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Abstract Diabetes mellitus is a multifactorial global

health disorder that is rising at an alarming rate.

Cardiovascular diseases, kidney damage and neuropa-

thy are the main cause of high mortality rates among

individuals with diabetes. One effective therapeutic

approach for controlling hyperglycemia associated

with type-2 diabetes is to target alpha-amylase and

alpha-glucosidase, enzymes that catalyzes starch

hydrolysis in the intestine. At present, approved

inhibitors for these enzymes are restricted to acarbose,

miglitol and voglibose. Although these inhibitors

retard glucose absorption, undesirable gastrointestinal

side effects impede their application. Therefore,

research efforts continue to seek novel inhibitors with

improved efficacy and minimal side effects. Natural

products of plant origin have been a valu-

able source of therapeutic agents with lesser toxicity

and side effects. The anti-diabetic potential through

alpha-glucosidase inhibition of plant-derived

molecules are summarized in this review. Eight

molecules (Taxumariene F, Akebonoic acid, Morusin,

Rhaponticin, Procyanidin A2, Alaternin, Mulberrofu-

ran K and Psoralidin) were selected as promising drug

candidates and their pharmacokinetic properties and

toxicity were discussed where available.
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IL-1B Interleukin 1 beta
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LOX Lipoxygenase

LPS Lipopolysaccharide

MPTP 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine

NF-jB Nuclear factor-jB

NO Nitric oxide

NQO1 NAD(P)H quinone dehydrogenase

Nrf2 Nuclear factor erythroid 2–related factor 2

p38 P38 MAP kinase

PSE Peanut skin extract

PGE2 Prostaglandin E2

PTP1B Protein tyrosine phosphatase 1B

SARS-

CoV

Severe acute respiratory syndrome

coronavirus

ROS Reactive oxygen species

t-BOOH Tert-Butyl hydroperoxide

TNF-a Tumor necrosis factor alpha

UGT UDP-glucuronosyltransferase

Introduction

Diabetes mellitus (DM) is an endocrine metabolic

disorder characterized by abnormal levels of glucose

in the blood stream (Alrefai et al. 2002). Owing to the

unhealthy lifestyle activities, the global prevalence of

diabetes is rising and the number of diabetes cases is

projected to reach 578 million cases by the year 2030

(Saeedi et al. 2019). Insulin, a peptide hormone

produced by the pancreatic b-cells, plays a key role in

the regulation of blood glucose levels and energy

metabolism. It is essential for a myriad of cellular

functions including glucose uptake and transport,

glycogen synthesis, fatty acid synthesis and protein

synthesis. Insufficient production of insulin or insulin

resistance impair the normal glucose homeostasis,

which eventually lead to hyperglycemia (Wilcox

2005). Chronic hyperglycemia can result in serious

long-term complications including nerve damage,

cardiovascular disease and kidney failure (Tripathi

and Srivastava 2006).

Diabetes can be classified into two broad cate-

gories; type 1 and type 2 diabetes. Type 1 diabetes,

also known as insulin-dependent diabetes, is one of the

most common metabolic disorders occurring in child-

hood (Atkinson et al. 2014). The pathogenesis of type

1 diabetes involves T-cell mediated autoimmune

destruction of the pancreatic beta-cells that produce

insulin. Subsequently, this leads to a deficiency of

insulin secretion in the body, resulting in the onset of

the disease (Simmons and Michels 2015). On the other

hand, type 2 diabetes is the most prevalent form of

diabetes, comprising 90–95% of all the cases (Fan

2017). This form of diabetes is caused by a combina-

tion of insulin resistance and impaired insulin secre-

tion (Watada and Tamura 2017). The insensitivity of

the target tissues to insulin can be manifested by the

failure of glucose uptake in the skeletal muscle cells,

and also due to the increased formation of glucose in

the liver (Ormazabal et al. 2018). The major risk

factors associated with the onset and the aggravation

of type 2 diabetes include obesity, physical inactivity

and vitamin D deficiency (Wu et al. 2014b).

Until now, there is no definitive treatment that can

effectively modulate the metabolic dysfunction asso-

ciated with diabetes. In this vein, several pharmaco-

logical approaches have been used to control

hyperglycemia which is the major cause of diabetes

complications. Treatments often include insulin injec-

tion for patients of type I diabetes or oral medications

combined with lifestyle changes for the management

of type 2 diabetes (Aziz 2012). The therapeutic

intervention using non-insulin medications is based

on reversing the pathophysiological abnormalities that

contribute to hyperglycemia (Chatterjee and Davies

2015). In other words, such drugs hinder glucose

absorption, suppress hepatic gluconeogenesis and

inhibit renal reabsorption of glucose. Examples of

common anti-diabetic drugs that promote the afore-

mentioned effects include alpha-glucosidase inhibi-

tors, metformin and sodium-glucose co-transporter-2

(SGLT-2) inhibitors (Bhowmick and Banu 2017).

However, despite their prominent role in attenuating

blood glucose levels, the adverse effects associated

with these drugs are inevitable.

Alpha-glucosidase inhibitors stand out as a non-

invasive treatment associated with mild, short-lived

and dose-dependent gastrointestinal (GI) side effects

including diarrhea, abdominal pain and flatulence

(Hedrington and Davis 2019). By temporarily delay-

ing the intestinal absorption of carbohydrates and

thereby suppressing the elevation of postprandial

blood glucose levels (Bischoff 1995), they present a

convenient method in regulating type 2 diabetes which

is directly linked to dietary habits. Currently, only

three alpha-glucosidase inhibitors are utilized in

clinical practice: acarbose, miglitol and voglibose
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(Fig. 1) and therefore research efforts seeking novel

inhibitors with improved efficacy are increasing.

In recent decades, there has been a growing interest

in the use of natural products as therapeutic com-

pounds especially in the prevention and treatment of

type 2 diabetes. Medicinal plants and traditional

treatments were used throughout history as a remedy

for all sorts of medical disorders including diabetes.

Examples exceed herbal infusions and supplements to

include approved drugs such as metformin, an anti-

diabetic drug originally isolated from the herbal plant

Galega officinalis (Modak et al. 2007). This review

provides an overview of 290 bioactive molecules from

plant origin exhibiting alpha-glucosidase inhibition

and it highlights the most promising drug candidates

for managing type 2 diabetes through the inhibition of

alpha-glucosidase enzyme.

Search methodology

Several studies isolated and characterized plant

molecules that possess alpha-glucosidase inhibitory

activity, and the topic was also reviewed by Yin et al.

(2014) and Ghani (2015). Santos et al. (2018)

reviewed the alpha-glucosidase inhibitory activity of

more than 280 natural and synthetic plant-derived

xanthones and highlighted the importance of these

molecules in the development of anti-diabetic agents.

In the current review, published work related to alpha-

glucosidase inhibitors of plant origin between the

years 2015–2020 were collected using various elec-

tronic databases including PubMed, Scopus and

Science Direct. The search terms used to collect the

relevant papers involved a combination of ‘‘alpha-

glucosidase’’ with either ‘‘plant extracts’’ or with each

of the chemical classes and subclasses presented in

this review. Those studies that examined the alpha-

glucosidase inhibitory activities of synthetic and non-

plant derived compounds (e.g. microorganisms) were

excluded from the study. This review primarily

discussed the in vitro alpha-glucosidase inhibitory

activities of different plant extracts and specific

molecules along with their biological activities, phar-

macokinetic properties and toxicity. The search

resulted in identifying 290 chemically diverse mole-

cules exhibiting in vitro alpha-glucosidase inhibition.

MarvinSketch software (version 20.15, ChemAxon,

Budapest, Hungary) was used to draw the chemical

structures of the reported bioactive compounds. Eight

molecules were identified as promising candidates for

future research on type 2-diabetes drug discovery. The

Fig. 1 Acarbose, miglitol and voglibose structures
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selection was based on the following criteria: (1) the

inhibitory efficiency compared to the positive con-

trols, and (2) the variability in the chemical structure

and plant origin. Selected compounds were further

discussed with respect to other bioactivities of phar-

maceutical importance, pharmacokinetic properties

and toxicity profiles.

Alpha-glucosidase: biological role and available

inhibitors

In the gastrointestinal tract, complex carbohydrates

are digested by multiple breakdown reactions into

monosaccharides which are absorbed in the small

intestine. The digestion process begins with the

secretion of amylases (EC 3.2.1.1) produced mainly

by the pancreatic and salivary glands and catalyze the

hydrolysis of starch into shorter polysaccharides

(Mandel and Breslin 2012). The acidic environment

of the stomach inhibits the enzymatic activity of the

salivary amylase, which will hinder further breakdown

of starch. Upon entry into the small intestine, partially

hydrolyzed starch is further converted by the pancre-

atic amylases which targets the a-1,4 bonds of the

carbohydrate releasing dextrins (des Gachons and

Breslin 2016). The final step in carbohydrates

metabolism is mediated by alpha-glucosidases (EC

3.2.1.20) in the brush border of the enterocytes. The

enzymes contain duplicated glycoside hydrolases

(GH31) domains and they catalyze the hydrolysis of

a-glucosidic linkages of disaccharides and oligosac-

charides (Jongkees and Withers 2014; Lombard et al.

2014). Reports have shown that alpha-glucosidase was

1.5-fold overexpressed in noninsulin-dependent dia-

betes patients contributing to the increase in postpran-

dial glucose levels (Dyer et al. 2002).

Polysaccharides and monosaccharides resulting

from the action of alpha-amylase and alpha-glucosi-

dase are absorbed at different rates by the body with

monosaccharide units being absorbed more quickly.

The inhibition of alpha-amylase and alpha-glucosi-

dase activity can therefore retard glucose liberation

from complex carbohydrates modulating the onset of

postprandial hyperglycemia, thereby rendering it an

ideal target for the management of type 2 diabetes.

Alpha-amylase inhibitors are mainly present in plants

and the most studied molecules are glycoproteins

isolated from kidney beans (Phase 2 � product)

(reviewed in Barrett and Udani 2011). The most

commonly prescribed alpha-glucosidase inhibitor is

acarbose and it is a pseudo-carbohydrate isolated from

actinomycetes (Luo et al. 2001). Other available

inhibitors include, voglibose (from microbial origin)

and miglitol (derived synthetically from 1-deoxyno-

jirimycin) (Tan et al. 2018). The structural resem-

blance of these drugs with carbohydrates promote

their attachment to the binding site of alpha-glucosi-

dase enzyme. A recent in silico study found that these

inhibitors interact with different residues of the

enzyme including Phe178, Phe303, His280, His351,

Arg315, Arg442 and Tyr158 (Ernawati et al. 2018).

Acarbose, a pseudo-tetrasaccharide consisting of a

valienol moiety linked via nitrogen to isomaltotriose.

This molecule has a 104 to 105 times higher affinity for

alpha-glucosidases compared to natural oligosaccha-

rides and competitively inhibits this enzyme (Rosak

and Mertes 2012). The binding affinity of acarbose to

the enzyme is much higher than the normal sugar

substrates due to hydrogen bond formation between

ASP 568 and the hydrogen atom of the amine group

(Abuelizz et al. 2019).

Detection methods of alpha-glucosidase inhibition

Several classical and new methods have been devel-

oped for the detection of alpha-glucosidase inhibition

by natural and synthetic compounds. The colorimet-

ric-based quantitative method is among the most

common and practical approaches that has been

utilized for the verification of the inhibitory role of

different compounds against alpha-glucosidase

enzyme. This method is based on the measurement

of the quantity of p-nitrophenol (pNP) released when

p-nitrophenyl-a-D-glucopyranoside (pNPG) is hydro-

lyzed by alpha-glucosidase enzyme. This is followed

by measuring spectrophotomerically the absorbance

of the formed product which is characterized by a

yellow color at 400 nm (Zhang et al. 2019). Another

assay commonly used for the detection of alpha-

glucosidase activity is the colorimetric/fluorometric

glucose oxidase assay which allows the detection and

quantification of glucose released in the reaction.

We focused our review on studies that utilized the

colorimetric spectrophotometric method to evaluate

the alpha-glucosidase inhibitory activity of the iso-

lated compounds. The majority of studies in this
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review assessed bioactivity of molecules using alpha-

glucosidase enzyme isolated from yeast and used

pNPG as a substrate. Additionally, different reference

compounds have been utilized in the evaluation of the

alpha-glucosidase inhibitory activity of the various

plant-derived compounds including acarbose, querce-

tin and 1-deoxynojirimycin. Although acarbose was

the most commonly used positive standard, the

reported IC50 values for this inhibitor varied widely

and fell in the range of 0.0013–1998.79 lM (Tables 1

and 2, online resource 1). The great variability in the

obtained IC50 values for acarbose can be attributed to

the different experimental conditions employed such

as the enzyme source, the enzyme and substrate

concentrations and the incubation times and temper-

atures. One consequence to that is the difficulty in

interpreting results obtained from seperate papers and

comparing bioactivities. The effect of the different

experimental conditions and the various enzymes used

on the sensitivity of the assay need to be assessed

leading to a standardization of the protocol used.

Crude plant extracts as a source of alpha-

glucosidase inhibitors

The potential role of herbal plants in the inhibition of

alpha-glucosidase activity has been examined by

different studies (Table 1). Among the plants studied

in the papers that were included in this review,

Chrysophyllum cainito and Ensete superbum extracts

had the most remarkable inhibitory activities with IC50

values of 0.0012 mg/mL and 0.0018 mg/mL, respec-

tively compared to 0.198 mg/mL and 0.1215 mg/mL

for acarbose (Doan et al. 2018; Habtemariam and

Varghese 2017). Both plants are characterized by the

presence of medicinally valuable phytochemicals

including proanthocyanidin, gallic acid, rutin, querce-

trin, b-amyrin and lupeol (Sayed et al. 2019; Sethiya

et al. 2019). However, the active phytochemicals

responsible for the observed alpha-glucosidase inhi-

bitory activity are still to be identified. The oral

administration of Chrysophyllum caimito at a dose of

75 mg/kg of body weight was found to significantly

decrease sugar blood level in diabetic rats (Arrijal

et al. 2018). Safety investigation have shown that the

ingestion of leaves was safe and did not cause changes

in the weight of the studied animals (Shailajan and

Gurjar 2014). Similarly, Ensete superbum has been

reported to cause no death and no signs of acute

toxicity at doses of 2000 mg/kg (Ganesan and Natesan

2017). Those preliminary investigations support the

potential use of this plant as anti-diabetic agent.

The nature of the extraction solvent used in the

recovery of the plant constituents affected the mea-

sured inhibitory activities by different extracts. The

similarity between the polarity of the solvent and the

plant constituents is crucial for dissolving phyto-

molecules of interest (Altemimi et al. 2017). For

example, ethanol used to extract polar molecules,

while petroleum ether is appropriate for the extraction

of non-polar compounds (Snehlata et al. 2018). For

instance, the ethanolic extract (IC50 = 0.027 mg/mL)

of Adenosma bracteosum showed a higher inhibitory

activity than the aqueous extract (IC50 = 0.043 mg/

mL). The increased activity was associated with the

detection of isoscutellarein-8-O-b-D-glucopyranoside

in the ethanolic extract exhibiting a ten times higher

inhibitory activity against alpha-glucosidase (IC50-

= 1.40 lg/mL) compared to acarbose (Nguyen et al.

2020). Similarly, the petroleum ether extract of Hertia

cheirifolia (L.) (IC50 = 0.242 mg/mL) showed a

higher inhibitory activity than the ethyl acetate

(IC50 = 0.437 mg/mL) and butanol (IC50-

= 0.421 mg/mL) extracts. The bioassay-guided frac-

tionation of the petroleum ether extract resulted in the

isolation of nopol, which exhibited inhibitory activity

with IC50 value of 220 lM and higher than acarbose

(IC50 = 433.70 lM) (Majouli et al. 2017). The oral

administration of up to 2000 mg/kg of the methanol

extract of Hertia cheirifolia did not produce any signs

of toxicity in mice for 14 days (Bouriche et al. 2016)

suggesting that extracts from this plant can also be

potential candidates for the treatment of diabetes.

Quercus plants belonging to the Fagaceae family

including Quercus glauca, Quercus gilva, Quercus

dentata, and Quercus phillyraeoides displayed a wide

range of IC50 values varying from 0.0098 to 0.11 mg/

mL although the extracts were all prepared from

leaves by methanol extraction (Ndrianingsih et al.

2015). Other extracts isolated from Mallotus japoni-

cus, Xylosoma congestum, Podocarpus macrophyllus,

Annona senegalensis, Homalium zeylanicum, Hyper-

icum hircinum, Hypericum scruglii and Liquidambar

formosana that showed an inhibitory activity against

alpha-glucosidase are listed in Table 1. The fraction-

ation of the ethanolic extract of Annona senegalensis

resulted in the isolaton of a number of compounds
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including hexadecanoic acid, methyl ester, 1,3-oc-

tadecenal and 1,2- benzenedicarboxylic acid (Ibrahim

et al. 2019). The acute oral toxicity of the methanolic

extract of the leaves of Annona senegalensis was

examined in mice. Results showed that Annona

senegalensis has no toxic effects in mice up to a dose

of 5000 mg/kg (Onwusonye et al. 2014). The ethyl

acetate fraction of Liquidambar formosana leaf extract

was rich in phenolic compounds, tannins and flavo-

noids (Zhang et al. 2017). Moreover, Hypericum

scruglii ethanolic extract was rich in phloroglucinol

derivatives namely 3-geranyl-1-(20-methylbutanoyl)-

phloroglucinol and 3-geranyl-1-(20-methyl-

propanoyl)-phloroglucinol (Mandrone et al. 2017).

None of the aforementioned isolated compounds have

been tested against alpha-glucosidase enzyme. Over-

all, plant species that belong to Fagaceae, Euphor-

biaceae, Hypericaceae, Musaceae and Sapotaceae

families exhibited promising inhibitory activities and

further studies evaluating the safety, side effect, and

efficacy of these plants as approved treatments for

diabetes are required.

Oligopin� and Pycnogenol� are examples of

commercially available plant extract dietary supple-

ments. They are French maritime pine bark extracts

obtained from the pine tree Pinus pinaster. Initially

known for their antioxidant and anti-inflammatory

activities (Valls et al. 2016; Sedighiyan et al. 2018).

French maritime pine bark extracts have also shown

potent alpha-glucosidase inhibitory activity compared

to green tea extract and acarbose, and procyanidin

oligomers were found to be responsible for this

activity (Schäfer and Högger 2007). Some of the

identified plants in this review exhibiting alpha-

glucosidase inhibitory activity are already used as

food or ingredient food for thousands of years in the

human diet such as the fruit (acorn) of the Quercus

species (Ómez et al. 2017) and are likely to be safe

candidate for the development of dietary supplements.

In addition to alpha-glucosidase inhibition, whole

plant preparations contain a wide range of active

compounds with anti-inflammatory and antioxidative

activities that can improve diabetes health outcomes.

Moreover, there are evidence that the synergistic

interaction between compounds present in herbal

preparation can improve the bioactivity of the crude

extract (Reviewed in Rasoanaivo et al. 2011). Whole

plants supplements can also be produced locally and at

lower costs compared to a single bioactive compound.

However, the production of plant extracts is poorly

standardized and controlled due to variations in the

extraction methods and formulations leading to vari-

ability in the extracted compounds (Kunle et al. 2012).

The development of pharmacological methods and

clinical studies for the evaluation of the activities and

adverse effects induced by the administration of

complex mixtures of compounds is also needed

(Heinrich 2013). Through the identification and iso-

lation of bioactive phytochemicals, better recovery,

purity and selectivity can be achieved in drug research

and development.

Plant secondary metabolites as alpha-glucosidase

inhibitors

Secondary plant metabolites with bioactive features

are responsible for the pharmaceutical properties of

plants. This review reported the alpha-glucosidase

inhibitory activity of compounds isolated from 53

plant species that belong to 27 different families

(Fig. 2a). Most of the bioactive compounds were from

Fabaceae family (33 bioactive compounds), followed

by Zingiberaceae (28 bioactive compounds) and

Moraceae (25 bioactive compounds) families. Faba-

ceae family is one of the largest families that

comprises 745 genera and more than 19,500 plant

species (Wink 2013). Several plants that belong to the

Fabaceae family have been utilized in traditional

medicine. Moreover, different chemical components

with various biological properties have been isolated

from species of the Fabaceae family including

isoflavonoids, alkaloids, terpenoids and phenolic acids

(Ma et al. 2011; Aly et al. 2019). Similarly, com-

pounds isolated from plants belonging to the Zingib-

eraceae family exhibited a wide range of

pharmacological activities such as antioxidant, anti-

inflammatory and antimicrobial activities (Mao et al.

2019).

The identified phytochemicals showing alpha-glu-

cosidase inhibitory activity were grouped into major

categories and subcategories based on their chemical

classification (Fig. 2b). Although, terpenes and flavo-

noids were found to represent the largest chemical

classes that exhibited inhibitory activities against this

enzyme, the reported IC50 value compared to the

positive control was the major criteria for identifying

the most bioactive molecules. Accordingly, 8
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molecules were selected as promising alpha-glucosi-

dase inhibitors and information about their bioactivity,

bioavailability and toxicity were covered in detail

(Fig. 3; Table 2).

Sesquiterpenoids

Terpenoids captivated a lot of interest due to their

distinct biological activities such as anticancer and

antibacterial activities (Duru and Çayan 2015). In
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terms of pharmaceuticals, a number of commercially

available drugs are terpene-derived such as paclitaxel

and artemisinin (Bergman et al. 2019). A total of 95

terpenoids with alpha-glucosidase inhibitory activity

Fig. 3 Chemical structures of promising alpha-glucosidase inhibitors of plant origin. (Taxumariene F, Akebonoic acid, Morusin,

Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin)
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were reported in the form of sesquiterpenoids, diter-

penoids and triterpenoids.

Sesquiterpenoids exhibited in general a poor

inhibitory activity compared to the positive control

except for the novel gorgonane sesquiterpenoid

(structure 12; online resource 1 and 2). This molecule

(IC50 = 121.2 lM) was isolated from Teucrium mas-

catense and it showed an inhibitory activity against

alpha-glucosidase higher than acarbose (IC50-

= 942 lM). Enzyme inhibition is thought to occur

when the hydroxyl groups of this compound interact

with amino acids Asp68 and Arg439 in the Saccha-

romyces cerevisiae alpha-glucosidase enzyme through

hydrogen bonding. This compound also forms hydro-

gen bonding with two water molecules located at

positions 1026 and 1102 and the enzyme-inhibitor

intereraction resembles the interaction with the

hydroxyl groups of the first sugar substrate moiety

(Rizvi et al. 2019). However, the kinetics and exact

mechanism of inhibition was not determined.

As a newly identified compound, other bioactivi-

ties, pharmacokinetics and toxicity studies have not

been reported yet for this molecule. In addition, the

toxicity was never assessed, and the alpha-glucosidase

activity was only investigated in vitro. More research

on the pharmacokinetics, the biological activities and

preclinical safety are required before considereding

the novel gorgonane sesquiterpenoid for clinical trials

as anti-diabetic drug.

Diterpenoids

Alpha-glucosidase inhibition

Diterpenoids showed comparable to slightly better

inhibitory activities against alpha-glucosidase com-

pared to the positive control. However, a series of new

taxane-type diterpenoids (structures 28–33, online

resource 1 and 2) isolated from Taxus mairei showed

promising inhibitory activity against this enzyme

(Chen et al. 2020). Taxane-type diterpenoids are

considered as the most widely distributed compounds

found in the Taxus species (Hai et al. 2014). Among

these valuable species, Taxus mairei, which is

endemic to china and traditionally have been utilized

to treat diabetes (Shen et al. 1998). Several prior

investigations on this plant have resulted in the

isolation of a myriad of bioactive components

including abietane type diterpenoids (Yang et al.

1998), lignans and flavonoids (Yang et al. 1999).

In this review, taxane inhibitors in comparison to

acarbose (IC50 = 155.86 lM) were highlighted

including taxumariene F (Fig. 3; Table 2) (IC50-

= 3.49 lM), taxumariene D (compound 31; online

resource 1 and 2) (IC50 = 13.52 lM) and taxumariene

C (compound 30; online resource 1 and 2) (IC50-

= 16.54 lM). Compared to the other analogues

examined in the same study, the presence of an

epoxide group and an acetoxy group at C-9 rather than

C-7 enhanced the inhibitory activity of taxumariene F.

The reduced inhibitory activity of taxumariene C

could be also attributed the the presence of benzoyloxy

group attached at C-5. Replacing this group by N–

methylacetamide phenyl isoserine significantly

increased the activity in the case of taxumariene A

(compound 28; online resource 1 and 2).

Other bioactivities

The emergence of taxane-type diterpenoids as clini-

cally effective anticancer drug (paclitaxel and doc-

etaxel) has provoked substantial interest to discover

other novel and practical sources of this molecule and

its derivatives (Shen et al. 1998). All taxumariene

diterpenoids described above were also assessed for

their cytotoxicity against two tumor cell lines includ-

ing human colon carcinoma (HT-29) and human lung

adenocarcinoma (A549), and they showed no cyto-

toxic activity (Chen et al. 2020). The selectivity of

these molecules towards the anti-diabetic activity is

important in considering taxumariene F for future drug

development.

Pharmacokinetics and toxicity

The taxane-type diterpenoids reported in this study are

newly identified compounds and no pharmacological

or pharmacokinetic studies have been reported yet.

They represent the second example of natural toxoids

exhibiting alpha-glucosidase inhibitory activity after

the six wallitaxanes (A–F) isolated from Taxus

wallichiana (Dang et al. 2017). Nevertheless, the

pharmacokinetic and toxicological aspects of natural

and semi-synthetic Taxus-derived compounds have

been comprehensively reviewed in (Hao et al. 2018).

The anti-cancer drugs Taxol and Taxotere for instance

have dose-dependent toxicities causing
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myelosuppression, peripheral sensory neuropathy,

allergy, and taxane resistance (Yared and Tkaczuk

2012). A newer generation of taxane drugs (BMS-

275183, milataxel, ortataxel and tesetaxel) exhibited

significantly lower toxicity and hypersensitivity in

preclinical and clinical studies (Flores and Saif 2013).

However, the the activity of such molecules as alpha-

glucosidase inhibitors was never assessed. In addition,

during the lengthly development of paclitaxel and

docetaxel as anti-cancer agents, experiments showed

that these molecules are non-water-soluble making

their delivery more challenging (Singla et al. 2002).

Through controlled drug delivery using carrier sys-

tems such as nanocarriers, liposomes, solid lipid

nanoparticles, nanoemulsions, nanocapsules and

hydrogels better cellular absorption and safety was

achieved (Mahajan et al. 2015). In addition, extensive

structure modification of taxanes has proved to

generate new molecules with improved therapeutic

index (Hu et al. 2014). The availability and large-scale

production of these molecules is another obstacle to

overcome. Taxanes accumulate in plants at very low

concentrations making their extraction very costly and

presenting considerable environmental concerns as

their production requires massive amounts of plant

biomass. To overcome taxane supply crisis chemical

synthesis, plant tissue cultures and microbial fermen-

tation methods have been used (Shankar Naik 2019).

The alpha-glucosidase inhibitory activity of these

molecules was so far only investigated in vitro.

Considering the available information of structurally

similar molecules, the pharmacokinetic and pharma-

codynamic properties of taxumariene alpha-glucosi-

dase inhibitors should be judged carefully in the

process of novel drug design. The rapid development

in discovering and enhancing the activities of taxane

analogs as anti-cancer drugs, and the presence of

online databases providing information on discovered

taxanes and their properties (Murugan et al. 2015), can

significantly support research development.

Triterpenoids

Alpha-glucosidase inhibition

Triterpenoids are polymers of six isoprene units with

versatile biological properties and are ubiquitously

found in plants as free acids or aglycones (Yin 2015).

However, very few triterpenoids showed higher

inhibitory activity compared to the positive control

acarbose. Molecules with promising activies belonged

to the plant families Lamiaceae and Lardizabalaceae.

Oleanolic acid, ursolic acid, b-amyrin and 11,12-

dehydroursolic acid lactone (compounds 65–68;

online resource 1 and 2) isolated from Salvia

africana-lutea exhibited promising alpha-glucosidase

inhibitory activity with IC50 values in the range of

24.7–188.7 lM compared to 945.5 lM for acarbose

(Etsassala et al. 2019). The presence of a methyl group

at the C-19 position had a positive effect on the

inhibitory activity of ursolic acid.

Interestingly, despite being structuraly very similar,

triterpenoids isolated from Akebia trifoliata (com-

pounds 80–88; online resource 1 and 2) showed a

broad variation in the reported IC50 against alpha-

glucosidase (9–592 lM) (Ouyang et al. 2018). While

compounds 83 and 84 showed comparable IC50 values

and low inhibitory activity, the structurally similar

compound gypsogenic acid (87) exhibited signifi-

cantly higher inhibition that can be attribituted to the

presence of a carboxy group at positions 23. The

pentacyclic triterpenoid, akebonoic acid, was also

remarkably efficient with an IC50 value of 9 lM

compared to 409 lM for acarbose (Fig. 3; Table 2).

Pentacyclic triterpenes are bioactive triterpenoids and

are natural component in many medicinal plants and

food sources such as fruits and vegetables. Further

investigation on the enzyme inhibition kinetics of this

compound demonstrated mixed-type inhibition

against a-glucosidase (Ki = 7.70 lM). Akebonoic

acid was found to interact with the enzyme via

hydrogen bonding and hydrophobic interactions. In

addition to a-glucosidase inhibition, this molecule was

found to significantly increase glucose uptake in

insulin resistant human liver hepatocellular carcinoma

(HepG2) cells (Wang et al. 2007). The dual anti-

diabetic activity of akebonoic acid makes of it a

promising candidate for future preclinical and clinical

investigations for the treatment of diabetes.

Other bioactivities

Ursolic acid has previously shown strong anti-obesity

and anti-diabetic effects in humans and animals by

inhibiting pancreatic a-amylase activity, improving

insulin sensitivity, and regulating hepatic lipid accu-

mulation (reviewed in Seo et al. 2018). However,

ursolic acid prolonged administration is associated
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with adverse effects, notably hepatic cytotoxicity

(Wüpper et al. 2020) which is problematic for the

treatment of chronic diseases such as diabetes.

Oleanolic acid derivative bardoxolone methyl was

also evaluated in a phase 3 study for chronic kidney

disease in type 2 diabetic patients. The drug caused

cardiac side effects leading to the interruption of the

trial (de Zeeuw et al. 2013). Oral administration of b-

amyrin in diabetic mice has shown a significant

antihyperglycemic and hypolipidemic effects (Santos

et al. 2012) yet the safety of this molecule still needs to

be determined to allow its use in clinical trials.

The information related to the other biological

activities of akebonoic acid is scarce. Nevertheless,

Bian et al. (2021) have recently shown that akebonoic

acid had no cytotoxic effect on HepG2 cells at a

concentration range of 6.25 to 25 lM. The cytotoxic

activity of this molecules was also investigated on

different cancer cell lines and the results have shown

that akebonoic acid exhibited cytotoxic effects against

human lung adenocarcinoma (A549) and human

cervical carcinoma (HeLa) cell lines with IC50 values

of 49.48 and 28.63 respectively (Wang et al. 2014),

significantly higher than the reported IC50 against

alpha-glucosidase. In addition, this molecule dis-

played strong in vitro bacteriostatic activity against

Gram positive bacteria, notably methicillin-resistant

Staphylococcus aureus (Wang et al. 2014).

Pharmacokinetics and toxicity

By examining the pharmacokinetic properties and

bioavailability of structurally similar pentacyclic

triterpenes such as asiatic acid (Yuan et al. 2015),

maslinic acid (Sánchez-González et al. 2014) and

oleanolic acid (Jeong et al. 2007), these molecules

have shown poor water solubility, low bioavailability,

and metabolic instability. However, different

approaches have been developed to modify and

enhance the challenging physicochemical properties

of these compounds including nanotechnology (Xi

et al. 2009) and the development of prodrugs of these

triterpenes (Cao et al. 2013). Taking into consideration

the advancements on structurally similar molecules

can accelerate the development process of an anti-

diabetic akebonoic acid-based drug. The toxicity and

adverse effects associated with the administration of

this molecule still need to be investigated before

considering akebonoic acid as a promising candidate

for drug design.

Flavonoids

Flavonoids are among the largest group that exhibitied

alpha-glucosidase inhibitory activty (65 molecules).

Flavanoids are hydroxylated phenolic compounds that

are ubiquitously found in plants and include isoflavo-

noids, flavanones, flavanols, flavonols and flavones

subclasses. While flavanols were less efficient in

inhibiting alpha-glucosidase compared to acarbose,

several molecules belonging to the other subclasses

showed higher efficiency compared to positive

controls.

Alpha-glucosidase inhibition

One remarkable source of potent inhibitors was the

plant Morus alba. Flavones extracted from this plant

showed IC50 values up to 30-fold lower than that

reported for the positive control (Li et al. 2018; Ha

et al. 2018). Significant inhibition was observed with

the widely studied flavone, morusin (IC50 = 3.19 lM)

compared to 1-Deoxynojirimycin (IC50 = 85.29 lM)

(Fig. 3; Table 2) (Li et al. 2018). The chemical

structure of this molecule involves the presence of a

prenyl group at position 3, three hydroxyl groups at

C-5, C-200 and C-40 and a 2,2-dimethyl pyran unit

between C-7 and C-8. The prenyl group at position 3

has an enhancing effect on the inhibitory activity of

flavones with compounds 151, 156 and 157 also

showing significantly lower IC50 vlaues compared to

acarbose (online resource 1 and 2). The increase in a-

glucosidase inhibitory activity with the increase in the

number of unmodified prenylated groups was previ-

ously reported in the case of six prenylated flavonols

isolated from the roots of Dorstenia psilurus (Tabopda

et al. 2008).

Other bioactivities

In addition to its inhibitory activity against alpha-

glucosidase, morusin also showed an inhibitory activ-

ity against acetylcholinesterase (IC50 = 36.4 lM) and

butyrylcholinesterase (IC50 = 24.08 lM) (Kim et al.

2011), however, IC50 values reveals a higher selec-

tivity towards alpha-glucosidase enzyme.
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Among other bioactivities, morusin acted as anti-

tumor agent against different types of cancer including

colorectal cancer (Lee et al. 2008), liver cancer (Wan

et al. 2014), prostate cancer (Lim et al. 2015) and

gastric cancer (Wang et al. 2017) (Table 3). The

anticancer mechanisms of morusin in the aforemen-

tioned cancer types involved apoptosis induction,

inhibition of nuclear factor kappa B (NF-jB) activity

(Lee et al. 2008), and the inactivation of signal

transducer and activator of transcription 3 (STAT3)

signaling (Lim et al. 2015). Morusin also showed anti-

bacterial activity against Enterococcus faecalis

greater than the standard antibiotics ampicillin and

ciprofloxacin (Čulenová et al. 2020).

Pharmacokinetics and toxicity

The absorption and disposition of morusin was studied

by (Hou et al. 2018) in vitro and in vivo in rats.

Following an oral administration of 16 mg/kg, mor-

usin was rapidly absorbed and metabolized into mono-

glucuronidated metabolites. The maximum concen-

tration (Cmax) was 299.12 ng/mL and occurred at

Tmax of 33.33 min, with an AUC0-? of

99.28 min lg/mL and a half-life time of 370.35 min.

Additionally, plasma concentration–time profiles of

morusin and its metabolites displayed two peaks after

oral administration which can be attributed to entero-

hepatic re-circulation. Concerning metabolism, mor-

usin was subjected into extensive glucuronidation

in vitro and in vivo. The glucuronidation metabolism

of morusin was mediated by four enzymes namely

UDP-glucuronosyltransferases (UGT1A1, UGT1A3,

UGT1A7 and UGT2B7). Majority of these enzymes

are primarily expressed in the liver and intestine

suggesting that these organs are the main organs that

heavily contribute to morusin glucuronidation. Fur-

thermore, morusin undergo phase I oxidative metabo-

lism catalyzed by Cytochrome P450 enzymes

(CYP3A5, CYP3A4 and CYP2C19). The metabolism

of this molecule in the liver and intestine is an

important aspect in considering it as a drug candidate.

However, morusin also showed potent inhibition

against the drug-metabolizing enzymes CYP450s

and UGTs, including CYP3A4 which is involved in

the metabolism of over 50% of clinically used drugs

(Shi et al. 2016a). Drug-drug interaction of morusin

with frequently administered medication for type 2

diabetes should be therefore carefully investigated

during the development of morusin-derived anti-

diabetic drug. The acute toxicity of morusin was also

examined in vivo in mice after an intraperitoneal

administration at 1.75, 5.5, 17.5, 55 mg/kg dosages

(Gupta et al. 2014). The lethal dose (LD50) of this

compound was found to be 20 mg/kg.

The optimal equilibrium between metabolism,

therapeutic effect, and controlled toxicity of morusin

during alpha-glucosidase inhibition is therefore a key

aspect to be studied in the furture. The hydrophobicity

and low bioavailability of this compound also hinder

its clinical application. However, some endeavors

have been undertaken to enhance the bioavailability of

this compound. Among these strategies was the

synthesis of a niosome system consisting of non-ionic

surfactant span 60 and cholesterol utilizing a thin-

layer evaporation technique (Agarwal et al. 2018).

Interestingly, the nanomorusin exhibited better water

solubility and anti-cancer activity than the free form of

morusin. It is therefore interesting to investigate

nanomorusin efficiency in inhibiting alpha-glucosi-

dase in vitro and in animal models.

Chalcones derivatives

Chalcones are naturally occurring aromatic ketones

that possess distinct pharmacological activities such as

anti-cancer and anti-diabetic activities. Plant species

of the genus Morus are rich in phenolic compounds

particularly Diels–Alder type adducts and isopreny-

lated flavonoids. The Morus genus consists of 16

distinct species that are utilized in traditional Chinese

medicine for the treatment of different diseases. The

root bark of Morus macroura for example have been

traditionally used to treat different ailments including

rheumatism, arthritis and diabetes (Dai et al. 2004).

Alpha-glucosidase inhibition

Nine Diels–Alder type adducts (compounds 162–169;

online resource 1 and 2) were isolated from Morus

macroura and evaluated against alpha-glucosidase

enzyme (Wang et al. 2018). Among the isolated

compounds, mulberrofuran K (Fig. 3; Table 2), soro-

cein I (compound 169; online resource 1 and 2) and

macrourin J (compound 163; online resource 1 and 2)

were the most active compounds, with IC50 values of

1.25, 1.47 and 1.58 lM, respectively compared to

1428 lM for acarbose. The inhibition mechanism of
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Table 3 Polypharmacological properties of promising alpha-glucosidase inhibitors

Compound

name

Bioactivity Key findings References

Rhaponticin Anti-cancer
activity

Inhibited the growth of stomach cancer cells through apoptosis induction, IC50

(0–200 lM)

Inhibited the activity of FAS and down-regulated its expression in human breast
cancer cells, IC50 (0–400 lM)

Hibasami et al.
(2007)

Li et al. (2014)

Anti-
inflammatory
activity

Exhibited LOX inhibitory activity (IC50 = 34.3 lM) (Ngoc et al.
2008)

Neuroprotective
effect

Anti-Parkinson’s disease activity: Inhibited the production of proinflammatory
mediators such as NO, PGE2, TNF-a, IL-1b, IL-6, and ROS in LPS-induced
microglial cells (10, 25 and 50 lM). Rhaponticin improved motor impairments and
prevented the damage of dopaminergic neurons in vivo

Anti-Alzheimer’s disease activity: Exhibited protective effect against Ab peptide-
induced apoptosis in human neuroblastoma cells, IC50 (0–30 lM). This effect is
probably mediated through the up-regulation of bcl-2 and the down-regulation of
Bax

Zhao et al.
(2020)

Misiti et al.
(2006)

Anti-diabetic
activity

Reduced glucose levels, enhanced glucose tolerance and impeded hepatic fibrosis
and steatosis in vivo (125 mg/kg)

Chen et al.
(2009)

Procyanidin
A2

Anti-
inflammatory
activity

Showed an inhibitory action against cytokine stimulated-CCL11 production in lung
epithelial cells, IC50 (1–20 lM)

Coleman et al.
(2016)

Neuroprotective
effect

Prevented (10 lM) neuroinflammation by inhibiting pro-inflammatory mediators and
suppressed apoptosis through the up-regulation of bcl-2 and the down-regulation of
Bax in Ab (1–42) induced BV-2 cells

Tang et al.
(2018)

Antiviral activity Exhibited an inhibitory activity against SARS-CoV infection (IC50 = 29.9 lM) Zhuang et al.
(2009)

Anti-oxidant
activity1

Prevented t-BOOH oxidative stress through the inhibition of ROS generation,
inhibition of LDH production and the up-regulation of HO-1 and NQO1 expression
through the activation of Nrf2 via JNK and p38 signaling pathway, IC50 (0–40 lM)

Exhibited a potent inhibitory activity against LDL oxidation (IC50 = 2.1 lM)

Xu et al.
(2019)

Park et al.
(2014)

Mulberrofuran
K

Anti-diabetic
activity

Exhibited potent PTP1B inhibitory activity (IC50 = 8.49 lM) Ha et al.
(2018)

Anti-
inflammatory
activity

Inhibited the generation of proinflammatory mediators including NO, TNF-a, IL-1b,
IL-6, and ROS. Inhibited the expression of iNOS and COX-2 and the
transcriptional activation of NF-jB and ERK 1/2, IC50 (0–10 lM)

Shim et al.
(2018)

Neuroprotective
effect

Inhibited NO production (IC50 = 7.1 lM) and tau protein aggregation (20 lM).
Exhibited neuroprotective effect through the up-regulation of GSH level and the
inhibition of ROS generation in glutamate-stimulated HT22 cells (0.5, 1, and
2 lM)

Xia et al.
(2019)

Morusin Anti-cancer
activity

Colorectal cancer: Induced apoptosis and inhibited NF-kB activity

Prostate cancer: Induced apoptosis through the inhibition of STAT3 signaling

Liver cancer: Suppressed tumor growth in mice via the up-regulation of caspase-3
and the down-regulation of NF-kB gene expression

Gastric cancer: Inhibited tumor growth through the down-regulation of
myelocytomatosis (c-Myc) expression

Lee et al.
(2008)

Lim et al.
(2015)

Wan et al.
(2014)

Wang et al.
(2017)

Neuroprotective
activity

Showed inhibitory activity against AChE and BChE with IC50 value of 36.4 and
24.08 lM, respectively

Kim et al.
(2011)

Anti-
inflammatory
activity

Exhibited protective effect against TNBS-stimulated colitis in rats Vochyánova
et al. (2017)
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mulberrofuran K have not been investigated, however,

enzyme kinetic studies on the structuraly similar

Diels–Alder adduct yunanensin A showed a compet-

itive mode of inhibition against alpha-glucosidase.

Furthermore, molecular docking simulation showed

that yunanensin A have higher hydrogen binding

affinities to similar residues as acarbose (Ha et al.

2018).

Other bioactivities

In addition to inhibiting alpha-glucosidase, mulberro-

furan K showed slightly weaker inhibitory activity

against PTP1B (IC50 = 8.49 lM), an enzyme that

plays a key role in the regulation of insulin signaling

(Ha et al. 2018) highlighting the therapeutic impor-

tance of this molecule for the treatment of type 2

diabetes.

Anti-inflammatory activity of mulberrofuran K was

also reported using lipopolysaccharide-induced

RAW264.7 cells. Mulberrofuran K inhibited the

production of proinflammatory mediators including

NO, TNF-a, IL-1b, IL-6, and ROS in a dose dependent

manner. Moreover, this compound suppressed the

expression of inducible nitric oxide synthase and

cyclooxygenase-2 as well as the transcriptional acti-

vation of nuclear factor-jB and extracellular-regu-

lated kinases 1/2 in murine macrophages (Shim et al.

2018). Mulberrofuran K also exhibited anti-Alzhei-

mer’s activity through the suppression of NO produc-

tion (IC50 = 7.1 lM) and the inhibition of tau protein

aggregation at a concentration of 20 lM (Xia et al.

2019). The mechanism of action underlying the

neuroprotective effect of mulberrofuran K involves

the up-regulation of glutathione level and the inhibi-

tion of ROS generation (0.5, 1, and 2 lM). Interest-

ingly, this compound demonstrated the ability to cross

Table 3 continued

Compound

name

Bioactivity Key findings References

Alaternin Anti-diabetic
activity

Exhibited potent PTP1B inhibitory activity (IC50 = 1.22 lM) Jung et al.
(2017)

Anti-oxidant
actvity

Exhibited potent peroxynitrite scavenging activity with IC50 value of 2.70 lM Park et al.
(2004)

Hepatoprotective
activity

Exhibited hepatoprotective effects

on tacrine-mediated cytotoxicity in liver cells with EC50 value of 4.02 lM on tacrine
-induced cytotoxicity

Jung et al.
(2004)

Neuroprotective
activity

Exhibited mixed-type inhibitory activity against both hMAO enzyme isozymes,
hMAO-A (IC50 = 5.35 lM), and hMAO-B (IC50 = 4.55 lM)

Showed inhibitory activity against AChE, BChE and BACE1 with IC50 value of
21.9, 394.77 and 3.28 lM, respectively

Alaternin (10 mg/kg) inhibited nitrotyrosine and lipid peroxidation. Suppressed the
expression of iNOS and decreased microglial activation in vivo

Paudel et al.
(2019)

Jung et al.
(2016)

Shin et al.
(2010)

Antityrosinase
activity

Inhibited tyrosinase enzyme activity with IC50 value of 327.3 lM after 30 min of
incubation

Lu and Ko
(2016)

Psoralidin Estrogenic
activity

Psoralidin was found to be a potent ERa and ERb agonist Liu et al.
(2014)

Anti-cancer
activity

Breast cancer: Induced DNA damage and autophagy through NOX4-mediated ROS
production, IC50 (0–10 lM)

Colon cancer: Apoptosis induction through the suppression of Bcl-2/Bax and NF-jB
signaling pathways, IC50 (0–20 lM)

Liver cancer: Apoptosis induction via intrinsic and extrinsic pathways, IC50

(0–64 lM)

Ren et al.
(2016)

Jin et al.
(2016)

Bin et al.
(2019)

Anti-
inflammatory
activity

Exhibited an inhibitory activity against LPS-stimulated NO production,
(IC50 = 27.46 lM)

Chen et al.
(2017)

Akebonoic
acid

Cytotoxic
activities

Cytotoxic effects against A549, HeLa, HepG2 cancer cell lines with IC50 values
49.48, 28.63 and 52.89 lM, respectively

Wang et al.
(2014)
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the blood–brain barrier suggesting that mulberrofuran

K had the potential to be a good neuroprotective agent.

Pharmacokinetics and toxicity

Pharmacokinetic studies on Morus Diels–Alder

adducts are very limited and the pharmacokinetics

properties of mulberrofuran K still need to be inves-

tigated. Available knowledge based on the study of

kuwanon G include poor water-solubility and low GI

absorption (Thu et al. 2020). However, the oral

toxicity evaluation of ethanolic extract from Morus

alba showed low toxicity even at a 2000 mg/kg dose

(De Oliveira et al. 2015). The structuraly similar

molecules mulberrofuran G and albanol B were non-

toxic up to 5 lM in HepG2 cells and toxicity increased

at a concentration of 10 lM (36% and 73% viable cell,

respectively) (Paudel et al. 2018).

Overall results on mulberrofuran K and structuraly

similar compounds showed the efficiency of this

molecule in the management of type 2 diabetes

through alpha-glucosidase and PTP1B inhibition. This

molecule inhibited alpha-glucosidase at an IC50 value

significantly lower than the toxic concentration

reported for related compounds, and thus is expected

to show lower toxicity when administered to the

patients. However, preclinical and clinical studies on

the pharmacological properties and safety of mulber-

rofuran K in animals and humans is still required.

Stilbenes

Stilbenes are an important class of naturally occurring

polyphenols that possess 1,2-diphenylethylene on

their core chemical structure (Sirerol et al. 2016).

Stilbenes possess various biological properties such as

anticancer, anti-diabetic and anti-inflammatory prop-

erties (Akinwumi et al. 2018).

Alpha-glucosidase inhibition

Most of the stilbene molecules covered in this review

exhibited potent inhibitory activities against alpha-

glucosidase. The presence of more stilbene moieties

positively contributed to the potency of the isolated

compounds. For instance, the inhibitory activity of the

stilbene tetramer (compound 170; online resource 1

and 2) (IC50 = 13.57 lM) was higher than the

monomer (compound 171; online resource 1 and 2)

(IC50 = 123.39 lM). Morover, the trimers (com-

pounds 176–178; online resource 1 and 2) exhibited

an inhibitory activity higher than the dimers (com-

pounds 172–175; online resource 1 and 2).

The highest inhibitory activity was observed with

five stilbenes (compounds 179–182; online resource 1

and 2) isolated from the roots of Polygonum multiflo-

rum (Yang et al. 2017). This plant has been widely

used in traditional Chinese medicine for the preven-

tion and therapy of various human diseases such as

liver damage, cancer and diabetes (Bounda and Feng

2015). A rhaponticin isolated from the roots of

Polygonum multiflorum showed the highest inhibitory

activity against alpha-glucosidase enzyme (IC50-

= 0.3 lM) in comparison to acarbose (IC50-

= 50.04 lM) (Fig. 3; Table 2) (Yang et al. 2017).

Other bioactivities

Rhaponticin (3,30,5-trihydroxy-40-methoxystilbene-3-

O-b-d-glucoside) is a bioactive stilbene compound

found in the plant species of the genus Rheum. Several

studies have shown that rhaponticin possess a wide

range of biological activities such as anticancer,

antioxidant and antithrombotic activities (Zhao et al.

2012). Along with its potent antidiabetic effect

in vitro, rhaponticin (125 mg/kg) attenuated glucose

levels, enhanced glucose tolerance and impeded

hepatic fibrosis and steatosis in diabetic mice as well

(Chen et al. 2009).

Up to 200 lM, rhaponticin also showed anti-cancer

properties reflected in the induction of apoptosis in

stomach cancer cells (Hibasami et al. 2007) and down-

regulation of the expression of FAS in breast cancer

cells in a concentration-dependent manner and up to

400 lM (Li et al. 2014) (Table 3). Moreover, rhapon-

ticin showed inhibitory activity against lipoxygenase

enzyme (IC50 = 34.3 lM), a key enzyme that involves

in the production of pro-inflammatory mediators

(Ngoc et al. 2008). Nevertheless, this molecule was

significantly more potent against alpha-glucosidase.

Zhao et al. (2020) investigated the neuroprotective

effect of rhaponticin in vitro and in vivo. This

molecule suppressed the increased levels proinflam-

matory mediators including NO, PGE2, TNF-a, IL-1b,

IL-6, and reactive oxygen species (ROS) in

lipopolysaccharide-induced microglial cells at non-

cytotoxic doses (10, 25 and 50 lM). Furthermore,

rhaponticin ameliorated motor impairments in MPTP-
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induced mice as well as prevented the damage of

dopaminergic neurons (Misiti et al. 2006). The

biochemical data obtained from in vitro and in vivo

bioassays on rhaponticin provide a valuable indication

of the importance of this molecule in drug discovery

Rhaponticin showed particularly high selectivity and

efficiency in inhibiting alpha-glucosidase at very low

concentration compared to the other bioactivities

exhibited by this molecule.

Pharmacokinetics and toxicity

The pharmacokinetic properties of rhaponticin were

examined by different studies (Zhao et al. 2011; Sun

et al. 2013, 2016). Rhaponticin pharmacokinetics was

studied in vivo in rats after oral (100 mg/kg) and

intravenous (10 mg/kg) administration. The molecule

is rapidly metabolized and distributed in rats and its

bioavailability was found to be very low (0.03%). The

oral administration of rhaponticin resulted in a lower

concentration of its metabolite (Cmax = 4.06 lM)

than when injected intravenously (Cmax = 21.2 lM).

Interestingly, the IC50 value of rhaponticin for alpha-

glucosidase inhibition (IC50 = 0.3 lM) was signifi-

cantly lower than its maximum serum concentrations.

Moreover, the area under the curve (AUC (0–t)) for the

oral and intravenous administration was found to be

0.70 lg min/ml and 215.8 lg min/ml, respectively

(Zhao et al. 2012). Rhaponticin showed no toxic effect

when given up to 2000 mg/kg in adult male Wistar rats

(Shi et al. 2020). To enhance the bioavailability of

rhaponticin, Liang et al. (2013) utilized a folate

receptor-targeted rhaponticin conjugate. This conju-

gate was synthesized by using a hydrophilic peptide

spacer connected to folic acid through a releasable

disulfide linker. Folic acid binds with high affinity to

folate receptors, which are over-expressed in tumor

cells and restricted in normal human cells. This

conjugate significantly improved the therapeutic prop-

erties of rhaponticin as well as decreased the toxicity

associated with this compound.

Rhaponticin is converted by the digestive enzymes

and the intestinal microbial flora to rhapontigenin

(Kim et al. 2000). This biotransformation is reflected

by a rapid decrease in plasma levels of rhaponticin

after the iv. dose (Tmax = 10 min) and an increase in

plasma concentrations of rhapontigenin (Cmax = 0.18

lg/ml) after 52 min (Zhao et al. 2012). Interestingly,

this molecule displayed potent non-competitive yeast

alpha-glucosidase inhibition (80% inhibition at

19.4 lM) and the molecule was classified as weak,

negative, homotropic, M-modulator (Babu et al.

2004). It is therefore important to emphasize that the

low bioavailability of rhaponticin does not necessarily

mean a reduced alpha-glucosidase inhibitory activity

as this molecule is biotransformed to potent inhibitor

following administration. However, rhapontigen

showed toxic effect in murine macrophage cells after

treatment for 18 h at a concentration of 10 lM (Chong

et al. 2021). Consequently, investigating the safety of

this metabolite when rhaponticin is administered, as

alpha-glucosidase inhibitor is essential.

Tannins

Tannins are structurally complex phenolic compounds

that are categorized based on their chemical structure

into two main groups, condensed and hydrolysable

tannins. Hydrolysable tannins are derived from gallic

acid, while condensed tannins result from the con-

densation of the phenolic compounds (Ghosh 2015).

Alpha-glucosidase inhibition

Several tannins from the fruits of Terminalia chebula

(compounds 179–205; online resource 1 and 2)

showed alpha-glucosidase inhibitory activity with

IC50 values ranging between 2.9 and 68.4 lM com-

pared to 174 lM for acarbose (Lee et al. 2017). The

in vitro alpha-glucosidase inhibitory activity of pro-

cyanidins was previously reported to increase with the

degree of polymerization of these compounds (Schäfer

and Högger 2007), which is consistent with the

reported results in this review. Procyanidins are

naturally occurring condensed tannins that are made

up of catechin and epicatechin molecules (Lee 2017).

Based on the stereo configuration and the bonding

between the monomers, procyanidins are classified

into A and B types (Rue et al. 2018).

Procyanidin A2 (Fig. 3; Table 2), isolated from the

shoots of Wendlandia glabrata, inhibited alpha-glu-

cosidase enzyme with a remarkably low IC50 value of

0.47 lM compared to 586.6 lM for acarbose (Sheikh

et al. 2019). It is an A-type dimeric form of procyani-

din. The high inhibitory activity of procyanidin A2

was previously attributed to the unsaturated C ring,

3-OH, and hydroxyl substitutions on the B ring (Choi

et al. 2017). Interestingly, the oral administration of

123

1068 Phytochem Rev (2022) 21:1049–1079



structurally similar procyanidins did not inhibit

intestinal a-glucosidase activity in vivo (Yamashita

et al. 2016). The poor correlation between in vitro and

in vivo studies on these compounds highlights the

importance of investigativing the anti-diabetic prop-

erties of procyanidin A2 in animal models and human

clinical trials.

Other bioactivities

The protective effect of procyanidins against type 2

diabetes was previously investigated in mice and these

molecules were found to improve glycemia and

insulin sensitivity (Ogura et al. 2016). Procyanidins

targeted glucose uptake and lipogenesis in insulin-

sensitive tissues (Del Bas et al. 2009), insulin secretion

and production and b-cell mass in pancreatic cells

(Ogura et al. 2016), and the regulation of the active

glucagon-like peptide-1 (GLP-1) levels in the gut

(González-Abuı́n et al. 2014). The procyanidin-in-

duced increase of GLP-1 was found to be triggered by

the inhibition of intestinal dipeptidyl-peptidase 4

activity (González-Abuı́n et al. 2014).

Additionaly, procyanidin A2 also exhibited other

bioactivities including anti-inflammatory, anti-oxida-

tive and antiviral activities (Xu et al. 2010; Wang et al.

2020, Table 3). This molecule inhibited the production

of C–C motif chemokine 11 that is induced by pro-

inflammatory cytokines in lung epithelial cells at non-

cytotoxic doses up to 20 lM (Coleman et al. 2016). In

addition, procyanidin A2 exhibited neuroprotective

effect through the inhibition of proinflammatory

mediators and apoptosis in cell culture system.

Moreover, this compound showed an inhibitory

activity against severe acute respiratory syndrome

coronavirus (SARS-CoV) infection with an IC50 value

of 29.9 lM (Zhuang et al. 2009).

Procyanidin A2 inhibited oxidative stress induced

by tert-butyl hydroperoxide (t-BOOH) in human fetal

hepatocyte line (L-02) at non-cytotoxic doses up to

40 lM. The mechanism of action that underline the

antioxidant activity of procyanidin A2 involves the

inhibition of ROS generation and the inhibition of

lactate dehydrogenase (LDH) production. Moreover,

this compound exhibited a potent inhibitory activity

against the oxidation of low-density lipoprotein (LDL)

(IC50 = 2.1 lM) (Park et al. 2014).

Pharmacokinetics and toxicity

Polyphenolic compounds including procyanidin A2

have been studied for pharmacokinetic properties

in vivo in rats after oral administration of 250 mg/kg

of peanut skin extract (PSE) (Bansode et al. 2014).

Procyanidin A2, catechin and epicatechin were the

major metabolities found in the rat plasma. The

maximum concentration of procyanidin A2 was

reached after 30 min of administration. Moreover,

procyanidin A2 displayed a rapid clearance from

plasma within 1 h after PSE intake. Interestingly,

unlike, epicatechin, procyanidin dimers did not

undergo conjugation or methylation in vivo which

can help conserve their bioactivity in the intestine

(Appeldoorn et al. 2009). In the context of using these

molecules for the treatment of type 2 diabetes, the

effect of carbohydrate-rich diet on the digestibility and

bioavailability of procyanidins was also investigated

(Serra et al. 2010). Dimeric and trimeric procyanidins

showed high stability when exposed to gastric and

intestinal digestions and very limited absorption in the

small intestine. In addition, carbohydrates intake was

found to enhance the uptake of procyanidin mono-

mers. The encapsulation of procyanidin fractions from

Leucosidea sericea in silver nanoparticles was found

to further enhance the stability of these compounds

without altering their inhibitory effect against alpha-

glucosidase and alpha-amylase enzymes (Badeggi

et al. 2020). The stability of the nanoformulation of

procyanidins is encouraging for the development of

new alpha-glucosidase inhibitor as such drug needs to

resist degradation by digestive juices and intereactions

with intestinal microorganisms.

Anthraquinones

Anthraquinones are natural aromatic phenolic com-

pounds characterized by the presence of 9,10-an-

thraquinone nucleus (Nguyen et al. 2018). A group of

anthraquinones along with other types of molecules

were isolated from the seeds of Cassia obtusifolia and

evaluated for their alpha-glucosidase inhibitory activ-

ities (Jung et al. 2017). The seeds of Cassia obtusifolia

have been used traditionally to treat different diseases

including headache, ophthalmic diseases, and hyper-

tension. This plant species is a rich source of bioactive

anthraquinones such as emodin, alaternin, physcion

and obtusifolin (Jung et al. 2016).
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Alpha-glucosidase inhibition

The methanolic extract of Cassia obtusifolia seeds

previously showed similar a-amylase (79.80%) a-

glucosidase (81.04%) inhibitory effect as acarbose

(Vadivel et al. 2012). The anthraquinones isolated

from this plant and discussed in this review showed an

overall weak inhibitory activity against alpha-glucosi-

dase compared to acarbose (compounds 206–217;

online resource 1 and 2) except for alaternin which

was significantly more efficient (IC50 = 3.45 lM)

(Fig. 3; Table 2; Jung et al. 2017). Alaternin acted as

a mixed-type inhibitor against alpha-glucosidase

enzyme with high affinity reflected by a Ki value of

0.66 lM. The higher inhibitory activity of alaternin

was attributed to the presence of free hydroxy groups

at the C-1, C-6, and C-8 positions (Jung et al. 2017).

However, docking eperiments are still required to

elucidate the mechanism of interaction.

Other bioactivities

In addition to the inhibition of alpha-glucosidase,

alaternin was also found to play a role in enhancing

insulin sensitivity by competitively inhibiting protein

tyrosine phosphatase 1B (PTP1B) with an IC50 value

of 1.22 lM, slightly smaller than that reported with

alpha-glucosidase (Table 3) (Jung et al. 2017).

Molecular docking results revealed that the hydroxyl

groups of this compound bind tightly with four

residues at the active site of PTP1B with negative

binding energy. The over-expression of PTP1B was

associated with decreased insulin sensitivity in mice

and the downregulation of insulin activity (Goldstein

et al. 2000; Klaman et al. 2000). A therapeutic

approach using alaternin as drug candidate that targets

both, the reduction of postprandial hyperglycemia and

the enhancement of insulin sensitivity can be therefore

very promising for the management of type-2 diabetes.

Other reported bioactivities of alaternin include potent

antioxidant ability against peroxynitrite with IC50

value of 2.70 lM (Park et al. 2004), and hepatopro-

tective effects on tacrine-mediated cytotoxicity with

EC50 value of 4.02 lM (Jung et al. 2004). Alaternin

(10 mg/kg) also showed neuroprotective effect in vivo

in mice by inhibiting nitrotyrosine and lipid peroxi-

dation, suppressing the expression of iNOS and

decreasing microglial activation (an indicator of

inflammation) (Shin et al. 2010).

Alaternin showed more potent inhibition against

alpha-glucosidase compared to other enzymes such as

tyrosinase (IC50 = 327.3 lM) (Lu and Ko 2016)

acetylcholinesterase (IC50 = 21.9 lM), and butyryl-

cholinesterase (IC50 = 394.77 lM) (Jung et al. 2016).

On the other hand, this molecule was highly efficient

against beta-secretase 1 (IC50 = 3.28 lM) (Jung et al.

2016). Alaternin also inhibited monoamine oxidases A

and B (MAO) which are enzymes that catalyze the

degradation of monoamine neurotransmitters (Yeung

et al. 2019). Similar to alpha-glucosidase inhibition,

the inhibition of MAO enzymes by alaternin followed

a mixed-type inhibitory mechanism with IC50 values

of 5.35 and 4.55 lM for human MAO-A and B,

respectively.

Pharmacokinetics and toxicity

Natural anthraquinones can either be found as agly-

cans or linked to sugar moiety, forming more polar

molecules. Anthraquinones are usually found in plants

as glycosides and the absorption of these molecules in

the intestine involves the hydrolysis of anthraquinone

glycosides to their respective aglycone forms. The

absorbed molecules are further subjected to hepatic

glucuronidation and eliminated through urine or bile

(Mohammed et al. 2020). Although alaternin has been

shown to have several pharmacological properties,

there have been no studies that describe the pharma-

cokinetic properties of this compound. However, the

bioavailability and absorption of other analogues (e.g.

emodin, chrysophanol and physcion) were extensively

studied (Shia et al. 2009; Wu et al. 2014a). These

studies have shown the low bioavailability of the

aforementioned molecules. For example, emodin have

shown low bioavailability when administered orally in

rats which can be attributed to its extensive in vivo

glucuronidation (Shia et al. 2010). Consequently, the

oral administration of these compounds is not optimal

because of poor intestinal absorption and low bioavail-

ability in vivo. Oral administration of anti-diabetic

drugs presents several advantages including ease of

production, stability of the formulation, ease of

administration and patient compliance. New

approaches need to be investigated to enhance the

absorption and bioavailability of anthraquinones as

anti-diabetic drugs.

The toxicity profile of alaternin was not extensively

studied and this molecule did not show any cytotoxic
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effect on liver hepatocellular cells (HepG2) up to

50 lM (Jung et al. 2017). However, in vitro and

in vivo studies on structurally related emodin revealed

a significant toxic effect on liver and kidney cells

(Wang et al. 2007). At a concentration between 30 and

80 lM, emodin was found to induce apoptosis in

human fetal hepatocytes (Li et al. 2012) and human

renal proximal tubule cells (Wang et al. 2015). Studies

have demonstrated that emodin also exert reproduc-

tive toxicity by altering the expression of testicular

genes (Oshida et al. 2011) and inhibiting human sperm

functions (Luo et al. 2015). Accordingly, the toxicity

of alaternin on different organs, particularly hepato-

toxicity and nephrotoxicity after long-term exposure

needs to be investigated.

Coumarins

Coumestans are polycyclic aromatic natural com-

pounds characterized by the presence of coumestan

moiety (Nehybova et al. 2014). Several coumestans

(compounds 221–224; online resource 1 and 2) were

isolated from the roots of Dolichos trilobus, an herbal

plant used in the Chinese folk medicine to treat

rheumatism and fracture.

Alpha-glucosidase inhibition

The isolated coumestans exhibited noteworthy inhi-

bitory activity with IC50 values ranging from

3.5–32.2 lM compared to 163.6 lM for acarbose

with psoralidin being the most potent inhibitor (Fig. 3,

Table 2) (Jiang et al. 2019). Psoralidin is a naturally

occurring prenylated coumestrol extensively studied

for its anti-cancer, anti-osteoporosis, anti-microbial

and neuroprotective activites (reviewed in Tu et al.

2021). However, very few papers reported the alpha-

glucosidase inhibitory activity of this molecule (Oh

et al. 2010; Wang et al. 2013; Jiang et al. 2019).

Enzyme kinetic analysis has revealed that proralidin

follows a noncompetitive mode of inhibition (Oh et al.

2010). Prenylated coumestans are considered as potent

a-glucosidase inhibitors with the prenylated types and

prenylated positions having a strong effect on this

activity. Prenylation at C-2 in the case of psoralidin

offers the highest inhibitory activity (Tu et al. 2021)

making this molecule a promising drug candidate.

Other bioactivities

Several pre-clinical studies validated that psoralidin

possess a broad spectrum of biological activities

including estrogenic (Liu et al. 2014), anti-osteoporo-

sis (Zhai et al. 2017), anti-inflammatory (Yang et al.

2011) and anti-microbial activities (Khatune et al.

2004).

Psoralidin was found to be a potent agonist for

estrogen receptors alpha (ERa) and beta (ERb). It

induced the transcriptional activition of both ER genes

with EC50 value of 3.68 lM and 6.88 lM, respec-

tively, highlighting its potential usage as hormone

replacement therapy for the relief of estrogen defi-

ciency-related symptoms in postmenopausal women

(Liu et al. 2014). This molecule has also shown

osteoprotective effects in ovariectomized rats by

inhibiting bone resorption and enhancing osteoblast

proliferation and differentiation (Zhai et al. 2018).

Psoralidin has also shown promising results in

combating breast, colon, prostate and liver cancer by

activating oxidative stress, promoting DNA damage

via NADPH oxidase 4 (NOX4)-mediated ROS pro-

duction, decreasing the cell viability and inducing

apoptosis (Ren et al. 2016) (Jin et al. 2016) (Bin et al.

2019) (Szliszka et al. 2011). Despite its broad activity,

human clinical trials with psoralidin are scarce with

only the effect of this molecule on dermatological

conditions being previously investigated (Gopal et al.

2001).

Pharmacokinetics and toxicity

The pharmacokinetic study of psoralidin was con-

ducted after intragastric administration of 20 and

40 mg/kg in rats. The half-life (T1/2) was 7.2 h and

7.1 h, Cmax was 0.0095 mg/L and 0.0263 mg/L, and

AUC was 0.0954 mg/L h and 0.2 mg/L h for different

dosages, respectively. Moreover, psoralidin displayed

a large volume of distribution (Vd) (600.1 and 630.1

L/kg for the 20 and 40 mg/kg dosages, respectively)

(Feng et al. 2020). The intravenous administration of

this molecule (2 mg/kg) in male Wister rats showed

higher bioavailability with Cmax value of 2.19 mg/L,

AUC value of 1.95 mg/L.h and half life of 4.45 h (Shi

et al. 2016b). The volume of distribution following

intravenous administration was also significantly

smaller (Vd = 6.22 L/kg). However, the development

of new nanoencapsulated forms of psoralidin
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increased the efficacy of oral delivery (Yin et al.

2016).

CYP2C19 enzyme was found to be the main

enzyme responsible for the metabolism of psoralidin

and the process involves reduction and hydroxylation

reactions in the prenyl group of C-2 position. More

importantly, psoralidin was found to exhibit potent

inhibitory activity against CYP and UGT isoforms,

which can result in drug-drug interactions and adverse

effects (Shi et al. 2016b).

Although, psoralidin presented beneficial anti-dia-

betic and pharmacological activities, the pharmaco-

dynamics behind its anti-diabetic effect are still to be

investigated. Studies on long-term toxicity and possi-

ble interactions with other drugs are also required.

Another limitation is the low oral bioavailability of

this molecule due to its poor water solubility. New

methods need to be developed to improve water

solubility and bioavailability of psoralidin without

affecting its alpha-glucosidase inhibitory activity.

Conclusion

The therapeutic intervention through targeting alpha-

glucosidase enzyme is a well-known strategy that was

utilized for the treatment and management of type 2

diabetes. Acarbose, miglitol and voglibose being the

only commercially available alpha-glucosidase inhi-

bitors during the last three decades, necessitated the

search for other novel and effective avenues with

reduced toxicity. Plant-derived compounds represent a

natural source of bioactive compounds that can be

used for the development of effective drugs against

diabetes mellitus. This review identified 8 chemically

diverse plant molecules exhibiting potent alpha-glu-

cosidase inhibitory activity compared to the positive

controls (Taxumariene F, Akebonoic acid, Morusin,

Rhaponticin, Procyanidin A2, Alaternin, Mulberrofu-

ran K and Psoralidin) and can be considered as

promising drug candidates for the treatment of type 2

diabetes.

The amount of information available on the

selected compounds varied widely but previously

studied molecules were all found to exhibit a wide

range of biological activities. In addition to alpha-

glucosidase inhibition, interestingly four of the

selected compounds (rhaponticin, procyanidins,

alaternin and mulberrofuran K) showed broader anti-

diabetic activities that contributed to improved insulin

signaling. Such molecules can be very promising in

the development of a single drug resulting in shortened

therapy and increased efficiency in controlling glyce-

mia. However, more pre-clinical and clinical studies

on these molecules are needed to determine their

mechanisms of inhibition, pharmacokinetics and tox-

icology. Very few studies if any investigated the

bioactivity of these molecules in vivo as well as the

long-term toxicological assessment of these com-

pounds. In addition, the pharmacokinetic properties of

the promising compounds need to be investigated in

the frame of their application as alpha-glucosidase

inhibitors. For example, the carbohydrate composition

of a meal can have a strong effect on gastric secretions

and hepatic blood flow which diretly affects flavonoid

absorption (Schramm et al. 2003). The stability of the

selected compounds under gastro-intestinal conditions

is therefore a key factor to be investigated. Plant-

derived molecules are also known to interfere with the

absorption and metabolism of other pharmaceutical

agents (Sprouse and van Breemen 2016). It is therefore

important to investigate this aspect especially if the

described molecules will be used as supplements for

the enhancement of existing therapies.

Available infomartion showed overall poor

bioavailability, low stability and rapid metabolism

which has a negative impact on the efficiency of the

natural compounds as future antidiabetic agents.

However, the alpha-glucosidase inhibitors identified

in this review are small molecules and their use as

drugs has several advantages. The pharmacokinetics

and pharmacodynamics of such molecules are more

easily determined leading to optimal dosage and more

understanding of potential side effect and drug-drug

interactions. Small molecules can also be produced by

chemical synthesis limiting variations in their com-

position. In addition, by chemical synthesis, the

stability, solubility and bioavailability of the end drug

can be improved.

The structural differences between the potent

inhibitors identified in this review and acarbose

elucidated different modes of inhibition and sites of

interaction with the enzyme. The ability to bind to

different regions of the enzyme other than the active

site allows the noncompetitive or mixed inhibition of

the enzyme by these phytochemicals compared to

acarbose. This gives the identified phytochemicals a

broader inhibitrion specificity and makes them less
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affected by increased substrate concentrations. How-

ever, the nature of interaction and the exact amino acid

residues involved are still to be determined for most of

the identified molecules.

By comparing the inhibitory potential of struc-

turally similar compounds, the functional groups

responsible for enhanced activity were also hight-

lighted. The hydroxyl hydrogen atoms of the inhibitor

interact by hydrogen bonding with oxygen atoms of

the surrounding amino acids (Lu et al. 2020). The

position and the number of hydroxyl groups was

therefore found to determine the binding capacity and

inhibitory potential of a molecule. As revealed in this

review, the nature of this interaction broadens the

range of molecules that can potentially inhibit alpha-

glucosidase. The identification of these groups and the

comparison between the various enzyme-inhibitor

structures will help determine the critical binding

sites of the enzyme and can be promising for the

design of semi-synthetic drugs with optimized func-

tional features and improved inhibitory activity.

Collectively based on what was presented, promis-

ing plants and compounds described in this review

could be lead drug candidates for the future design of

novel compounds useful in the management or

treatment of type-2 diabetes.
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