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Abstract Natural products extracts are commonly

highly complex mixtures of active compounds and

consequently their purification becomes a particularly

challenging task. The development of a purification

protocol to extract a single active component from the

many hundreds that are often present in the mixture is

something that can take months or even years to

achieve, thus it is important for the natural product

chemist to have, at their disposal, a broad range of

diverse purification techniques. Counter-current chro-

matography (CCC) is one such separation technique

utilising two immiscible phases, one as the stationary

phase (retained in a spinning coil by centrifugal

forces) and the second as the mobile phase. The

method benefits from a number of advantages when

compared with the more traditional liquid–solid

separation methods, such as no irreversible adsorption,

total recovery of the injected sample, minimal tailing

of peaks, low risk of sample denaturation, the ability to

accept particulates, and a low solvent consumption.

The selection of an appropriate two-phase solvent

system is critical to the running of CCC since this is

both the mobile and the stationary phase of the system.

However, this is also by far the most time consuming

aspect of the technique and the one that most inhibits

its general take-up. In recent years, numerous natural

product purifications have been published using CCC

from almost every country across the globe. Many of

these papers are devoted to terpenoids—one of the

most diverse groups. Naturally occurring terpenoids

provide opportunities to discover new drugs but many

of them are available at very low levels in nature and a

huge number of them still remain unexplored. The

collective knowledge on performing successful CCC

separations of terpenoids has been gathered and

reviewed by the authors, in order to create a compre-

hensive document that will be of great assistance in

performing future purifications.
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Introduction

Terpenoids, also referred to as terpenes, are one of the

largest and the most diverse group of natural products

accounting for more than 40,000 individual com-

pounds, with several new compounds being discov-

ered every year.
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They are synthesized from only two five-carbon

isomers: isopentenyl diphosphate (IPP) and dimethyl-

allyl diphosphate (DMAPP). Two biosynthetic routes

have been characterized: the classical acetate meva-

lonate pathway (described in 1967) and the triose

phosphate-utilizing non-mevalonate pathway charac-

terized in 2002. Starting from the universal precursors

IPP and DMAPP, thousands of enzymes are involved

in the biosynthetic pathways for terpenoid chain

elongation, cyclization, and functionalization of

hydrocarbon chains. The active isoprene unit (IPP) is

repetitively added to DMAPP or a prenyl diphosphate

in sequential head-to-tail condensations catalyzed by

the prenyltrans-ferases. Through consecutive conden-

sations a prenyltransferase can synthesize a variety of

products with fixed lengths and stereochemistry

(Fig. 1) (Wang et al. 2005; Ajikumar et al. 2008).

Based on the number of the building blocks, terpe-

noids are commonly classified into hemi-, mono-,

sesqui-, di-, ses-, tri- and tetraterpenoids (carotenoids)

having 1, 2, 3, 4, 5, 6 and 8 isoprenoid residues

respectively, and polyterpenes consisting of long

chains of many isoprene units (Koch et al. 2008).

Terpenoids display a wide range of biological

activities. Monoterpenes and sesquiterpenes are the

main constituents of essential oils and share respon-

sibility for important properties like antibacterial,

antiviral, antioxidant etc. Triterpene saponins—gin-

senosides—significantly reduce the production of

beta-amyloid which accumulates in the brain of

patients with Alzheimer’s disease and play a critical

role in pathology by inducing neuronal death. Gink-

golides (cyclic diterpenes of labdane type commonly

isolated from Ginkgo biloba) protect neuronal cells

from synaptic damage (Yoo and Park 2012). However

the antimalarial drug Artemisininn and the anticancer

drug paclitaxel (TaxolR) are two renowned terpene-

based drugs with established medical applications.

Artemisinin, earlier known as Qinghaosu, is a phyto-

constituent isolated from Artemisia annua L. and can

be described as a compound which possess antima-

larial activity. Clinical studies with patients infected

with Plasmodium vivax or P. falciparum demonstrated

that artemisinin could kill the malarial parasite very

quickly at the schizont stage of the parasite’s life cycle

(i.e. when it infects the human red blood cell) with no

obvious side effects. The molecule has a completely

new antimalarial prototype structure with an endoper-

oxide moiety, which is necessary for activity. Since

artemisinin itself has poor bioavailability limiting its

Fig. 1 Biosynthetic pathways of terpenes (Wang et al. 2005)
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effectiveness, several semisynthetic derivatives of

artemisinin have been developed (Medhi et al. 2009;

Brown 2010). Taxol, a plant diterpenoid widely used

as a chemotherapeutic drug against several types of

cancer, is known to interact with a specific site of b-

tubulin—it binds to microtubules and inhibits their

disassembly. Cells treated with taxol are arrested in

mitosis and eventually undergo death by apoptosis.

This very important activity is strongly depended on

its unusual structure. It was shown that the side chain

at position C-13 and the taxane ring system are

essential for this activity (Xiang et al. 2009).

The purification of natural products is a complex

process requiring a comprehensive range of tech-

niques. CCC offers the natural product scientist a

different mode of operation to conventional processes.

Invented in the mid 1960’s (Ito et al. 1966), to many

scientists it is still known as it was back then—a

technique that is slow, with separations measuring in

hours or days. It was also unreliable as instruments

frequently broke down and furthermore had poor

capacity with injection amounts measured in tens of

milligrams. There was also no opportunity for scale up

as the factors required to scale up were poorly

understood. However, the technique has been sub-

stantially developed since those early days. Advances

in engineering and the understanding of the processes

involved, particularly in the past 10 years, have

created instruments that are fast, robust, permit very

high injection loadings and, significantly for the

natural products industry, can be rapidly scaled from

analytical to pilot level (Sutherland and Fisher 2004).

The new generation of coil planet centrifuges operate

at higher ‘‘g’’ fields than conventional instruments,

enabling higher flow rates to be used so that separation

times are measured in minutes rather than hours at the

same resolution (Yuan et al. 2008). With a number of

important advantages over both solid phase chromato-

graphic techniques and current liquid–liquid extrac-

tion techniques, modern high capacity counter-current

chromatography is a worthy inclusion in the array of

techniques required for natural product purifications.

Theoretical background of CCC

In a counter-current chromatography centrifuge, tub-

ing is wound on a drum which is centrifugally rotated

in planetary motion (the holder rotates about its own

axis while revolving around the centrifuge axis at the

same angular velocity in the same direction) (Fig. 2).

A two phase solvent system is introduced into this coil.

Although a simple solvent system might consist of

hexane and water, a more likely system for a

purification would consist of hexane, ethyl acetate,

methanol and water or, for biomolecules sensitive to

organic solvents, an aqueous two phase system such as

aqueous PEG1000 and potassium phosphate salt

solution. With the two phase solvent system inside,

as the coil travels through its planetary motion cycle,

zones of mixing and settling travel along the phases

coincident with the low and high accelerations caused

by the epicyclic motion of the coil. The mixing zones

are coincident with low accelerations and take the

form of wave mixing, equivalent to the ‘‘swish-

swosh’’ motion that occurs when a tube of liquids is

tilted from side to side. The settling zones are

coincident with high accelerations and take the form

of a smooth interfacial area. There is one mixing and

one settling zone per coil loop per revolution. A

typical modern analytical CCC instrument may have

40 loops and spin at 2,000 rpm. It will therefore

experience 4.8 million partitioning steps per hour

(40 9 2,000 9 60). Similarly, a typical preparative

instrument may have 30 loops and spin at 1,200 rpm,

giving 2.2 million partitioning steps per hour.

Counter-current chromatography can be achieved

not only in the above mentioned hydrodynamic CCC

created by two axis of rotation, but also as hydrostatic

CCC, typically represented by centrifugal partition

chromatography (CPC). This is a single-axis instru-

ment, which has a series of chambers machined

circumferentially around a rotor. Rotation of the rotor

produces a uniform g-field, which retains the

Fig. 2 Motion of the bobbin in the CCC centrifuge (Sutherland

et al. 1998)
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stationary phase in each chamber, while the mobile

phase is flowed though in a cascading manner. A CPC

instrument requires rotating seals for the mobile phase

flow, whereas the hydrodynamic CCC instruments do

not. This is because the rotation of the coil about its

own axis unwinds the twist produced by its motion

around the sun gear, and thus there is no twisting of the

flow tubes linking the coil to the pump and the detector

(Fig. 3).

Solvent selection process

In the past, selection of a suitable two phase solvent

system involved a considerable amount of experience

and know-how. With aqueous-organic phase systems

coming from up to six or more different solvents

mixed together, the possibilities were almost limitless.

A typical mid-polarity selection table is shown in

Table 1 (Garrard 2005). This is a modified version of

the table produced by Oka et al. (1991) and runs from

moderately polar (System No1: butanol–water) to

moderately nonpolar (System No28: heptane–metha-

nol). The italicized systems in the table can be used to

rapidly screen the whole table first, allowing the

operator to focus into the correct area of interest.

Being all multiples of 0.5 ml when 4 ml solvent

system is made, these particular systems are quick to

make up and test. It is also possible to create the

solvent systems on a micro-scale in 96 well plates if

the crude sample is in short supply.

In order to achieve an efficient resolution of the

target compounds, the K values, which express the

solute concentration in the stationary phase divided by

that in the mobile phase, should be calculated. The

partition coefficient (K) should lie within the approx-

imate range 0.5 \ K \ 2.0. A smaller K value results

in a loss of peak resolution, whilst a larger value

produces excessive band broadening.

Solvent systems employed in CCC for terpenoid

purification

In order to fully assess the use of two phase systems in

CCC of terpenoids, approximately 3,500 scientific

Fig. 3 Type-J planetary motion of a multilayer coil separation

column presenting that the column holder rotates about its own

axis and revolves around the centrifuge axis at the same angular

velocity (x) in the same direction (Ito 2005)

Table 1 Table for selecting a suitable moderately polar two-

phase solvent system, graded from polar (No1) to nonpolar

(No28)

No Heptane EtOAc MeOH Butanol Water

1 0 0 0 2 2

2 0 0.4 0 1.6 2

3 0 0.8 0 1.2 2

4 0 1.2 0 0.8 2

5 0 1.6 0 0.4 2

6 0 2 0 0 2

7 0.1 1.9 0.1 0 1.9

8 0.2 1.8 0.2 0 1.8

9 0.29 1.71 0.29 0 1.71

10 0.33 1.67 0.33 0 1.67

11 0.4 1.6 0.4 0 1.6

12 0.5 1.5 0.5 0 1.5

13 0.57 1.43 0.57 0 1.43

14 0.67 1.33 0.67 0 1.33

15 0.8 1.2 0.8 0 1.2

16 0.91 1.09 0.91 0 1.09

17 1 1 1 0 1

18 1.09 0.91 1.09 0 0.91

19 1.2 0.8 1.2 0 0.8

20 1.33 0.67 1.33 0 0.67

21 1.43 0.57 1.43 0 0.57

22 1.5 0.5 1.5 0 0.5

23 1.6 0.4 1.6 0 0.4

24 1.67 0.33 1.67 0 0.33

25 1.71 0.29 1.71 0 0.29

26 1.8 0.2 1.8 0 0.2

27 1.9 0.1 1.9 0 0.1

28 2 0 2 0 0

Quantities (in ml) required to make 4 ml of system using a

liquid-handling robot. EtOAc = ethyl acetate, MeOH =

methanol. Hexane may be used instead of heptane (Garrard

2005)
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papers were studied, published in the last 30 years,

that related to all aspects of CCC or CPC. Papers that

contained an application example of terpenoids, i.e. a

purification performed by CCC or CPC were noted,

together with the compounds purified and the solvent

system used for the purification. Papers which gave

examples of separations reported elsewhere were

ignored, as were all symposium abstracts. Only papers

which gave specific details of the solvent system and

solute were recorded and only natural product sec-

ondary metabolites were noted e.g. no synthetic

compounds, dyes or chemicals.

In total therefore, 150 solvent systems were listed in

Table 2 together with the corresponding solutes that

they separated. Some of the solvent systems corre-

sponded to more than one solute, and some of the

solutes corresponded to more than one solvent system,

but if the same solute and the same solvent system

were listed, this was simply a duplicate entry and was

therefore removed.

The solvent systems tables mentioned above are

presented here, sorted according to class of terpenoid

separated. That table is presented for the benefit of

CCC users by suggesting possible suitable solvent

systems, which can act as a starting point for further

refinement and optimization in the composition of the

system.

Applications of high speed and high performance

CCC

Being a liquid–liquid chromatography system, CCC

can select from an almost infinite range of possible

two-phase solvent systems for a purification. Most

reported purifications with the technique have under-

standably concentrated on compounds of intermediate

polarity. For example, a review of Chinese herbal

medicines purified by CCC found a total of 214

different compounds in 198 published papers with a

LogP polarity range from -4 to ?12 (Sutherland and

Fisher 2009). However, more than 60 % of those

compounds fell in the narrow intermediate polarity

range of 0–4. Nevertheless, CCC and its sister

technique, CPC can be particularly useful for purifi-

cations in the extreme polar and non-polar range and

some impressive examples have been published. In

1995, Gasper and co-workers managed to purify C60

and C70 fullerenes using the non-polar and non-

aqueous solvent system of isooctane, dimethylform-

amide, 1,2-dichlorobenzene (4:2:1) plus 1 % tert-

butylmethyl ether (Gasper et al. 1995). Still at the non-

polar end of the spectrum, the carotenoid lycopene

was isolated from tomato paste using a non-aqueous

phase system of n-hexane, dichloromethane and

acetonitrile (10:3.5:6.5) (Wei et al. 2001). This

separation was performed in a single step from the

crude material with 100 mg of crude extract injected

onto a 230 ml capacity centrifuge. The purity of the

final product was measured as[98 % by HPLC peak

area. Lycopene has a calculated LogP value of

approximately 17.6. Beyond the carotenoids, non-

polar terpenoids can also be challenging to purify with

solid phase chromatography, and again CCC offers an

alternative approach. In one example, Liu et al.

(2013a) successfully separated cycloartenyl ferulate

and 24-methylene cycloartanyl ferulate. Due to the

weak polarity, a series of low-polar solvent systems,

including: n-hexane–ethyl acetate–ethanol (metha-

nol)–water, n-hexane–ethanol (methanol)–water, n-

hexane–methanol and n-hexane–ethyl acetate–n-buta-

nol ethanol (methanol)–water were tested, but all

without success. Since the HPLC mobile phase for the

analysis of those two target compounds consisted of

methanol, acetonitrile and isopropanol, these three

solvents were further studied and a mixture of hexane

and acetonitrile (1:1) was used for the purification.

Another application of non-aqueous solvent systems is

the purification of shionone—also a low-polar com-

pound. Wang et al. (2012a) tested several hydrophobic

two-phase solvent systems. Among these n-hexane–

methanol (2:1) and heptane–dichloromethane–aceto-

nitrile (20:7:13) were suitable for the separation.

Turning to the extreme polar end of the spectrum,

CCC has been used with aqueous-organic solvent

systems for the purification of peptides. For example,

the peptide antibiotic colistin (LogP about -4.7) was

isolated from a commercial microbial preparation

using the polar two-phase system consisting of n-

butanol and 0.04 M aqueous trifluoroacetic acid (1:1)

(Ikai et al. 1998). Using the salt-based solvent system

consisting of 1-propanol, acetonitrile, saturated

ammonium sulphate and water (1:0.5:1.2:1) the highly

polar glucosinolate glucoraphanin was purified to a

purity[98 % from a crude broccoli extract in a single

step (Fisher et al. 2005).

Sometimes modifications are necessary. The sepa-

ration of three closely related triterpenes: sericic acid,
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Table 2 Solvent systems in CCC for terpenoids separations

Classes of

compounds

Purified compounds References Type of apparatus/solvent system

Monoterpenoids Paeoniflorin

Albiflorin

Huang et al. (2013) CCC/ethyl acetate–n-butanol–

water (3:2.5:5)

Rosiridin

Geranyl 1-O-a-L-arabinopyranosyl-

(1?6)-b-D-glucopyranoside

Mudge et al. (2013) CCC/ethyl acetate–butanol–water

(3:2:5)

(S)-3,7-Dimethyl-5-octene-1,7-diol Knapp et al. (1998) CCC/chloroform–methanol–water

(7:13:8)

Thymol

Carvacrol

Puertas Mejia et al.

(2002)

CCC/n-hexane–tert-butylmethyl

ether–acetonitrile (1:0.1:1)

Eugenol Geng et al. (2007) CCC/n-hexane–ethyl acetate–

methanol–water (1:0.5:1:0.5)

Chavibetol

Methyleugenol

dos Santos et al. (2009) CCC/n-hexane–n-butanol–

methanol–water (12:4:4:3)

a-Cyperone Shi et al. (2009) CCC/n-hexane–ethyl acetate–

methanol–water (1:0.2:1.1:0.2)

1,8-Cineole Dang et al. (2010) CPC/petroleum ether–acetonitrile–

acetone (4:3:1)

Paeoniflorin Chen et al. (2004) CCC/n-butanol–ethyl acetate–

water (1:4:5)

Cuminaldehyde

p-Menta-1,4-dien-7-al

Chen et al. (2011) CCC/n-hexane–methanol–water

(5:4:1)

Linalol

Terpinen-4-ol

a-Terpineol

Skalicka-Woźniak et al.

(2013)

CCC/heptane–ethyl acetate–

methanol–water (5:2:5:2)

Anethole

Foeniculin

Skalicka-Woźniak et al.

(2013)

CCC/heptane–methanol (1:1)

Sesquiterpenoids Parthenolide

11,13-Dihydroparthenolide

Anhydroverlotorin

3b-Hydroxycostunolide

Costunolide diepoxide

3-Hydroxyparthenolide

Artemorin

Santamarine

Reynosin

Artecanin

Tanaparthin-b-peroxide

Fischedick et al. (2012) CPC/heptane-ethyl acetate–

methanol–water (1:1:1:1)

Artemisinin Acton et al. (1986) CCC/iso-octane-ethyl acetate–

methanol–water (7:3:6:4)

Costunolide

Dehydrocostuslactone

Li et al. (2005) CCC/light petroleum–methanol–

water (5:6.5:3.5)

Lactucopicrin Wu et al. (2007) CCC/n-hexane–ethyl acetate–

methanol–water (1.5:5:2.75:5)
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Table 2 continued

Classes of

compounds

Purified compounds References Type of apparatus/solvent system

11b,13-Dihydrolactucin

Lactucin

Wu et al. (2007) CCC/ethyl acetate–methanol–water (20:1:20)

Peroxyferolide

Lipiferolide

Graziose et al. (2011) CPC/n-hexane–ethyl acetate–methanol–water (2:1:2:1)

14-(3-Methylpentanoyl)-6-

deoxybritannilactone

14-(3-Methylbutanoyl)-6-

deoxybritannilactone

14-(2-Methylpropanoyl)-6-

deoxybritannilactone

1,3-Epi-granilin

11,13-Dihydro-

inuchinenolide B

Pulchellin C

6-Deacetylbritanin

4H-Tomentosin

Gaillardin

Britannin

Fischedick et al. (2013a) CPC/heptane–ethyl acetate–methanol–water (4:6:4:6)

3b-Hydroxy-8b-[40-
hydroxytigloyloxy]-

costunolide

Eupalinolide A

Eupalinolide B

Yan et al. (2012) CCC/n-hexane–ethyl acetate–methanol–water (1:4:2:3)

Xanthathin

4-Epi-xanthanol

4-Epi-isoxanthanol

Pinel et al. (2007) CPC/n-hexane–ethyl acetate–methanol–water (1:1:1:1)

b-Caryophyllene Xie et al. (2008) CCC/n-hexane–dichloromethane–acetonitrile (10:3:7)

Rupestonic acid Ma et al. (2005) CCC/n-hexane–ethyl acetate–methanol–water

(6:4:3.5:6.5) with 0.5 % acetic acid in stationary-phase

Rupestonic acid Yang et al. (2010) CCC/n-hexane–ethyl acetate–methanol–water (3:5:3:5)

Germacrone

Curdione

Yan et al. (2005) CCC/light petroleum ether–ethanol–diethyl ether–water

(5:4:0.5:1)

Atractylon

Atractylenolide III

Zhao and He (2006) CCC/light petroleum–ethyl acetate–ethanol–water

(4:1:4:1)

Nootkatone Xie et al. (2009) CCC/n-hexane–methanol–water (5:4:1)

Caryophyllene oxide

b-Farnesene

Caryophyllene

Wei et al. (2012) CCC/n-hexane–acetonitrile–ethanol (5:4:3)

(S)-Dehydrovomifoliol Yang et al. (2013) CCC/n-hexane–ethyl acetate–methanol–water (1:5:1:5)

Curdione

Curcumol

Germacrone

Curzerene

b-Elemene

Dang et al. (2010) CPC/light petroleum ether–acetonitrile–acetone (4:3:1)

Patchoulol Li et al. (2011) CPC/light petroleum ether–acetonitrile (1:1)
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Table 2 continued

Classes of compounds Purified compounds References Type of apparatus/solvent

system

Tussilagone

14-Acetoxy-7b-(30-ethyl cis-

crotonoyloxy)-la-(20-methyl

butyryloxy)-notonipetranone

7ab-(30-Ethyl cis-

crotonoyloxy)-la-(20-methyl

butyryloxy)-3,14-dehydro-Z-

notonipetranone

Wang et al. (2011a) CCC/n-hexane–ethyl acetate–

methanol–water

(1:0.5:1.1:0.3)

Blumenol C Roscher and

Winterhalter (1993)

CCC/chloroform–methanol–

water (7:13:8)

Solanesol Hu et al. (2007) CCC/n-hexane–methanol

(10:7)

Solanesol Du et al. (2006) CCC/light petroleum ether-

ethanol-methanol (200:1:100)

Kudtdiol Rodrigues et al. (2009) CCC/ethyl acetate–methanol–

water (2:1.75:1)

8ß-Hydroxyeremophil-3,7(11)-

dien-12,8a

15,6a-Diolide and 8b-

methoxyeremophil-3,

7(11)-dien-12,8a;15,6a-

diolide

Shi et al. (2008) CCC/light petroleum–ethyl

acetate–methanol–water

(9:1:8:2)

Diterpenoids Ptaerobliquol Agostinho et al. (2013) CPC/heptane–ethyl acetate–

methanol–water) (6:5:6:5)

Coniferin

Coniferaldehyde glucoside

Slacanin et al. (1991) CPC/chloroform–methanol–

water (7:13:8)

Salvinorin A Shirota et al. (2007) CPC/n-hexane–

dichloromethane–methanol–

water (8:8:9:2)

Andrographolide

Neoandrographolide

Du et al. (2003a) CCC/n-hexane–ethyl acetate–

methanol–water (1:4:2.5:2.5)

Phytol Xiao et al. (2013) CCC/n-hexane–acetonitrile–

methanol (5:5:3)

Carnosol Fischer et al. (1991) CCC/n-hexane–ethyl acetate–

methanol–water (70:30:14:8)

15,16-Epoxy-12-

hydroxy-8(17),

13(16),14-labdatrien-

19-oic acid

Imbricatolic acid

Isocupressic acid

Sandaracopimaric acid

Isopimaric acid

Martin et al. (2006) CPC/chloroform–methanol–

isopropanol–water (5:6:1:4)

Kaurenoic acids

Polyalthic acid

De Souza et al. (2010) CCC/n-hexane–acetonitrile–

ethyl acetate (1:1:0.4)
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Table 2 continued

Classes of

compounds

Purified compounds References Type of apparatus/solvent system

Pseudolaric acid B O-b-D-glucopyranoside

Pseudolaric acid C

Deacetylpseudolaric

acid A

Pseudolaric acid A

O-b-D-glucopyranoside

Pseudolaric acid B

Pseudolaric acid B methyl ester

Pseudolaric acid A

Pseudolaric acid H

He et al. (2012) CCC/stepwise gradient: n-hexane–

ethyl acetate–methanol–water

(1:1:1:1) and (3:2:2:3) and

(3.5:1:1:3.5)

Oridonin Lu et al. (2006) CCC/n-hexane–ethyl acetate–

methanol–water (1:2:1:2)

Oridonin He et al. (2011) CCC/n-hexane–ethyl acetate–

methanol–water (2.8:5:2.8:5)

Oridonin

Ponicidin

Lu et al. (2007) 2D-CCC/n-hexane–ethyl acetate–

methanol–water (1:5:1:5) in 1st

direction and (3:5:3:5) in 2nd

direction

Isoneotriptophenolide

Hypolide

Triptonide

Triptophenolide

Triptonoterpene methyl ether VI

Peng et al. (2008a) CCC/n-hexane–ethyl acetate–

methanol–water (3:2:3:2)

Pseudolaric acids A and B

And their glucosides (O-b-D-

glucopyranosides)

Han et al. (2009) CCC/n-hexane–ethyl acetate–

methanol–water (5:5:5:5) for

purification of aglicones and

(1:9:4:6) for glycosides

6b-Angeloyloxykolavenic acid

6b-Tigloyloxykolavenic acid

Wu et al. (2008) CCC/n-hexane–ethanol–water

(6:5:1)

Pseudolaric acid B Han et al. (2008) CCC/n-hexane–ethyl acetate–

methanol–water (5:5:5:5)

lolitrem B Grancher et al. (2004) CPC/heptane–ethyl acetate–

methanol–water (33:33:24:10)

Carnosic acid

Carnosol

Carnosaldehyde

Epirosmanol

Rosmanol

12-Methoxy-carnosic acid

Sageone

Fischedick et al.

(2013b)

CPC/heptane–acetone–water

(3:5:2)

Stevioside

Rebaudioside A

Rebaudioside C

Huang et al. (2010) CCC/n-hexane–n-butanol–water

(1.5:3.5:5)
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Table 2 continued

Classes of

compounds

Purified compounds References Type of apparatus/solvent

system

Ginkgolides A

Ginkgolides B

Ginkgolides C

Bilobalide

Liu et al. (2013b) CCC/stepwise gradient:

n-hexane–ethyl acetate–

methanol–water (4:5:1:5)

and (4:5:2:5)

Cryptotanshinone

Tanshinone I

Tanshinone IIA

Gu et al. (2004, 2006) CCC/stepwise gradient:

n-hexane–ethanol–water

(10:5.5:4.5) and (10:7:3)

Cryptotanshinone

Tanshinone I

1,2-Dihydrotanshinquinone

Tanshinone IIA

Liang et al. (2013) CCC/n-hexane–ethyl

acetate–methanol–water

(5:5:7:3)

Tanshinone I

Tanshinone IIA

Wu et al. (2010) CCC/n-hexane–ethyl

acetate–ethanol–water

(8:2:7:3)

Cryptotanshinone

Tanshinone I

Tanshinone IIA

Tian et al. (2000) CCC/n-hexane–ethanol–

water (4:2:2)

Dihydrotanshinone

Cryptotanshinone

Methylenetanshiquinone

Tanshinone I

Tanshinone II

Danshenxinkun B

Li and Chen (2001b) CCC/stepwise gradient:

n-hexane–ethanol–water

(10:5.5:4.5) and (10:7:3)

Tanshinone I

Tanshinone IIA

Dihydrotanshinone I

Cryptotanshinone

Tian et al. (2002) CCC/light petroleum–ethyl

acetate–methanol–water

(2:3:2.5:1.7)

Przewaquinone A Han et al. (2003) CCC/carbon tetrachloride–

methanol–water–

n-hexane (3:3:2:1)

Triptolide Ye et al. (2008b) CCC/n-hexane–ethyl

acetate–methanol–water

(4:5:4:5)

Dihydrotanshinone I

1,2,15,16-Tetrahydrotanshiquinone

cryptotanshinone

Tanshinone I

Tanshinone IIA

Neo-przewaquinone A

Miltirone

Sun et al. (2011) CCC/light petroleum–ethyl

acetate–methanol–water

(6:4:6.5:3.5)
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Table 2 continued

Classes of compounds Purified compounds References Type of apparatus/solvent system

Triterpenoids 2b,3b,4b-Trihydroxypregnan-16-

one

Rodrigues et al. (2009) CCC/n-hexane–ethyl acetate–methanol–

water (1:2:1.75:1)

Squalene Lu et al. (2003) CCC/n-hexane–methanol (2:1)

Pristimerin

Netzahualcoyene

Gutiérrez et al. (2007) CPC/heptane–ethyl acetate–methanol–

water (8:1:6:1)

Guyanin Severino et al. (2009) CCC/n-hexane–ethanol–acetonitrile–

water (10:8:1:1)

Barbinervic acid

Rotungenic acid

24-Hydroxy ursolic acid

Ursolic acid

Fan and He (2006) CCC/n-hexane–ethyl acetate–methanol–

water (3:6:4:2)

Betulinic acid Frighetto et al. (2005) CCC/n-hexane–ethyl acetate–methanol–

water (10:5:2.5:1)

Ursolic acid Frighetto et al. (2008) CCC/n-hexane–ethyl acetate–methanol–

water (10:5:2.5:1)

Bellericagenin B

Bellericaside B

Arjunglucoside I

28-Nor-17, 22-seco-2a, 3b, 19, 22,

23-pentahydroxy-D 12-Oleanane

Nasser et al. (2006) CCC/chloroform–methanol–water

(43:37:20)

2a,3a,19b,23b-Tetrahydroxyurs-

12-en-28-oic acid

2a,3a,23b-Trihydroxyurs-12-en-

28-oic acid

Liu et al. (2011) CCC/n-hexane–ethyl acetate–methanol–

water (10:5:3:1)

Oleanolic acid

Ursolic acid

Du et al. (1995) CCC/n-hexane–ethyl acetate–methanol–

water (3:6:2:1)

Shionone Wang et al. (2012a) CCC/n-hexane–methanol (2:1)

Taraxasterol acetate

Lupeol acetate

b-Amyrin acetate

Abbott et al. (1989) CCC/n-hexane–ethyl acetate–methanol–

acetonitrile (5:2:4:5)

Cycloartenyl ferulate

24-Methylene cycloartanyl

ferulate

Liu et al. (2013a) CCC/n-hexane–acetonitrile (1:1)

Abrusoside A, B, C, D Fullas et al. (1990) CCC/chloroform–methanol–water

(7:13:8)

No compound names given Marston et al. (1988) CCC/chloroform–methanol–water

(7:13:8)

Inotodiol

Trametenolic acid

Du et al. (2011) CCC/n-hexane–ethyl acetate–methanol–

water (1:0.4:1:0.4)

Ursolic acid

Ursolic acid lactone

Maurya and Srivastava

(2011)

CPC/n-hexane–ethyl acetate–methanol–

water (1:2:1.5:1) with 2 % ammonia

solution in lower aqueous mobile phase

(pH 9.5)

Asiaticoside

Madecassoside

Diallo et al. (1991) CCC/chloroform–n-butanol–methanol–

water (7:3:6:4)
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Table 2 continued

Classes of compounds Purified compounds References Type of apparatus/solvent system

Taraxeryl acetate Yang et al. (1995) CCC/chloroform–methanol–water (2:2:1)

Triterpenoic acid

Acetyl-triterpenoic acid

Ito et al. (1990) CCC/n-hexane–ethanol–water (6:5:2)

Celastrol Wu et al. (2004) CCC/light petroleum–ethyl acetate–

tetrachloromethane–methanol–water

(1:1:8:6:1)

Asiatic acid

Madecassic acid

Asciaticoside

Madecassoside

Du et al. (2004) CCC/n-hexane–n-butanol–0.05 M NaOH

(5:1:6)

Euscaphic acid

Tormentic acid

2a-Acetyl tormentic acid

3b-Acetyl tormentic acid

Rocha et al. (2007) CCC/gradient: n-hexane–ethyl acetate–

methanol–water (1:2:1.25:2) and (1:2:1.5:2)

and (1:2:1.75:2)

Alisol B

Alisol B 23-acetate

Yoon et al. (2009) CPC/n-hexane–ethyl acetate–methanol–

water (10:2:10:7)

Ganoderic acids A, B, C6, D,

E, F, G

Ganoderenic acid D

Cheng et al. (2012) CCC/stepwise gradient: light petroleum

ether–ethyl acetate–methanol–water

(3:5:3:5) and (4:5:4:5)

chloroform–methanol–water

(13:7:4) ? ammonia (22 mM) in aqueous

phase and TFA (11 mM) in organic phase

for further purification

Dehydrosulphurenic acid

3-Ketodehydrosulphurenic

Zhang et al. (2013a) CCC/n-hexane–ethyl acetate–methanol–

water (1:1.5:1.2:1)

24-Methylene cycloartanol Yao et al. (2007) CCC/n-hexane–ethyl acetate–acetonitrile

(5:1:4)

Lupenone Yao et al. (2007) CCC/n-hexane–ethyl acetate–acetonitrile

(5:2:5)

Triterpenoid saponins

(ginsenosides)

Rc, Rb1 and Re Wang et al. (2010) CPC/ethyl acetate–n-butanol–water (1:1:2)

Rg3, Rk1, Rg5 and F4 Ha et al. (2007) CCC/methylene chloride–methanol–water–

isopropanol (6:6:4:1)

Rf, Rd, Re and Rb1 Qi et al. (2010) CCC/methylene chloride–methanol–5 mM

aqueous ammonium acetate–isopropanol

(6:2:4:3)

Re Engelberth et al. (2010) CPC/heptane–n-butanol–water (3:4:7)

Rg1, Re, Rf, Rh1, Rb1, Rc,

Rb2 and Rd

Shehzad et al. (2011) CCC/chloroform–methanol–water–

isopropanol (4:3:2:1)

Re,Rb1, Rc and Rb2 Cheng et al. (2011) CCC/methylene chloride–methanol–water–

isopropanol (6:2:4:3, v/v) further

purification of Rb1, Rc and Rb2 in n-

hexane–n-butanol–0.1 % formic acid

(0.7:3:4)

Rb1, Rb2, Rc, Rd, Re, Rg1,

Rf and Rh 1

Shehzad et al. (2012) CCC/stepwise gradient: n-hexane–ethyl

acetate–methanol–water (5:6:1:4) and

(4:3:1:2) and (3:3:1:2)

Re and Rg1 Chen et al. (2012) CCC/ethyl acetate–n-butanol–water (4:1:6)

Rh1, Rf, Rd, Rg1, Re, Rc,

Rb2 and Rb1

Shehzad et al. (2013) CCC/methylene chloride–methanol–water–

isopropanol (1:1:2:1)
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Table 2 continued

Classes of

compounds

Purified compounds References Type of apparatus/solvent system

Rg6, Rg5, Rk1,F4, Rg3, Rg2, Rf,

Rd, Rg1, Re, Rc, Rb2, Rb1

Shehzad et al. (2013) CCC/stepwise gradient: methylene chloride–

methanol–water–isopropanol (5:4:1:3) and

(2:2:1:2)

Rb1 and Rb2 Wang et al. (2013) CPC/ethyl acetate–n–butanol–water (0.8:1.2:2)

Rg, Rd, Re and Rb

Notoginsenoside R

Cao et al. (2003) CCC/chloroform–2-butanol–methanol–water

(5:1:6:4)

Rg, Rd, Re and Rb

Notoginsenoside R

Cao et al. (2003) CCC/ethyl acetate–n–butanol–water (1:1:2)

Rg, Re and Rb

Notoginsenoside R

Du et al. (2003b) CCC/n-hexane–n-butanol–water (3:4:7)

Ro Cheng et al. (2010) CCC/ethyl acetate–isopropanol–0.1 % formic acid

(3:1:5)

Rg1, Re and Rb1

Notoginsenoside R1

Wang et al. (2011b) CPC/ethyl acetate–n-butanol–water (1:1:2)

Triterpenoid

saponins

Lucyoside Q

Lucyoside H

Du and Gao (2006) CCC/chloroform-methanol-water (13:7:8)

Astragaloside I

Astragaloside II

Han et al. (2007) CCC/stepwise gradient: ethyl acetate–2-propanol–

water (5:1:5) and (50:1:50)

Lancemaside A

Foetidissimoside A

Astersaponin Hb

Shirota et al. (2008) CPC/n-hexane–n-butanol–methanol–0.1 % aqueous

formic acid (3:4:1:6)

Saikosaponins-A

Saikosaponins-C

Yoon and Kim (2009) CPC/ethyl acetate–n-butanol–methanol–water

(15:1:3:1)

Platycoside E

Deapio-platycoside E

Han et al. (2009) CCC/n-hexane–n-butanol–water (1:40:20)

Platycodin D3

Deapio-platycodin D3

Platycodin D

Deapio-platycodin D

Han et al. (2009) CCC/n-hexane–n-butanol–water (1:10:5)

200-O-Acetylplatycodin D

300-O-Acetylpolygalacin D

200-O-Acetylpolygalacin

300-O-Acetylplatycodin D

Polygalacin D

Ha et al. (2011) CCC/chloroform–methanol–isopropanol–water

(3:2:2:3)

No compound names given Shi et al. (2007) CCC/ethyl acetate–n-butanol–ethanol–0.05 % TFA

(5:10:2:20)

Astragaloside IV

Astragaloside II

Astragaloside I

Acetylastragaloside I

Peng et al. (2008b) CCC/stepwise gradient: n-hexane–ethyl acetate–

ethanol–water (1:0.6:0.6:1) and (1:1:1:1)

Gypsogenin derivatives

Dianoside C

Yao et al. (2008) CCC/n-hexane–n-butanol–methanol–0.02 % TFA

(1:9:1:9)
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Table 2 continued

Classes of

compounds

Purified compounds References Type of apparatus/solvent system

Hederagenin

3-O-[b-D-xylopyranosyl-(1?3)-

a-L-rhamnopyranosyl-(1?2)-

L-arabinopyranosyl]-hederagenin

Xin et al. (2009) CCC/n-hexane–ethyl acetate–methanol–

water (7:3:5:5)

23-O-Acetylshengmanol-3O-

D-xylopyranoside

Cimiracemoside D 25-O-acetylcimigenol-

3-O-D-Xylopyranoside

Cimigenol

Cicek et al. (2010) CCC/n-hexane–acetone–ethyl

acetate–isopropanol–ethanol–

water (3.5:1:2:1:0.5:2)

Esculentosides A, B, C, and D Ma et al. (2010) CCC/chloroform–methanol–water (4:4:2)

Hederagenin CCC/heptane–acetone–methanol (5:1:4)

Hederagenin He et al. (2002) CPC/n-hexane–ethyl acetate–

methanol–water (7:8:5:3)

Elatoside F Lee et al. (2009) CCC/chloroform–methanol–

water–isopropanol (4:3:3:1)

Tormentic acid Wang et al.

(2012b)

CCC/n-hexane–ethyl acetate–methanol–

water (4:5:4:5)

Arganine A, C, D

Tieghemelin

Gosse et al. (2002) CCC/tert-butylmethyl ether–n-butanol–

acetonitrile–0.5 % TFA (1:3:3:5)

Triacetyl soyasaponin Ab,

Aa, Ab, Ae, Ba, Af, Bb,

Be and conjugated

groups, ag, bg and cg

Zhao et al. (2012) CCC/n-butanol–acetic acid–water

(5:0.05:5)-acid in n-butanol as

stationary phase

Licorice-saponin A3

Glycyrrhizic acid, 3-O-[b-D-

glucuronopyranosyl-(1?2)-b-D-

Galactopyranosyl]glycyrrhetic acid

Xu et al. (2013) CCC/ethyl acetate–n-butanol–water

(2:3:5) with 10 mM TFA in the upper

organic

Stationary phase and 10 mM ammonia in

the lower aqueous mobile phase

Glycyrrhizin Jiang et al. (2004) CCC/ethyl acetate–methanol–water

(5:2:5)

Goyaglycoside-E

Momordicoside L

Goyaglycoside-a

Momordicoside K

Du and Yuan

(2005)

CCC/tert-butylmethyl ether–n-butanol–

methanol–water (1:2:1:5) or (1:3:1:5)

Tetranortriterpenoids Azadirachtin A

Azadirachtin B

Azadirachtin H

Desacetylnimbin

Desacetylsalannin

Nimbin

Salannin

Silva et al. (2007) CCC/n-hexane–n-butanol–

methanol–water (1:0.9:1:0.9)

Methyl angolensate

7-Descetoxy-7-oxogedunin

Deacetylgedunin

6a-Acetoxygedunin

Gedunin

Andirobin

da Silva et al.

(2009)

CCC/stepwise gradient: n-hexane–

ethyl acetate–methanol–water

(2:1:1.5:1) and (2:1:1.75:1)
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trachelosperogenin E and sericoside was achieved

using a three-phase solvent system composed of n-

heptane, tert-butylmethyl ether, acetonitrile and water.

After mixing all solvents in equal volume, the upper

phase was separated and tert-butylmethyl ether was

shaken with the remaining two-phase solvent system

in order to decrease the polarity. The lower phase was

used as a stationary phase. Sericic acid was identified

in the fractions collected when the upper phase was

used as the mobile phase, while the elution of the

middle phase led to the separation of trachelosperog-

enin E and sericoside (Hamzaoui et al. 2013).

Zhao and Du (2007) proposed a novel non-aqueous

two-phase solvent system composed of sunflower oil

and ethanol to separate solanesol—a non-cyclic

terpene alcohol used as a food additive for preventing

cardiac arrest and cancer. Before, this target molecule

was purified from tobacco leaves extract with petro-

leum and methanol, both solvents being unsuitable for

the food industry.

Sometimes the addition of a small amount of acid

can significantly improve the purification. Shirota

et al. (2008) purified the saponins lancemaside A,

foetidissimoside A and astersaponin Hb from a hot

Table 2 continued

Classes of compounds Purified compounds References Type of apparatus/solvent system

Tetraterpenoids

(Carotenoids)

Cochloxanthin

Dihydrocochloxanthin

Diallo and

Vanhaelen (1988)

CCC/tetrachloromethane–methanol–

water (5:4:1)

Zeaxanthin Chen et al. (2005) CCC/n-hexane–ethyl acetate–ethanol–

water (8:2:7:3)

Crocin Jiang et al. (2011) CCC/tert-butylmethyl ether–n-butanol–

acetonitrile–water (2:2.5:1:5)

Fucoxanthin Kim et al. (2011) CPC/n-hexane–ethyl acetate–ethanol–

water (5:5:7:3)

Lutein Wei et al. (2003) CCC/n-heptane–chloroform–acetonitrile

(10:3:7)

Zeaxanthin

Lutein

Aman et al. (2005) CCC/n-hexane–ethanol–water (6:5:1.3)

Lutein Tsao and Yang

(2006)

CCC/n-hexane–ethanol–water (6:4.5:1.5)

Canthaxanthin Li et al. (2006) CCC/n-hexane–ethanol–water (10:9:1)

90-Cis-neoxanthin Baldermann et al.

(2007)

CCC/n-hexane–ethanol–water (5:5:4.5)

Lycopene Baldermann et al.

(2008)

CCC/n-hexane–dichloromethane–

acetonitrile (30:11:18) with 85 mg/L of

3-tert-butyl-4-hydroxyanisol and 2-tert-

butyl-p-cresol

Crocins 1, 2, 5

Picrocrocin

Lechtenberg et al.

(2008)

CPC/n-hexane–ethyl acetate–ethanol–

water (1:3:4:7)

Fucoxanthin Xiao et al. (2012) CCC/n-hexane–ethyl acetate–ethanol–

water (5:5:6:4)

Lutein Li et al. (2001) CCC/n-hexane–ethanol–water (4:3:1)

Lycopene Wei et al. (2001) CCC/n-hexane–dichloromethane–

acetonitrile (10:3.5:6.5)

Astaxanthin Li and Chen (2001a) CCC/n-hexane–ethyl acetate–ethanol–

water (5:5:6.5:3)

Tephrosin

Deguelin

6a,12a-Dehydrodeguelin

Ye et al. (2008a) CCC/n-hexane–ethyl acetate–methanol–

water (1:0.8:1:0.6)

CCC counter-current chromatography, CPC centrifugal partition chromatography
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water extract of Codonopsis lanceolata roots used

CPC with mixture of n-hexane–n-butanol–methanol–

0.1 % aqueous formic acid (3:4:1:6) as the two-phase

solvent system. Because the crude extract contained

large amounts of sugars, an aqueous phase was chosen

as the stationary phase so that these sugars would be

retained in the partition cells, whereas an organic

phase was chosen as mobile phase for elution of the

target compound. Addition of formic acid to the two-

phase solvent system retained the carboxy group in the

non-ionised form and allowed the separation of the

lancemasides from the large amounts of water-soluble

sugars present. The addition of acetic acid to the ethyl

acetate–n-butanol–water mixture improved the reso-

lution of soyasaponins, naturally occurring triterpe-

noid glycosides. A suitable mixture n-butanol, acetic

acid, water (5:0.05:5) was taken but acetic acid was

added only in n-butanol as the stationary phase (Zhao

et al. 2012). During the separation, with the movement

of the mobile phase the acetic acid was gradually

diluted with water and the polarity of the stationary

phase changed as a gradient. It is worth mentioning

that the main difficulties with soyasaponin isolation

and purification are that the soyasaponins coexist in

soybeans with the isoflavone glycosides and they share

overlapping polarities. There is also the structural

similarity of soyasaponin compounds.

CCC is popularly applied for purification of ginse-

nosides, an important group of terpenoids due to their

biological activity. They generally fall in the moderate

to polar category and therefore require similar solvent

systems for purification (Qi et al. 2010; Shehzad et al.

2013). A good solubility for saponin-like compounds

can be provided by the addition of chloroform or other

chlorinated solvents and a gradual polarity change

between phases can be achieved by varying the

methanol ratio in the system or by adding another

alcohol like isopropanol (Qi et al. 2010). Shehzad et al.

(2013) proposed an efficient CCC separation method

in which a flow-rate gradient technique was coupled

with a new solvent gradient dilution strategy for the

isolation of ginsenosides from Korean red ginseng

(steam-treated P. ginseng). The column was first

entirely filled with the upper stationary phase mixture

of methylene chloride–methanol–isopropanol–water

(5:4:1:3) in a reversed phase system. After 300 min,

when five ginsenosides had eluted, the flow rate was

increased from 1 to 1.2 ml/min and also the dilution of

the lower phase was initiated and was changed to

100 % of lower phase composed of the mixture

mentioned above in a ratio (2:2:1:2). Overall, 13

ginsenosides including Rg1, Re, Rf, Rg2, Rb1, Rb2,

Rc, Rd, Rg3, Rk1, Rg5, Rg6, and F4 were purified

(Shehzad et al. 2013). Qi et al. (2010) for the

purification of ginsenosides Rf, Rd, Re and Rb1,

applied mixtures of methylene chloride, methanol,

water and isopropanol (6:2:4:3).

Emulsification can often be a problem in the CCC

purification of ginsenosides. Generally, adding an

electrolyte, such as salt or acid, can help to eliminate

such emulsification. Salt is not recommended because

an additional desalting process will be necessary after

the separation. Therefore, formic acid is often chosen

to prevent emulsification (Cheng et al. 2010). How-

ever, Qi et al. (2010) preferred to avoid an acidic

environment, which would lead to the decomposition

of ginsenosides. Instead, the inorganic salt ammonium

acetate was chosen, because it is volatile and can be

precipitated in warm acetone for sample recovery. The

addition of this salt resulted in a very slight decrease in

K values and thus a shorter separation time. In the end,

the proposed solvent system was methylene chloride–

methanol–5 mg/mL aqueous ammonium acetate–iso-

propanol (6:2:4:3).

As the solvent system contained methylene chlo-

ride and methanol, both toxic to humans and the

environment, Wang et al. (2010) chose low toxic

solvents such as ethyl acetate and n-butanol. Since the

ginsenosides in P. quinquefolium L. have a compar-

atively larger polarity with solubility in hydrophilic

solvents, both phases require a certain hydrophilicity

to get a good separation. Initially, the hexane–n-

butanol–water solvent systems were scanned at sev-

eral volume ratios, but all the systems had a poor

retention in the CPC column. Then ethyl acetate was

then employed instead of hexane in order to enhance

the retention of the stationary phase in the column.

Because ginsenosides are easily dissolved in n-buta-

nol, and the viscosity of n-butanol is comparatively

large, so in an ethyl acetate–n-butanol–water solvent

system, the addition of n-butanol could delay the peak

elution time and affect the separation. Overall, the

system of ethyl acetate–n-butanol–water (1:1:2) was

used for successful separation of three ginsenosides

Rc, Rb1, and Re.

Counter-current chromatography has also been

used for the separation of minor and structurally

similar compounds. Fan and He (2006) using
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HSCCC with n-hexane–ethyl acetate–methanol–water

(3:6:4:2) to separate not only ursolic acid, which is a

very small content of the leaves of Diospyros kaki, but

also two other pentacyclic triterpenes: barbinervic

acid and its epimer rotungenic acid, differing only

with the configuration of a hydroxyl group at position

C3: one contains an axial and the other an equatorial

hydroxyl group. HSCCC was also employed for the

separation and purification of minor constituents in

Platycodi Radix. Platycosides, the saponins that are

the major active constituents, are typically composed

of oleanene backbones with two side chains; one a

glucose unit attached through an ether linkage at the

C-3 position of a triterpene, and the other 28-O-

arabinoserhamnose-xylose-apiose linked by an ester

bond. They also have different substituents at the C-4

position. Because the content of these compounds is

very low, conventional methods are frequently not

suitable for the separation. Ha et al. (2011) used a two-

phase solvent system consisting of chloroform–meth-

anol–isopropanol–water (3:2:2:3) for purification of

minor saponins 200-O-acetylplatycodin D, 300-O-acet-

ylpolygalacin D, 200-O-acetylpolygalacin and a mix-

ture of 300-O-acetylplatycodin D and polygalacin D,

which were further successful purified using prep-

HPLC (Ha et al. 2011). Ha and Kim (2009) also used

HSCCC for the separation of three pairs of platyco-

sides and their deapiose forms. They used an interest-

ing modification: the column was first filled with a

mixture of the two phases, thus reducing the amount of

time for hydrodynamic equilibrium to be established.

The ratio of two phases was optimised at 70:30

(stationary phase–mobile phase) based on the amount

of time required to reach hydrodynamic equilibrium.

A series of solvent systems were tested. In the gradient

elution mode, the retention of the stationary phase was

extremely low. The authors decided to perform the

separation in two stages. First, platycoside E, deapio-

platycoside E, a mixed fraction containing platyodin D

and deapiose form, and a fraction containing platyco-

din D3 and deapiose form were separated using the n-

hexane–butanol–water (1:40:20) in reversed-mode.

Then mixed fractions I and II were further purified in

the normal elution mode with the above mentioned

solvent system in the ratio 1:10:5.

CCC/CPC seems to be one of the few efficient

approaches for the separation of xanthanolides, a

bicyclic subtype of sesquiterpenic lactones character-

ized by a 5,7-fused system containing a c-lactone

moiety. Because of some well documented and

promising activity purification of these compounds is

important. The presence of several chiral centres

probably explain the difficulty obtaining enantiomer-

icaly pure xanthanolides by total synthesis, thus

purification from natural source seems to be the best

solution. Xanthonolides are coextracted with chloro-

phyll and lipids. The pigment crystallization and the

delipidation in order to clean the extract is not

selective and cause the partial loss of target com-

pounds. Purification of several xanthanolides (xantha-

thin, 4-epi-xanthanol and 4-epi-isoxanthanol) was

realized in one step, directly from the crude chloro-

formic extract of the leaves of X. macrocarpum with a

mixture of heptane–ethyl acetate–methanol–water

(1:1:1:1) (Pinel et al. 2007).

High-speed counter-current chromatography can be

applied as a method suitable for fingerprinting. Gu

et al. (2006) used it for quality control of TCMs and

identification of the active compounds of Salvia

miltiorrhiza Bunge, a popular traditional Chinese

medicine. In order to purify a series of tanshinones a

stepwise elution with solvent systems composed of n-

hexane–ethanol–water (10:5.5:4.5) and (10:7:3) was

used. The method was compared with more conven-

tional approaches, such as high performance liquid

chromatography (HPLC), high performance capillary

electrophoresis (HPCE), and thin-layer chromatogra-

phy scan (TLCS). In the HSCCC separation, 12

components were separated, with good resolution and

precision, within 13 h. HSCCC showed better perfor-

mance in the analysis of tanshinones, which produced

a fingerprint which contained more chemical infor-

mation than that of e.g. TLCS.

Lu et al. (2007) proposed this effective two-

dimensional counter-current chromatographic method

for the simultaneous isolation and purification of

oridonin and ponicidin from a crude extract of

Rabdosia rubescens with a pair of two-phase solvent

systems composed of n-hexane–ethyl acetate–metha-

nol–water (1:5:1:5 and 3:5:3:5, v/v). A combination of

stepwise CCC and pH-zone-refining is also possible.

Cheng et al. (2012) reported its successful combina-

tion in the separation of the main components from G.

lucidum. In the first step, a two-phase solvent system

composed of petroleum ether–ethyl acetate–metha-

nol–water (3:5:3:5 and 4:5:4:5) led to the separation of

ganoderic acids GE, GC6 and GF with high purity in

one run. Also two peaks containing GG, GB, GA and
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GED, GD, respectively, were collected and their

separation was followed by pH-zone-refining CCC.

Chloroform–methanol–water (13:7:4) with NH4OH in

upper aqueous stationary phase and trifluoroacetic

acid as the eluter acid was the most suitable. In another

example of two-dimensional CCC, a three-step gradi-

ent elution and two-step flow-rate gradient elution was

applied to separate 8 diterpene compounds within

80 min in a single run from the alcohol extract of

Pseudolarix kaempferi. Pseudolaric acid B O-b-D-

glucopyranoside, pseudolaric acid C, deacetylpseu-

dolaric acid A, pseudolaric acid A O-b-D-glucopyran-

oside, pseudolaric acid B, pseudolaric acid B methyl

ester, pseudolaric acid A and pseudolaric acid H were

obtained with very high purity (He et al. 2012). The

separation was performed in normal phase system. In

the first step, the mobile phase, composed of hexane–

ethyl acetate–methanol–water (1:1:1:1), was used

with a flow rate 0.5 ml/min. While the mobile phase

(upper) of (2:3:2:3) and (1:3.5:1:3.5) were used in the

second and third step, and the flow rate of mobile

phase was set at 1 ml/min. When the separation was

performed in preparative conditions, the initial flow

rate of mobile phase was 25 ml/min in the first step

and then increased to 50 ml/min in the second and

third step.

Principle advantages and drawbacks of CCC

in the purification of natural products

Counter-current chromatography has a number of key

advantages in the purification of natural products. For

example, the solvent usage is generally far lower than

that of solid phase chromatography systems operating

at the same scale (about 25 %) (Graham et al. 2001).

Furthermore, since the process is frequently an

isocratic one, a simple analysis of solvent composition

allows the recycling of the solvents, reducing the

usage still further (Garrard et al. 2007). The technique

also allows for 100 % recovery of the sample compo-

nents. In other words, the target compound can always

be retrieved since there is no solid phase and therefore

no possibility of losses arising from irreversible

adsorption onto the solid matrix. This is a significant

advantage in every purification process. As a solid-

free and therefore relatively gentle chromatographic

technique, CCC can be used for the isolation of

unstable natural compounds. Baldermann et al. (2007)

presented the successful purification of 90-cis-neoxan-

thin, the predominant isomer of neoxanthin in green

vegetables. Major problems during its isolation

include isomerization and oxidation, mainly caused

by higher temperatures, light or oxygen exposure.

When typical solid stationary phase techniques are

applied, the rearrangement products can be detected or

complete isomerization can be observed. A solid-free

technique is a very practical solution for avoiding the

above mentioned complications.

Particulates, such as cell debris, are generally well

tolerated in CCC, particularly when performed at large

scale where the tubing bore may be up to 10 mm in

diameter. This is another major advantage over solid

phase chromatography systems. Thus filtering a sam-

ple is frequently not necessary, depending on the scale

of CCC employed, and even if it is required, it is

usually a simple filter paper filtration. With processing

times similar to that of other purification methods,

scale up is also possible with modern instruments with

examples existing running from milligram to kilogram

levels (Garrard et al. 2008). The technique can be

operated in normal batch injection mode, or as a

continuous extraction process for better throughput. A

wide range of polarities can be processed due to the

range of solvents that may be used (the literature

reports examples with a logP range from -4.7 (colistin

peptide antibiotic) (Ikai et al. 1998) to ?17.6 (lyco-

pene) (Wei et al. 2001). Also, the separation of

compounds with vastly different polarities from a

single extract is possible. For example, in order to

purify a wide range of polarity of triterpene saponis

from Panax notoginseng, Zhang et al. (2013b)

successfully coupled accelerated solvent extraction

(ASE) and high-performance counter-current chroma-

tography (HPCCC). First the upper phase of the

solvent system ethyl acetate–n-butanol–water (1:1:2

or 1.2:1:2) or ethyl acetate–n-butanol–methanol–

water (3:5:1.5:6) was used as both the ASE solvent

and HPCCC stationary phase. The polar saponis were

eluted. In order to separate fractions with moderate

polarity, the upper phase of system ethyl acetate–n-

butanol–methanol–water (6:3:2:6 or 7:3:2:7) was

used. Finally, the upper phase of the solvent system

of n-hexane–n-butanol–methanol–water (8:2:2:8) or

n-hexane–ethyl acetate–n-butanol–methanol–water

(0.2:10:0.5:1.5:8) was used as both the ASE solvent

and HPCCC stationary phase to elute the low polar

compounds. This combination of methods allowed the
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purification of notoginsenosides R6, R1, Spt1 and

ginsenosides Rb1, F4, Rh3, Rg3, Rs3 and Rk1 with a

wide range of polarity (Zhang et al. 2013b).

Compared to the early instruments, the quality of

modern CCC apparatus is very good. In most cases the

coils are tough and the machinery robust. A set of coils

would be expected to last the lifetime of the centrifuge

and maintenance and running costs are low. Unlike

solid phase chromatography, there is no change to

component retention over time (no column aging

effects) as a freshly-filled coil of solvents is used each

run. This makes it easier to consistently satisfy current

regulatory requirements when performing purifica-

tions under a good laboratory practice (GLP) or good

manufacturing practice (GMP) environment.

As has been seen in a number of quoted examples, a

large advantage of CCC is that the technique can be

operated in a number of different modes, since both

the mobile and the stationary phase are liquid. Either

normal or reverse phase chromatography can be

chosen, depending on which solvent phase is selected

to be the mobile one. However, it is even possible to

switch from normal phase elution to reverse phase (or

vice versa) in the middle of a run. Intermittent counter-

current extraction (ICCE) is a continuous process

where the operation alternates between normal and

reverse phase mode at regular intervals, with the

sample continuously introduced in the middle of the

coil (Hewitson et al. 2009). In the reference quoted,

this technique was successfully used to purify a

diterpenoid, triptolide, a high value target compound,

from a Chinese herbal plant, from 2 % in the crude

extract to over 98 % purity. This was achieved by

retaining and enriching the target compound within

the CCC coil while washing away all the other

components of the crude material. Alternatively,

components can be recovered by eluting the liquid

stationary phase without any compound losses whilst

maintaining resolution (Berthod et al. 2003), a tech-

nique known as elution-extrusion. This technique is

frequently adopted at the end of standard CCC

purification runs simply to ensure that no loss of

target compound has occurred within the liquid

stationary phase. Another possibility is co-current

chromatography (Berthod and Hassoun 2006) where

both phases are pumped in the same direction. All of

these options use a conventional CCC centrifuge and

are thus easy to implement in the laboratory or pilot

plant. However, with modifications to the CCC coils,

continuous counter-current extraction (CCCE) is pos-

sible, where one phase is pumped in the opposite

direction to the other and the sample is introduced

continuously into the centre of the coil (Ito et al. 2006;

Van den Heuvel 2007).

The method also allows a two dimensional proce-

dure to be applied. The purification of very similar

terpene lactones from G. biloba L, such as bilobalide,

ginkgolides A, B, C, and J, is an example. The

partitioning experiment assisted the design of a 2D

procedure using a pair of orthogonal solvent systems:

chloroform–methanol–water (10:7:3) and hexane–

ethyl acetate–methanol–water (4:6:4:6) with addition

of 0.5 % DMSO to increase the resolution of ginkgo-

lides A and B. This approach separated these almost

equipolar lactones (Qiu et al. 2012).

The main drawbacks of the technique, particularly

when compared to preparative HPLC and other solid

phase chromatography techniques, include a lower

efficiency. When measured in terms of theoretical

plates, the efficiency of a ‘‘good’’ CCC apparatus is in

the low thousand plate range. This figure cannot be

directly compared to HPLC plate counts due to the

much higher percentage of stationary phase (around

80 % compared to perhaps 5 % active stationary

phase sites in HPLC) and the resolution of CCC can be

extremely good. However, a low efficiency results in

broad peaks, making the technique far more suited to a

preparative application as opposed to an analytical

one. Also the narrow polarity range within each run

should be emphasised. As mentioned above, a wide

range of polarities can be processed by CCC by using

different solvent systems. However, a single CCC run

operates over a relatively narrow polarity window.

Although some examples of gradient elution have

been reported (see Table 2), these do not give as wide

a polarity range as that achievable with HPLC. The

narrow polarity window can be used to advantage

when it is desired to pluck a single target compound

from a complex mixture. However, it is a disadvantage

when a dozen pure compounds are required from the

mixture in a single purification run. The CCC appa-

ratus does not inherently lend itself to easy automation

and thus its operation can appear labour-intensive. In

addition, the instruments have not received the same

intensive commercial development that has made

modern HPLC and GC equipment so sophisticated.

This situation will undoubtedly improve in the future,

with advances in CCC machine design. Finally, the
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solvent system selection is undoubtedly time-consum-

ing. As the two phases are liquid, changes in one phase

directly affects the other. Analysis of a range of

possible solvent systems can be performed by an

automated liquid-handling robot but this still requires

a number of hours to complete. This is a current area of

research in the field and no doubt large improvements

in solvent system selection time can be expected over

the next few years.

Conclusions

Although initially dismissed by many chemists and

purification scientists as slow, unreliable and temper-

amental, steady development of the technique of CCC

on both the engineering and the application side has

transformed it into a technique worthy of inclusion in

the natural product scientist’s arsenal. On one side,

engineering developments have produced machines

that are robust, capable of fast, efficient separations

and able to accept high injection loadings. On the other

side, developments in the application protocols have

produced modes of operation and solvent systems to

purify out compounds from the full polarity spectrum.

Combined, these have produced a technique that is

wonderfully suited to natural product purifications,

particularly on a large preparative scale, with advan-

tages over solid phase techniques such as the ability to

accept particulates and to always recover all compo-

nents, and advantages over the old-style liquid–liquid

techniques such as high speed, high loading and high

resolution. To assist users of CCC and those wishing to

experiment with the technique, a comprehensive phase

selection table has been generated by distilling the

solvent system information presented from CCC

terpenoids purifications over the last 30 years.
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