water (Sousa et al. 2010; Juin

et al. 2015; Boulho et al. 2017; Chen and Xue 2019)

and temperature may vary between 40 and 110 �C
(Sousa et al. 2010; Juin et al. 2015; Boulho et al. 2017).

Therefore, MAE is not recommended to extract

temperature-sensitive compounds (Kadam et al.

2015b). Nevertheless, this technique reduces the

amount of solvent required and wastes produced, is

relatively economic, and easy to perform (Kadam et al.

2015b). Several studies have employed MAE to obtain

biological compounds from red algae, such as phyco-

biliproteins and polysaccharides, including agar and

carrageenan (Sousa et al. 2010; Juin et al. 2015;

Boulho et al. 2017; Chen and Xue 2019).

Ultrasound Assisted Extraction

Ultrasound assisted extraction (UAE) is based on the

migration of sound waves (whose frequency ranges

from 20 to 20,000 Hz), producing micro-bubbles in a

liquid medium. These bubbles grow and collapse,

disrupting cell walls and, then favoring the penetration

of solvents into the matrix (Michalak and Chojnacka

2014; Garcia-Vaquero et al. 2017; Jacobsen et al.

2019). Generally, as it occurs with MAE, water is used

as solvent in UAE (Fidelis et al. 2014; Rodrigues et al.

2015b; Wang et al. 2015a). Temperatures usually

ranges between 30 and 60 �C, being compatible with

the extraction of thermo-labile compounds (Kadam

et al. 2015b; Mittal et al. 2017). As a green method,

UAE has been reported to improve the extraction yield
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and reduce the amount of solvent required and the

extraction time. In addition, it has high possibilities to

be introduced in industrial processes, due to the high

scalability to large-scale applications (Garcia-

Vaquero et al. 2017). Different studies have employed

UAE in the extraction of carbohydrates, sulphated

polysaccharides, proteins, amino acids, and phenolic

compounds (Fidelis et al. 2014; Rodrigues et al.

2015b; Wang et al. 2015a; Garcia-Vaquero et al. 2017;

Mittal et al. 2017).

Enzymatic Assisted Extraction

Enzymatic assisted extraction (EAE) is a promising

system, based on the use of enzymes to hydrolyze the

complex and heterogeneous algal cell walls and

extract the intracellular compounds. Some examples

of the enzymes used are cellulase, a-amilase, pepsin,

viscozyme, agarase, etc. (Michalak and Chojnacka

2014; Kadam et al. 2015b; Garcia-Vaquero et al.

2017). The optimal extraction conditions depend on

the characteristics of the enzyme, including temper-

ature ranges from 40 to 60 �C and pH from 3.8 to 8

(Michalak and Chojnacka 2014; Garcia-Vaquero et al.

2017). Generally, the extraction is conducted on

phosphate or acetate buffer to ensure an efficient

enzymatic performance (Praveen et al. 2019; Vásquez

et al. 2019). This system presents a high efficiency and

specificity, reduced time, and allows reaching great

extraction yields (Garcia-Vaquero et al. 2017). In

addition, EAE is environmentally friendly and non-

toxic, thanks to the independence on pollutant sol-

vents. However, its application at industrial scale is

limited, due to the expensive cost of the enzymes

(Garcia-Vaquero et al. 2017). Different studies have

used EAE to extract biological compounds such as

proteins or phenolic compounds (Wang et al. 2010;

Rodrigues et al. 2015b; Vásquez et al. 2019).

Conclusions

Red algae are the largest group of seaweeds and a

potential source of bioactive compounds. Among their

components, agar and carrageenans account for up to

40–50% of their dry weight and although they are

mostly known for their technological and industrial

applications as gelling, stabilizing and emulsifying

agents, they can be also highlighted as bioactive

compounds. The lipid profile of red algae shows a low

x-6/x-3 rate which indicates beneficial properties in

the prevention of cardiovascular diseases. Red algae

show high protein content but also lectins have been

proposed as cell signaling mediators and antimicrobial

compounds. Moreover, minor components such as

vitamins (B1, B2, B12, C, b-carotene), minerals (Na,

K, Ca, and Mg) and other secondary metabolites

(phenolic compounds, terpenoids or alkaloids) are

potential candidates to be explored. Concerning the

related biological properties, antioxidant, anti-inflam-

matory, antitumor, and antimicrobial properties can be

highlighted as the most studied but more in vivo

experiments need to be performed to further disclose

the mechanisms of action behind the activities. On the

other hand, regarding the extraction techniques, the

optimization and development of new procedures

using green extraction technologies are necessary to

attach to a circular and sustainable economy. Consid-

ering these main findings, further work is directed

towards the creation and development of new appli-

cations to include bioactive compounds from red algae

in the food, cosmetic and pharmaceutical industries.
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