Skip to main content

Advertisement

Log in

Role of ROS and COX-2/iNOS inhibition in cancer chemoprevention: a review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Since the times immemorial, our ancestors have been using medicinal plants or their parts for curing various ailments. The experiences of time have led to the strong system of medicine such as ayurveda. We have now moved to an age/era, where these therapies are now being tested scientifically. The knowledge about the medicinal plants in these ayurvedic scriptures can help us to unfold the mysteries related to the chronic diseases such as cancer. Several therapies are available for cancer prevention including radiation, chemotherapy, immunosuppression and surgery etc. but all these strategies have one or the other disadvantages. Natural plant products are the potential candidates for the cancer chemoprevention due to their antioxidant, anti-inflammatory and antitumor activities. From the time immemorial, plants have been the basis of traditional medicines and keep on to provide new remedies. Antioxidants are necessary for controlling degenerative reactions produced by reactive oxygen and nitrogen species in vivo. Increased intake of antioxidants in the form of fruits and vegetables may reduce the risk of cancer. It has been proposed that modulation of inflammatory mechanisms can be used for the cancer chemoprevention. The primary targets for modulation are cyclooxygenase (COX)-2 and nitric oxide synthase (iNOS). Thus, antioxidant, COX-2, iNOS represents a prime target for potential chemoprevention by phytochemicals. This review highlights various plants and their constituents explored for their antioxidant, COX-2 and iNOS inhibitory potential in various in vitro/in vivo assays and this knowledge can be exploited for the discovery of novel anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelwahed A, Bouhlel I, Skandrani I et al (2007) Study of antimutagenic and antioxidant activities of gallic acid and 1, 4, 6-pentagalloylglucose from Pistacia lentiscus confirmation by microarray expression profiling. Chem Biol Interact 165:1–13

    PubMed  CAS  Google Scholar 

  • Adhami VM, Malik A, Zaman N et al (2007) Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res 13:1611–1619

    PubMed  CAS  Google Scholar 

  • Aeschbach R, Loliger J, Scott BC et al (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36

    PubMed  CAS  Google Scholar 

  • Ak T, Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37

    PubMed  CAS  Google Scholar 

  • Albina JEA, Reichner JS (1998) Role of nitric oxide I mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev 17:39–53

    PubMed  CAS  Google Scholar 

  • Al-Omar MA, Beedham C, Alsarra IA (2004) Pathological roles of reactive oxygen species and their defence mechanisms. Saudi Pharm J 12:1–18

    CAS  Google Scholar 

  • Amarowicz R, Pegg RB, Rahimi-Moghaddam P et al (2004) Free radical scavenging capacity and antioxidant activity of selected plant species from Canadian prairies. Food Chem 84:551–562

    CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, anti- oxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915–7922

    PubMed  CAS  Google Scholar 

  • Anandjiwala S, Honnegowda S, Kalola J et al (2007) Free radical scavenging activity of Bergia suffruticosa (Delile) Fenzl. J Nat Med 61:59–62

    CAS  Google Scholar 

  • Apak R, Güçlü K, Demirata B et al (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496–1547

    PubMed  CAS  Google Scholar 

  • Aremu AO, Ndhlala AR, Fawole ME et al (2010) In vitro pharmacological evaluation and phenolic content of ten South African medicinal plants used as anthelmintics. S Afr J Bot 76:558–566

    Google Scholar 

  • Arumugam P, Murugan R, Subathra M et al (2009) Superoxide radical scavenging and antibacterial activities of different fractions of ethanol extract of Mentha spicata (L.). Med Chem Res 19:664–673

    Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1989) Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem 264(34):20509–20512

    PubMed  CAS  Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E et al (1991) Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273:601–604

    PubMed  CAS  Google Scholar 

  • Aruoma OI, Murcia A, Butler J et al (1993) Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885

    CAS  Google Scholar 

  • Ashwini SK, Kiran R, Soumya KV et al (2010) Insecticidal and in vitro antioxidant potency of extracts of Cryptolepis buchanani Roem. & Schult. Int J Pharma Sci 2:418–425

    CAS  Google Scholar 

  • Babior BM (1978a) Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med 298:659–668

    PubMed  CAS  Google Scholar 

  • Babior BM (1978b) Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med 298:721–725

    PubMed  CAS  Google Scholar 

  • Banerjee A, Kunwar A, Mishra B et al (2008) Concentration de-pendent antioxidant/pro-oxidant activity of curcumin studies from AAPH induced hemolysis of RBCs. Chem Biol Interact 174:134–139

    PubMed  CAS  Google Scholar 

  • Benavente-Garcia O, Castillo J, Lorente J et al (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68:457–462

    CAS  Google Scholar 

  • Bertram JS (2001) The molecular biology of cancer. Mol Aspects Med 21:167–223

    Google Scholar 

  • Boiteux S, Radicella JP (2000) The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 377:1–8

    PubMed  CAS  Google Scholar 

  • Borges F, Fernandes E, Roleira F (2002) Progress towards the discovery of xanthine oxidase inhibitors. Curr Med Chem 9:195–217

    PubMed  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    CAS  Google Scholar 

  • Bursal E, Gülçin İ (2011) Polyphenol contents and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidia deliciosa). Food Res Int 44:1482–1489

    CAS  Google Scholar 

  • Bushra Beegum NR, Ganga Devi T (2003) Antibacterial activity of selected Seaweeds from Kovalam south West coast of India. Asian J Microbiol Biotechnol Environ Sci 5:319–322

    Google Scholar 

  • Butler J, Hoey BM (1993) The one-electron reduction potential of several substrates can be related to their reduction rates by cytochrome-P-450 reductase. Biochim Biophys Acta 1161:73–78

    PubMed  CAS  Google Scholar 

  • Cabello-Hurtado F, Gicquel M, Esnault MA (2012) Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolate content perspective. Food Chem 132:1003–1009

    CAS  Google Scholar 

  • Cai Q, Rahnh RO, Zhang R (1997) Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett 119:99–107

    PubMed  CAS  Google Scholar 

  • Cai YZ, Luo Q, Sun M et al (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    PubMed  CAS  Google Scholar 

  • Cai S, Huang C, Ji J et al (2011) In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract. Food Chem 124:900–905

    CAS  Google Scholar 

  • Camacho-Barquero L, Villegas I, Sánchez-Calvo JM et al (2007) Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol 7:333–342

    PubMed  CAS  Google Scholar 

  • Canadanovic-Brunet JM, Djilas SM, Cetkovic GS (2005) Free radical scavenging activity of wormwood (Artemisia absinthium) extracts. J Sci Food Agric 85:265–272

    CAS  Google Scholar 

  • Cardador-Martinez A, Castano-Tostado E, Loarca-Pina G (2002) Antimutagenic activity of natural phenolic compounds present in the common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit Contam 19:62–69

    PubMed  CAS  Google Scholar 

  • Charlier C, Michaux C (2003) Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem 38(7–8):645–659

    PubMed  CAS  Google Scholar 

  • Chatterjee S, Poduval T, Tilak JC et al (2005) A modified, economic, sensitive method for measuring total antioxidant capacities of human plasma and natural compounds using Indian saffron (Crocus sativus). Clin Chim Acta 352:155–163

    PubMed  CAS  Google Scholar 

  • Chen K-H, Weng M-S, Lin JK (2007) Tangeretin suppresses IL-1β-induced cyclooxygenase (COX)-2 expression through inhibition of p38 MAPK, JNK, and AKT activation in human lung carcinoma cells. Biochem Pharmacol 73(2):215–227

    PubMed  CAS  Google Scholar 

  • Cheng Z, Lin C, Hwang T, Teng C (2001) Broussochalcone A, a potent antioxidant and effective suppressor of inducible nitric oxide synthase in lipopolysaccharide-activated macrophages. Biochem Pharmacol 61(8):939–946

    PubMed  CAS  Google Scholar 

  • Cho W, Nam JW, Kang HJ et al (2009) Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the inhibition of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF-kappaB pathway in LPS-stimulated murine macrophages. Int Immunopharmacol 9(9):1049–1057

    PubMed  CAS  Google Scholar 

  • Cho M, Lee H-S, Kang I-J et al (2011) Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem 127:999–1006

    CAS  Google Scholar 

  • Choi E-M, Hwang J-K (2004) Effects of methanolic extract and fractions from Litsea cubeba bark on the production of inflammatory mediators in RAW264.7 cells. Fitoterapia 75:141–148

    PubMed  Google Scholar 

  • Choi EM, Hwang J-K (2005) Screening of Indonesian medicinal plants for inhibitor activity on nitric oxide production of RAW264.7 cells and antioxidant activity. Fitoterapia 76:194–203

    PubMed  CAS  Google Scholar 

  • Chu Y-H, Chang C-L, Hsu H-F (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–566

    CAS  Google Scholar 

  • Chun K-S, Surh Y-J (2004) Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 68:1089–1100

    PubMed  CAS  Google Scholar 

  • Chun OK, Kim D-O, Lee CY (2003) Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agric Food Chem 51:8067–8072

    PubMed  CAS  Google Scholar 

  • Coy ED, Cuca LE, Sefkow M (2009) COX, LOX and platelet aggregation inhibitory properties of Lauraceae neolignans. Bioorg Med Chem Lett 19:6922–6925

    PubMed  CAS  Google Scholar 

  • Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265:49–72

    PubMed  CAS  Google Scholar 

  • da Silva LCN, da Silva Júnior CA, de Souza RM et al (2011) Comparative analysis of the antioxidant and DNA protection capacities of Anadenanthera colubrina, Libidibia ferrea and Pityrocarpa moniliformis fruits. Food Chem Toxicol 49:2222–2228

    PubMed  Google Scholar 

  • Dai Fukumura SK, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6:521

    PubMed  Google Scholar 

  • Dasgupta N, De Bratati (2007) Antioxidant activity of some leafy vegetables of India: a comparative study. Food Chem 101:471–474

    CAS  Google Scholar 

  • Deepa VS, Kumar PS, Latha S et al (2009) Antioxidant studies on the ethanolic extract of Commiphora spp. Afr J Biotechnol 8:1630–1636

    CAS  Google Scholar 

  • Delanty N, Dichter MA (2000) Antioxidant therapy in neurologic diseases. Arch Neurol 57:1265–1270

    PubMed  CAS  Google Scholar 

  • Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    PubMed  CAS  Google Scholar 

  • Divya Nair V, Panneerselvam R, Gopi R (2012) Studies on methanolic extract of Rauvolfia species from Southern Western Ghats of India–in vitro antioxidant properties, characterisation of nutrients and phytochemicals. Ind Crop Prod 39:17–25

    Google Scholar 

  • Dizdaroglu M (1992) Oxidative damage to DNA in mammalian chromatin. Mutat Res 275:331–342

    PubMed  CAS  Google Scholar 

  • Dubois RN, Abramson SB, Crofford L et al (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073

    PubMed  CAS  Google Scholar 

  • Dugasani S, Pichika MR, Nadarajah VD et al (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127:515–520

    PubMed  CAS  Google Scholar 

  • Earnest DL, Hixson LJ, Alberts DS (1992) Piroxicam and other cyclooxygenase inhibitors: potential for cancer chemoprevention. J Cell Biochem Suppl 161:156–166

    Google Scholar 

  • Ebrahimzadeh MA, Nabavi SM, Nabavi SF et al (2010) Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odarata, B. hyrcana and C. speciosum. Pak J Pharm Sci 23:29–34

    PubMed  CAS  Google Scholar 

  • Ekmekcioglu S, Tang C, Grimm EA (2005) NO news is not necessarily good news in cancer. Curr Cancer Drug Targets 5:103–115

    PubMed  CAS  Google Scholar 

  • Eldahshan OA, Ayoub NA, Singab A-NB et al (2008) Potential superoxide anion radical scavenging activity of Doum palm (Hyphaene thebaica L.) leaves extract. Rec Nat Prod 2:83–93

    CAS  Google Scholar 

  • Eldeen IMS, Van Staden J (2008) Cyclooxygenase inhibition and antimycobacterial effects of extracts from Sudanese medicinal plants. South Afr J Bot 74:225–229

    Google Scholar 

  • Eldeen IMS, Van Heerden FR, Van Staden J (2007) Biological activities of cycloart-23-ene-3,25-diol isolated from the leaves of Trichilia dregeana. S Afr J Bot 73:366–371

    CAS  Google Scholar 

  • Elmastas M, Gulcin I, Isildak O et al (2006) Radical scavenging activity and antioxidant capacity of Bay leaf extracts. J Iran Chem Soc 3:258–266

    CAS  Google Scholar 

  • Elsayed NM (2001) Antioxidant mobilization in response to oxidative stress: a dynamic environmental-nutritional interaction. Nutrition 17:828–834

    PubMed  CAS  Google Scholar 

  • Esmaeili MA, Sonboli A (2010) Antioxidant, free radical scavenging activities of Salvia brachyantha and its protective effect against oxidative cardiac cell injury. Food Chem Toxicol 48:846–853

    PubMed  CAS  Google Scholar 

  • Farag MA, Motaal AA (2010) Sulforaphane composition, cytotoxic and antioxidant activity of crucifer vegetables. J Adv Res 1:65–70

    Google Scholar 

  • Farombi EO, Shrotriya S, Surh Y-J (2009) Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life Sci 84:149–155

    PubMed  CAS  Google Scholar 

  • Fawole OA, Ndhlala AR, Amoo SO et al (2009) Anti-inflammatory and phytochemical properties of twelve medicinal plants used for treating gastro-intestinal ailments in South Africa. J Ethnopharmacol 123(2):237–243

    PubMed  CAS  Google Scholar 

  • Federico A, Marqillo F, Tuccillo C et al (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386

    PubMed  CAS  Google Scholar 

  • Festa F, Aglitti T, Duranti G et al (2001) Strong antioxidant activity of ellagic acid in mammalian cells in vitro revealed by the comet assay. Anticancer Res 21:3903–3908

    PubMed  CAS  Google Scholar 

  • Fremont L, Belguendouz L, Delpol S (1999) Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci 64:2511–2521

    PubMed  CAS  Google Scholar 

  • Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159

    PubMed  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    PubMed  CAS  Google Scholar 

  • Fries J (1996) Towards an understanging of NSAID-related adverse events: the contribution of longitudinal data. Scand J Rheumatol Suppl 102:3–8

    PubMed  CAS  Google Scholar 

  • Funk CD, Funk LB, Kennedy ME et al (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. Fed Am Soc Exp Biol J 5:2304–2312

    CAS  Google Scholar 

  • Garner RC (1998) The role of DNA adducts in chemical carcinogenesis. Mutat Res 402:67–75

    PubMed  CAS  Google Scholar 

  • Gately S (2000) The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 19:19–27

    PubMed  CAS  Google Scholar 

  • Gaur K, Kori ML, Tyagi LK et al (2009) In-vitro antioxidant activity of leaves of Ipomoea fistulosa Linn. Acad J Plant Sci 2:60–64

    Google Scholar 

  • Ghosh R, Mitchell DL (1999) Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res 27:3213–3218

    PubMed  CAS  Google Scholar 

  • Golumbic C, Mattill HA (1942) The antioxidant properties of gallic acid and allied compounds. J Am Oil Chem Soc 19(8):144–145

    CAS  Google Scholar 

  • Govindarajan R, Vijayakumar M, Pushpangadan P (2005) Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J Ethnopharmacol 99:165–178

    PubMed  CAS  Google Scholar 

  • Grisham JW, Kaufmann WK, Kaufman DG (1984) The cell cycle and chemical carcinogenesis. Surv Synth Patho Res 1:49–66

    Google Scholar 

  • Gu M, Singh RP, Dhanalakshmi S et al (2007) Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice. Cancer Res 67(7):3483–3491

    PubMed  CAS  Google Scholar 

  • Gülçin I (2006) Antioxidant activity of caffeicacid (3,4-dihydroxycinnamic acid). Toxicology 217:213–220

    PubMed  Google Scholar 

  • Gulcin I, Elias R, Gepdiremen A et al (2007) A comparative study on the antioxidant activity of fringe tree (Chionanthus virginicus L.) extracts. Afr J Biotechnol 6:410–418

    Google Scholar 

  • Gulcın I, Oktay M, Kıreccı E et al (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382

    Google Scholar 

  • Guo T, Wei L, Sun J et al (2011) Antioxidant activities of extract and fractions from Tuberindicum Cooke & Massee. Food Chem 127:1634–1640

    CAS  Google Scholar 

  • Gupta VK, Sharma SK (2010) In vitro antioxidant activities of aqueous extract of Ficus Bangalensis Linn. Root Int J Biol Chem 4:134–140

    Google Scholar 

  • Gupta M, Mazumdar UK, Gomathi P et al (2004) Antioxidant and free radical scavenging activities of Ervatamia coronaria Stapf. leaves. Iran J Pharma Res 2:119–126

    Google Scholar 

  • Gupta M, Mazumder UK, Gomath P (2007) Evaluation of antioxidant and free radical scavenging activities of Plumeria acuminata leaves. J Biol Sci 7:1361–1367

    CAS  Google Scholar 

  • Gurr MI (1996) The oxidation hypothesis of coronary heart disease (CHD). Nutr Newslett 5:10–15

    Google Scholar 

  • Gutiérrez JB, Salsamendi AL (2001) Fundamientos de ciência toxicológica. Diaz de Santos, Madrid, pp 155–177

    Google Scholar 

  • Hailer-Morrison MK, Kotler JM, Martin BD et al (2003) Oxidized guanine lesions as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 7, 8-dihydro-8-oxo-2′-deoxyguanosine lesions in the NF-kappaB promoter element. Biochemistry 42:9761–9770

    PubMed  CAS  Google Scholar 

  • Halliwell B (1981) Free radicals, oxygen toxicity and aging. In: Sohal RS (ed) Age pigments. Elsevier/North-Holland, Amsterdam, pp 1–62

  • Halliwell B (1982) Production of superoxide, hydrogen peroxide and hydroxyl radicals by phagocytic cells: a cause of chronic inflammatory disease? Cell Biol Int Rep 6:529–542

    PubMed  CAS  Google Scholar 

  • Halliwell B (1990) How to characterize a biological antioxidant. Free Radical Res Commun 9:1–32

    CAS  Google Scholar 

  • Halliwell B (1997) Antioxidants and human disease: a general introduction. Nutr Rev 5:544–552

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human diseases. Methods Enzymol 186:1–85

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1992) Free radicals, antioxidants and human diseases: where are we now? Lab Clin Med 119:598–620

    CAS  Google Scholar 

  • Halliwell B, Murcia MA, Chirico S, Aruoma OI (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 35:7–20

    PubMed  CAS  Google Scholar 

  • Han DH, Lee MJ, Kim JH (2006) Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res 26:3601–3606

    PubMed  CAS  Google Scholar 

  • Harris GK, Qian Y, Leonard SS (2006) Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-e2 formation in raw 264.7 cells. J Nutr 136(6):1517–1521

    PubMed  CAS  Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Rad Biol Med 33:774–797

    PubMed  CAS  Google Scholar 

  • Hazra B, Biswas S, Mandal N (2008) Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med 8:63–72

    PubMed  Google Scholar 

  • Hepsibha BT, Sathiya S, Babu CS et al (2010) In vitro studies on antioxidant and free radical scavenging activities of Azima tetracantha. Lam leaf extracts. Indian J Sci Technol 3:571–577

    Google Scholar 

  • Hippeli S, Elstner EF (1997) Transition metal ion-catalyzed oxygen activation during pathogenesis processes. FEBS Lett 443:1–7

    Google Scholar 

  • Hla T, Neilson K (1992) Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA 89:7384–7388

    PubMed  CAS  Google Scholar 

  • Howe HL, Wingo PA, Thun MJ et al (2001) Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst 93:824–842

    PubMed  CAS  Google Scholar 

  • Hseu YC, Wu FY, Wu JJ et al (2005) Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 5(13–14):1914–1925

    PubMed  CAS  Google Scholar 

  • Hsu CY (2006) Antioxidant activity of extract from Polygnum aviculare. Biol Res 39:281–288

    PubMed  Google Scholar 

  • Hu C, Kitts DD (2005) Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine 12:588–597

    PubMed  CAS  Google Scholar 

  • Huang P-L, Chi C-W, Liu T-Y (2010) Effects of Areca catechu L. containing procyanidins on cyclooxygenase-2 expression in vitro and in vivo. Food Chem Toxicol 48:306–313

    PubMed  CAS  Google Scholar 

  • Huff J (1995) Mechanisms, chemical carcinogenesis, and risk assessment: cell proliferation and cancer. Am J Ind Med 27:293–300

    PubMed  CAS  Google Scholar 

  • Hussain MS, Ahamed KFHN, Ravichandiran V et al (2009) Evaluation of in vitro free radical scavenging potential of different fraction of Hygrophila auriculata (K. Schum) Heine. Asian J Trad Med 4:179–187

    Google Scholar 

  • Hyslop PA, Hinshaw DB, Halsey WA et al (1988) Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 263:1665–1675

    PubMed  CAS  Google Scholar 

  • Israf DA, Khaizurin TA, Syahida A et al (2007) Cardamonin inhibits COX and iNOS expression via inhibition of p65NF-κB nuclear translocation and Iκ-B phosphorylation in RAW 264.7 macrophage cells. Mol Immunol 44:673–679

    PubMed  CAS  Google Scholar 

  • Issa AY, Volate SR, Wargovich MJ (2006) The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compos Anal 19:405–419

    CAS  Google Scholar 

  • Itagaki S, Kurokawa T, Nakata C et al (2009) In vitro and in vivo antioxidant properties of ferulic acid: a comparative study with other natural oxidation inhibitors. Food Chem 114:466–471

    CAS  Google Scholar 

  • Jacob RA (1995) The integrated antioxidant system. Nutr Res 15:755–766

    CAS  Google Scholar 

  • Jain A, Sharma P, Kaushik S (2010) Evaluation of phenolic & flavonoid profile and screening of antioxidant activity of plant Croton sparsiflorus by bio-autographic method. J Pharm Res 3:1146–1148

    Google Scholar 

  • Jaruga PW, Rodriguez H, Dizdaroglu M (2001) Measurement of 8-hydroxy- 2_-eoxyadenosine in DNA by liquid chromatography/mass spectrometry. Free Rad Biol Med 31:336–344

    PubMed  CAS  Google Scholar 

  • Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK (2006) Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 98:720–724

    CAS  Google Scholar 

  • Jayasri MA, Mathew L, Radha A (2009) A report on the antioxidant activity of leaves and rhizomes of Costus pictus D. Don. Int J Integr Biol 5:20–26

    Google Scholar 

  • Jemal A, Siegal R, Xu J et al (2010) Cancer statistics. CA Cancer J Clin 60:277–300

    PubMed  Google Scholar 

  • Jin M, Suh S-J, Yang JH et al (2010) Anti-inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via NF-jB and ERK1/2 inactivation. Food Chem Toxicol 48:3073–3079

    PubMed  CAS  Google Scholar 

  • Jones DA, Carlton DP, McIntyre TM et al (1993) Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem 268:9049–9054

    PubMed  CAS  Google Scholar 

  • Kamalakkannan N, Prince PSM (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 98:97–103

    PubMed  CAS  Google Scholar 

  • Kang J, Zhang CaoX et al (2012) Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol 12:249–256

    PubMed  CAS  Google Scholar 

  • Kanski J, Aksenova M, Stoyanova A et al (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure–activity studies. J Nutr Biochem 13:273–281

    PubMed  CAS  Google Scholar 

  • Kassim M, Achoui M, Mansor M et al (2010) The inhibitory effects of Gelam honey and its extracts on nitric oxide and prostaglandin E2 in inflammatory tissues. Fitoterapia 81(8):1196–1201

    PubMed  CAS  Google Scholar 

  • Kaur R, Arora S (2008) Investigation of antioxidant activity of methanol extract of Chukrasia tabularis A. Juss. leaves. J Chin Clin Med 31:200–205

    Google Scholar 

  • Kaur P, Kaur S, Kumar S (2010) Rubia cordifolia L. and Glycyrrhiza glabra L. medicinal plants as potential source of COX-2 inhibitors. Am J Biomed Sci 2(2):108–120

    Google Scholar 

  • Kaur P, Kumar M, Singh B et al (2012) Amelioration of oxidative stress induced by oxidative mutagens and COX-2 inhibitory activity of umbelliferone isolated from Glycyrrhiza glabra L. Asian Pac J Trop Biomed 2(1):S120–S126

    Google Scholar 

  • Kellog EW, Fridovrich I (1988) Superoxide, hydrogen peroxide and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 263:4704–4711

    Google Scholar 

  • Khalil NM, Pepato MT, Brunetti IL (2008) Free radical scavenging profile and myeloperoxidase inhibition of extracts from antidiabetic plants: Bauhinia forficata and Cissus sicyoides. Biol Res 41:165–171

    PubMed  Google Scholar 

  • Khuri FR, Wu H, Lee JJ et al (2001) Cyclooxygenase -2 overexpression is a marker of poor prognosis in stage 1 non-small cell lung cancer. Clin Cancer Res 7:861–867

    PubMed  CAS  Google Scholar 

  • Kilani-Jaziri S, Bhouri W, Skandrani I et al (2011) Phytochemical, antimicrobial, antioxidant and antigenotoxic potentials of Cyperus rotundus extracts. S Afr J Bot 77:767–776

    CAS  Google Scholar 

  • Kim HJ, Chang EJ, Cho SH et al (2002) Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci Biotechnol Biochem 66(9):1990–1993

    PubMed  CAS  Google Scholar 

  • Kim JY, Park SJ, Yun KJ et al (2008) Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kappaB in RAW 264.7 macrophages. Eur J Pharmacol 584(1):175–184

    PubMed  CAS  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    PubMed  CAS  Google Scholar 

  • Koksal E, Gulcin I (2008) Antioxidant activity of cauliflower (Brassica oleracea L.). Turk J Agric For 32:65–78

    CAS  Google Scholar 

  • Kole L, Giri B, Manna SK (2011) Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmacol 25:8–15

    Google Scholar 

  • Kong KW, Mat-Junit S, Aminudin N et al (2012) Antioxidant activities and polyphenolics from the shoots of Barringtonia racemosa (L.) Spreng in a polar to apolar medium system. Food Chem 134:324–332

    CAS  Google Scholar 

  • Kovacic P, Pozos RS, Somanathan R et al (2005) Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure–activity relationships. Curr Med Chem 12:2601–2623

    PubMed  CAS  Google Scholar 

  • Kumar S, Kumar D (2009) Antioxidant and free radical scavenging activities of edible weeds. Afr J Food Agric Nutr Dev 9:1174–1190

    CAS  Google Scholar 

  • Kumar S, Kumar D, Manjusha Saroha K et al (2008) Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharma 58:215–220

    CAS  Google Scholar 

  • Kumar DS, Muthu AK, Kumar DS, Manavalan R (2010) In-vitro antioxidant potential of various extracts of whole plant of Bridelia scandens (Roxb.) wild. Der Pharma Chem 2:195–201

    CAS  Google Scholar 

  • Kumar M, Kumar S, Kaur S (2011) Investigations on DNA protective and antioxidant potential of chloroform and ethyl acetate fractions of Koelreuteria paniculata Laxm. Afr J Pharm Pharmacol 5(3):421–427

    CAS  Google Scholar 

  • Kumar KS, Vijayan V, Bhaskar S et al (2012) Anti-inflammatory potential of an ethyl acetate fraction isolated from Justicia gendarussa roots through inhibition of iNOS and COX-2 expression via NF-κB pathway. Cell Immunol 272(2):283–289

    PubMed  CAS  Google Scholar 

  • Kumar RS, Rajkapoor B, Perumal P (2012) Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models. Asian Pac J Trop Med 2012:256–261

    Google Scholar 

  • Kundu JK, Mossanda KS, Na H-K (2005) Inhibitory effects of the extracts of Sutherlandia frutescens (L.) R. Br. and Harpagophytum procumbens DC. on phorbol ester-induced COX-2 expression in mouse skin: AP-1 and CREB as potential upstream targets. Cancer Lett 218:21–31

    PubMed  CAS  Google Scholar 

  • Kundu JK, Hwang DM, Lee JC (2009) Inhibitory effects of oligonol on phorbol ester-induced tumor promotion and COX-2 expression in mouse skin: NF-kappaB and C/EBP as potential targets. Cancer Lett 273(1):86–97

    PubMed  CAS  Google Scholar 

  • Kweon M-H, Hwang H-J, Sung H-C (2001) Identification and Antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J Agric Food Chem 49(10):4646–4655

    PubMed  CAS  Google Scholar 

  • Kwon JY, Lee KW, Kim JE et al (2009) Delphinidin suppresses ultraviolet B-induced cyclooxygenases-2 expression through inhibition of MAPKK4 and PI-3 kinase. Carcinogenesis 30(11):1932–1940

    PubMed  CAS  Google Scholar 

  • Lachance PA, Nakat Z, Jeong W (2001) Antioxidants: an organisms have evolved both enzymatic and non-enzymatic integrative approach. Nutrition 17:835–838

    PubMed  CAS  Google Scholar 

  • Lai C, Shields PG (1999) The role of interindividual variation in human carcinogenesis. J Nutr 29:552S–555S

    Google Scholar 

  • Landar A, Darley-Usmar VM (2003) Nitric oxide and cell signaling: modulation of redox tone and protein modification. Amino Acids 25:313–321

    PubMed  CAS  Google Scholar 

  • Lavhale MS, Mishra SH (2007) Evaluation of free radical scavenging activity of Butea monosperma Lam. Indian J Exp Biol 45:376–384

    PubMed  Google Scholar 

  • Lee J-C, Kim J, Lim K-T et al (2001) Ethanol eluted extract of Rhus verniciflua stokes showed both antioxidant and cytotoxic effects on mouse thymocytes depending on the dose and time of the treatment. J Biochem Mol Biol 34:250–258

    CAS  Google Scholar 

  • Lee JS, Oh TY, Kim YK (2005) Protective effects of green tea polyphenol extracts against ethanol-induced gastric mucosal damages in rats: stress-responsive transcription factors and MAP kinases as potential targets. Mutat Res 579:214–224

    PubMed  CAS  Google Scholar 

  • Lee KW, Kundu JK, Kim SO et al (2006) Cocoa polyphenols inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-kB and MAPKs in mouse skin In Vivo. J Nutr 136(5):1150–1155

    PubMed  CAS  Google Scholar 

  • Lee JH, Zhou HY, Cho SY et al (2007) Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch Pharm Res 30(10):1318–1327

    PubMed  CAS  Google Scholar 

  • Lee TY, Lee KC, Chen SY et al (2009) 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide-stimulated mouse macrophages. Biochem Biophys Res Commun 382(1):134–139

    PubMed  CAS  Google Scholar 

  • Lee M-Y, Lee J-A, Seo C-S (2011) Anti-inflammatory activity of Angelica dahurica ethanolic extract on RAW264.7 cells via upregulation of heme oxygenase-1. Food Chem Toxicol 49:1047–1055

    PubMed  CAS  Google Scholar 

  • Lin E-S, Li C–C (2010) Evaluation of superoxide radical scavenging capacity and reducing power of areca flower extracts. J Med Plants Res 4:975–981

    Google Scholar 

  • Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Rad Biol Med 22:885–888

    PubMed  CAS  Google Scholar 

  • Lollinger J (1981) Free radicals and food additives. Taylor and Francis, London, p 21

    Google Scholar 

  • Londonkar R, Kamble A (2009) Evaluation of free radical scavenging activity of Pandanus odoratissimus. Int J Pharmacol 5:377–380

    Google Scholar 

  • Lopaczynski W, Zeisel SH (2001) Antioxidants, programmed compounds with intrinsic antioxidant properties such as vitamins cell death, and Cancer. Nutr Res 21:295–307

    CAS  Google Scholar 

  • Lu AL, Li X, Gu Y (2001) Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys 35:141–170

    PubMed  CAS  Google Scholar 

  • Lu H, Shi J-X, Zhang D-M et al (2009) Inhibition of hemolysate-induced iNOS and COX-2 expression by genistein through suppression of NF-кB activation in primary astrocytes. J Neurol Sci 278:91–95

    PubMed  CAS  Google Scholar 

  • Luch A (2005) Nature and nurture–lessons from chemical carcinogenesis. Nat Rev Cancer 5:113–125

    PubMed  CAS  Google Scholar 

  • Mada SR, Metukuri MR, Burugula L et al (2009) Antiinflammatory and antinociceptive activities of gossypin and procumbentin—cyclooxygenase-2 (COX-2) inhibition studies. Phytother Res 23(6):878–884

    PubMed  CAS  Google Scholar 

  • Mandal P, Misra TK, Singh ID et al (2009) Free-radical-scavenging activity in the inflorescence of European Nettle/Sisnu (Urtica dioica L.). Pharmacognosy 1:129–135

    Google Scholar 

  • Mandal S, Hazra B, Sarkar R et al (2011) Assessment of the antioxidant and reactive oxygen species scavenging activity of methanolic extract of Caesalpinia crista leaf. J Evid Based Complementary Altern Med. doi:10.1093/ecam/nep072

    Google Scholar 

  • Mao H, Deng ZW, Wang F et al (1998) An intercalated and thermally stable FAPY adduct of aflatoxin B-1 in a DNA duplex: structural refinement from H-1 NMR. Biochemistry 37:4374–4387

    PubMed  CAS  Google Scholar 

  • Marimuthu P, Wu CL, Chang HT et al (2008) Antioxidant activity of ethanolic extract from the bark of Chamaecyparis obtusa var Formosana. J Sci Food Agric 88:1400–1405

    CAS  Google Scholar 

  • Martin AR, Villegas I, Sanchez-Hidalgo M et al (2006) The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model. Br J Pharmacol 147:873–885

    PubMed  CAS  Google Scholar 

  • Martınez-Valverde I, Periago MJ, Provan G et al (2002) Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato. J Sci Food Agric 82:323–330

    Google Scholar 

  • Matheus ME, de Oliveira Fernandes SB, Silveira CS et al (2006) Inhibitory effects of Euterpe oleracea Mart. on nitric oxide production and iNOS expression. J Ethnopharmacol 107(2):291–296

    PubMed  Google Scholar 

  • Mathew S, Abraham TE (2006) Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem 94:520–528

    CAS  Google Scholar 

  • Mehta R (1995) The potential for the use of cell proliferation and oncogene expression as intermediate markers during liver carcinogenesis. Cancer Lett 93:85–102

    PubMed  CAS  Google Scholar 

  • Michel T, Feron O (1997) Nitric oxide synthases: which, where, how and why? J Clin Invest 100:2146–2152

    PubMed  CAS  Google Scholar 

  • Mitjans M, Martınez V, del Campo J et al (2004) Novel epicatechin derivatives with antioxidant activity modulate interleukin-1b release in lipopolysaccharide-stimulated human blood. Bioorg Med Chem Lett 14:5031–5034

    PubMed  CAS  Google Scholar 

  • Montesano R, Hall J (2001) Environmental causes of human cancers. Eur J Cancer 37:67–87

    Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279(47):49064–49073

    PubMed  CAS  Google Scholar 

  • Muller L, Goupy P, Frohlich K et al (2011) Comparative study on antioxidant activity of lycopene (Z)-isomers in different assays. J Agric Food Chem 59:4504–4511

    PubMed  Google Scholar 

  • Munoz-Espada AC, Watkins BA (2006) Cyanidin attenuates PGE2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells. J Nutr Biochem 17:589–596

    PubMed  CAS  Google Scholar 

  • Murcia MA, Martínez-Tomé M (2001) Antioxidant activity of resveratrol compared with common food additives. J Food Prot 64(3):379–384

    PubMed  CAS  Google Scholar 

  • Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurance, extraction and analysis. J Pharmaceut Biomed Anal 41:1523–1542

    CAS  Google Scholar 

  • Nain P, Kumar A, Sharma S, Nain J (2011) In vitro evaluation of antimicrobial and antioxidant activities of methanolic extract of Jasminum humile leaves. Asian Pac J Trop Med 4(10):804–807

    PubMed  Google Scholar 

  • Namiki M (1990) Antioxidants/antimutagens in food. Crit Rev Food Sci Nutr 29:273–300

    PubMed  CAS  Google Scholar 

  • National Cancer Institute (2009) Viewed on the 3rd of August. www.cancer.gov/whatiscancer

  • Nemeikaite-Ceniene A, Imbrasaite A, Sergediene E et al (2005) Quantitative structure activity relationships in prooxidant cytotoxicity of polyphenols: role of potential of phenoxyl radical/phenol redox couple. Arch Biochem Biophys 441:182–190

    PubMed  CAS  Google Scholar 

  • Nostro A, Germanò MP, Dangelo V et al (2000) Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 30:379–384

    PubMed  CAS  Google Scholar 

  • Nsimba RY, Kikuzaki H, Konisi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106:760–766

    Google Scholar 

  • O’Banion MK, Sadowski HB, Winn V et al (1991) A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem 266:23261–23267

    PubMed  Google Scholar 

  • O’Banion MK, Winn VD, Young DA (1992) cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc Natl Acad Sci USA 89:4888–4892

    PubMed  Google Scholar 

  • Ogunlana OE, Ogunlana OO (2008) In vitro assessment of the free radical scavenging activity of Psidium guajava. Res J Agric Biol Sci 4:666–671

    CAS  Google Scholar 

  • Ohshima H, Bartsch H (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305:253–264

    PubMed  CAS  Google Scholar 

  • Ohshima H, Tatemichi M, Sawa T (2003) Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 417:3–11

    PubMed  CAS  Google Scholar 

  • Oktay M, Gulcin I, Irfan Kufrevioglu O (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT-Food Sci Technol 36:263–271

    CAS  Google Scholar 

  • Othman A, Jalil AMM, Weng KK et al (2010) Epicatechin content and antioxidant capacity of cocoa beans from four different countries. Afr J Biotech 9(7):1052–1059

    CAS  Google Scholar 

  • Paduraru I, Paduraru O, Miron A (2008) Assessment of antioxidant activity of Basilici herba aqueous extract in vitro studies. Farmacia 4:402–408

    Google Scholar 

  • Pan MH, Lai CS, Wang YJ et al (2006) Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem Pharmacol 72(10):1293–1303

    PubMed  CAS  Google Scholar 

  • Pandey MM, Govindarajan R, Rawat AKS et al (2005) Free radical scavenging potential of Saussarea costus. Acta Pharma 55:297–304

    CAS  Google Scholar 

  • Parisotto EB, Michielin EMZ, Biscaro F (2012) The antitumor activity of extracts from Cordia verbenacea D.C. obtained by supercritical fluid extraction. J Supercrit Fluids 61:101–107

    CAS  Google Scholar 

  • Park D, Jeon JH, Kwon SC et al (2009) Antioxidative activities of white rose flower extract and pharmaceutical advantages of its hexane fraction via free radical scavenging effects. Biochem Cell Biol 87(6):943–952

    PubMed  CAS  Google Scholar 

  • Park KH, Park M, Choi SE et al (2009) The anti-oxidative and anti-inflammatory effects of caffeoyl derivatives from the roots of Aconitum koreanum R.RAYMOND. Biol Pharm Bull 32(12):2029–2033

    PubMed  CAS  Google Scholar 

  • Patil Y, Soman G, Shiney P et al (2010) Evaluation of in vitro antioxidant activity of herbage of aromatic plants. J Cell Tiss Res 10:2125–2129

    Google Scholar 

  • Peyart-Maillard MN, Bonnely S, Rondini L et al (2001) Effects of vitamin E and vitamin C on the antioxidant activity of malt rootlets extract. Lebensm Wiss U Technol 34:176–182

    Google Scholar 

  • Pitot HC (2001) Animal models of neoplastic development. Dev Biol 106:53–57

    CAS  Google Scholar 

  • Prescott SM, Fitzpatrick FA (2000) Cyclooxygenase-2 and carcinogenesis. Biochim et Biophys Acta 1470:M69–M78

    CAS  Google Scholar 

  • Puengphian C, Sirichote A (2008) [6]-gingerol content and bioactive properties of ginger (Zingiber officinale Roscoe) extracts from supercritical CO2 extraction. As J Food Ag Ind 1:29–36

    Google Scholar 

  • Rangadilok N, Sitthimonchai S, Worasuttayangkurn L et al (2007) Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem Toxicol 45:328–336

    Google Scholar 

  • Reddy DB, Reddy TC, Jyotsna G et al (2009) Chebulagic acid, a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz., induces apoptosis in COLO-205 cell line. J Ethnopharmacol 124(3):506–512

    PubMed  CAS  Google Scholar 

  • Ristimaki A, Sivula A, Lundin J et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635

    PubMed  CAS  Google Scholar 

  • Saint-Cricq de Gaulejac N, Glories Y et al (1999) Free radical scavenging effect of anthocyanins in red wines. Food Res Int 32:327–333

    Google Scholar 

  • Saito K, Kohno M, Yoshizaki F et al (2008) Antioxidant properties of herbal extracts selected from screening for potent scavenging activity against superoxide anions. J Sci Food Agric 88:2707–2712

    CAS  Google Scholar 

  • Sajeesh T, Arunachalam K, Parimelazhagan T (2011) Antioxidant and antipyretic studies on Pothos scandens L. Asian Pac J Trop Med. doi:10.1016/S1995-7645(11)60214-9

    PubMed  Google Scholar 

  • Sanchez-Hidalgo M, Martin AR, Villegas I et al (2005) Rosiglitazone, an agonist of peroxisome proliferatoractivated receptor gamma, reduces chronic colonic inflammation in rats. Biochem Pharmacol 69:1733–1744

    PubMed  CAS  Google Scholar 

  • Sanwal SK, Rai N, Singh J et al (2010) Antioxidant phytochemicals and gingerol content in diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). Sci Hortic 124:280–285

    CAS  Google Scholar 

  • Sarkar D, Saha P, Gamre S et al (2008) Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-κB pathway. Int Immunopharmacol 8:1264–1271

    PubMed  CAS  Google Scholar 

  • Sato E, Niwano Y, Matsuyama Y et al (2007) Some dinophycean red tide plankton species generate superoxide scavenging substance. Biosci Biotech Bioch 71:704–710

    CAS  Google Scholar 

  • Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403(1–2):136–138

    PubMed  CAS  Google Scholar 

  • Scalzo RL (2010) Measurement of free radical scavenging activity of gallic acid and unusual antioxidants as sugars and hydroxyacids. Electron J Environ Agric Food Chem 9(8):1360–1371

    Google Scholar 

  • Scandalios JG (1997) Molecular biology of the antioxidant defense genes encoding catalases and superoxide dismutases in maize. In: Hatzios KK (ed) Regulation of enzymatic systems detoxifying xenobiotics in plants. Kluwer Academic, Dordrecht, pp 97–108

    Google Scholar 

  • Schuppan D, Jia JD, Brinkhaus B et al (1999) Herbal products for liver disease: a therapeutic challenge for the new millennium. Hepatology 30:1099–1103

    PubMed  CAS  Google Scholar 

  • Seeram NP, Adams LS, Henning SM (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem 16(6):360–367

    PubMed  CAS  Google Scholar 

  • Senevirathne M, Kim S-H, Siriwardhana N, Ha J-H, Lee K, Jeon Y (2006) Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging metal chelating, reducing power and lipid peroxidation inhibition. Food Sci Technol Int 12:27–38

    CAS  Google Scholar 

  • Shajiselvin CD, Muthu AK (2010) In-vitro free radical scavenging activity of various extracts of whole plant of Borreria hispida (Linn). Archives App Sci Res 2:54–60

    CAS  Google Scholar 

  • Sharma OP (1976) Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25(15):1811–1812

    PubMed  CAS  Google Scholar 

  • Sharma KV, Sisodia R (2009) Evaluation of the free radical scavenging activity and radioprotective efficacy of Grewia asiatica fruit. J Radiol Prot 29:429–443

    PubMed  CAS  Google Scholar 

  • Sikiwese FE, Duodu KG (2007) Antioxidant effect of a crude phenolic extract from sorghum bran in sunflower oil in the presence of ferric ions. Food Chem 104:324–331

    Google Scholar 

  • Simon LS, Weaver AL, Graham DY et al (1999) Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: a randomized controlled trial. J Am Med Assoc 282:1921–1928

    CAS  Google Scholar 

  • Simons JW (1995) Genetic, epigenetic, dysgenetic, and nongenetic mechanisms in tumorigenesis. Crit Rev Oncog 6:261–273

    PubMed  CAS  Google Scholar 

  • Singh R, Singh S, Kumar S et al (2007a) Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn. Food Chem Toxicol 45:1216–1223

    PubMed  CAS  Google Scholar 

  • Singh R, Singh S, Kumar S et al (2007b) Free radical scavenging activity of acetone extract/fractions of Acacia auriculiformis A. Cunn. Food Chem 103:1403–1410

    CAS  Google Scholar 

  • Singh R, Singh B, Singh S et al (2008) Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicol In Vitro 22:1965–1970

    PubMed  CAS  Google Scholar 

  • Singh R, Singh B, Singh S et al (2009) Investigation of ethyl acetate extract/fractions of Acacia nilotica willd. Ex Del as potent antioxidant. Rec Nat Prod 3:131–138

    CAS  Google Scholar 

  • Singh R, Lawania RD, Mishra A, Gupta R (2010) Role of Cordia dichotoma seeds and leaves extract in degenerative disorders. Int J Pharma Sci Rev Res 2:21–24

    Google Scholar 

  • Škerget M, Kotnik P, Hadolin M et al (2005) Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activity. Food Chem 89:191–198

    Google Scholar 

  • Soong Y–Y, Barlow P-J (2006) Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem 97:524–530

    CAS  Google Scholar 

  • Spektor G, Fuster V (2005) Drug insight: cyclo-oxygenase 2 inhibitors and cardiovascular risk–where are we now? Nat Clin Pract Cardiovasc Med 2(6):290–300

    PubMed  CAS  Google Scholar 

  • Sporn MB (1996) The war on cancer. Lancet 347:1377–1381

    PubMed  CAS  Google Scholar 

  • Sporn MB, Suh N (2002) Chemoprevention: an essential approach to controlling cancer. Nat Rev Cancer 2:537–543

    PubMed  CAS  Google Scholar 

  • Sporn MB, Dunlop NM, Newton DL et al (1976) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35:1332–1338

    PubMed  CAS  Google Scholar 

  • Staniek K, Gille L (2010) Is thymoquinone an antioxidant? BMC Pharmacol 10(Suppl 1):A9. doi:10.1186/1471-2210-10-S1-A9

    Google Scholar 

  • Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochem Biophys acta 1411:217–230

    PubMed  CAS  Google Scholar 

  • Suh SJ, Chung TW, Son MJ et al (2006) The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-kappaB regulation, in RAW264.7 cells. Arch Biochem Biophys 447(2):136–146

    PubMed  CAS  Google Scholar 

  • Surh YJ (1999) Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428:305–327

    PubMed  CAS  Google Scholar 

  • Surh YJ, Ferguson LR (2003) Dietary and medicinal antimutagens and anticarcinogens: molecular mechanisms and chemopreventive potential-highlights of a symposium. Mutat Res 523–524:1–8

    PubMed  Google Scholar 

  • Takeda S, Misawa K, Yamamoto I (2008) Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis. Drug Metab Dispos 36:1917–1920

    PubMed  CAS  Google Scholar 

  • Talcott ST, Lee JH (2002) Ellagic acid and flavonoid antioxidant content of muscadine wine and juice. J Agric Food Chem 50(11):3186–3192

    PubMed  CAS  Google Scholar 

  • Tan AC, Hou D-X, Konczak I et al (2011) Native Australian fruit polyphenols inhibit COX-2 and iNOS expression in LPS-activated murine macrophages. Food Res Int 44:2362–2367

    CAS  Google Scholar 

  • Tay A, Squire JA, Goldberg H et al (1994) Assignment of the human prostaglandin-endoperoxide synthase 2 (PTGS2) gene to 1q25 by fluorescence in situ hybridization. Genomics 23:718–719

    PubMed  CAS  Google Scholar 

  • Theriault M, Caillet S, Kermasha S et al (2006) Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food Chem 98:490–501

    CAS  Google Scholar 

  • Thind TS, Singh R, Kaur R et al (2010) In vitro antiradical properties and total phenolic contents in methanol extract/fractions from bark of Schleichera oleosa (Lour.) Oken. Med Chem Res. doi:10.1007/s00044-010-9297-2

    Google Scholar 

  • Thomas DD, Miranda KM, Colton CA et al (2003) Heme proteins and nitric oxide (NO): the neglected, eloquent chemistry in NO redox signaling and regulation. Antioxid Redox Signal 5:307–317

    PubMed  CAS  Google Scholar 

  • Thyagarajan SP, Jayaram S, Gopalakrishnan V et al (2002) Herbal medicines for liver diseases in India. J Gastroen Hepatol 17:S370–S376

    Google Scholar 

  • Torel J, Cillard J, Cillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry 25:383–385

    CAS  Google Scholar 

  • Tsai PJ, Tsai TH, Yu CH et al (2007) Evaluation of NO-suppressing activity of several Mediterranean culinary spices. Food Chem Toxicol 45:440–447

    PubMed  CAS  Google Scholar 

  • Turini ME, DuBois RN (2002) Cyclooxygenase-2: a therapeutic target. Annu Rev Med 53:35–57

    PubMed  CAS  Google Scholar 

  • Ulrich CM, Bigler J, Potter JD (2006) Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 6:130–140

    PubMed  CAS  Google Scholar 

  • Umamaheswari M, Chatterjee TK (2008) In vitro antioxidant activities of the fractions of Coccinia grandis L. Leaf extract. Afr J Tradit Complement Altern Med 5:61–73

    CAS  Google Scholar 

  • Valko M, Izakovic M, Mazur M et al (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    PubMed  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    PubMed  CAS  Google Scholar 

  • Vasagam GA, Muthu AK, Manavalan R (2010) In vitro antioxidant potential of tuberous root of methanolic extract of Ipomoea digitata (Linn.). Int J Pharma Bio Sci 1:1–5

    Google Scholar 

  • Verma N, Tripathi SK, Sahu D et al (2010) Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages. Mol Cell Biochem 336:127–135

    PubMed  CAS  Google Scholar 

  • Vijayabaskaran M, Venkateswaramurthy N, Babu G et al (2010) In vitro antioxidant evaluation of Pseudarthria viscida linn. IntJ Curr Pharma Res 2:21–23

    Google Scholar 

  • von Sonntag C (1987) New aspects in the free-radical chemistry of pyrimidine nucleobases. Free Radic Res Commun 2:217–224

    Google Scholar 

  • Wang SY, Jiao H (2000) Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals and singlet oxygen. J Agric Food Chem 48:5677–5684

    PubMed  CAS  Google Scholar 

  • Wang R, Chen P, Jia F et al (2012) Characterization and antioxidant activities of polysaccharides from Panax japonicus C.A. Meyer. Carbohydr Polym 88:1402–1406

    CAS  Google Scholar 

  • Wargovich MJ (1997) Experimental evidence for cancer preventive elements in foods. Cancer Lett 114:11–17

    PubMed  CAS  Google Scholar 

  • Wargovich MJ (1999) Nutrition and cancer: the herbal revolution. Curr Opin Clin Nutr Metab Care 2:421–424

    PubMed  CAS  Google Scholar 

  • Wargovich MJ (2001) Colon cancer chemoprevention with ginseng and other botanicals. J Korean Med Sci 16:81–86

    Google Scholar 

  • Wattenberg LW (1985) Chemoprevention of cancer. Cancer Res 45:1–8

    PubMed  CAS  Google Scholar 

  • Weisburger JH (1999) Antimutagens, anticarcinogens, and effective worldwide cancer prevention. J Environ Pathol Toxicol Oncol 18(2):85–93

    PubMed  CAS  Google Scholar 

  • Wettasinghe M, Shahidi F (1999) Evening primrose meal: a source of natural antioxidants and scavenger of hydrogen peroxide and oxygen-derived free radicals. J Agric Food Chem 47(5):1801–1812

    PubMed  CAS  Google Scholar 

  • Wink DA, Ridnour LA, Hussain SP et al (2008) The reemergence of nitric oxide and cancer. Nitric Oxide 19:65–67

    PubMed  CAS  Google Scholar 

  • Winterbourn CC (1981) Hydroxyl radical production in body fluids: roles of metal ions, ascorbate and superoxide. Biochem J 198:125–131

    PubMed  CAS  Google Scholar 

  • Woo KJ, Kwon TK (2007) Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter. Int Immunopharmacol 7(13):1776–1783

    PubMed  CAS  Google Scholar 

  • Woo KJ, Jeong YJ, Inoue H et al (2005) Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS Lett 579(3):705–711

    PubMed  CAS  Google Scholar 

  • Wright JS (2002) Predicting the antioxidant activity of curcumin and curcuminoids. J Mol Struct 591:207–217

    CAS  Google Scholar 

  • Xu JZ, Yeung SYV, Chang Q et al (2004) Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br J Nutr 91:873–881

    PubMed  CAS  Google Scholar 

  • Yang CS, Chen L, Lee MJ et al (1996) Effects of tea on carcinogenesis in animal models and humans. Adv Exp Med Biol 401:51–61

    PubMed  CAS  Google Scholar 

  • Yang J, Guo J, Yuan J (2008) In vitro antioxidant properties of rutin. LWT-Food Sci Technol 41:1060–1066

    CAS  Google Scholar 

  • Yaping Z, Suping Q, Wenli Y et al (2002) Antioxidant activity of lycopene extracted from tomato paste towards trichloromethyl peroxyl radical CCl3O2. Food Chem 77:209–212

    Google Scholar 

  • Yen G-W, Hseih C-L (2000) Reactive oxygen species scavenging activity of Du-zong (Eucommia ulmoides Oliv.) and its active compounds. J Agric Food Chem 48:3431–3436

    PubMed  CAS  Google Scholar 

  • Yen GC, Duh PD, Tsai H-L (2002) Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem 79:307–313

    CAS  Google Scholar 

  • Yen G-C, Duh P-D, Huang D-W et al (2008) Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem Toxicol 46:175–185

    PubMed  CAS  Google Scholar 

  • Yoganandam GP, Ilango K, Kumar S et al (2010) In vitro antioxidant activity of Luffa cylindrica seed oil. J Global Pharma Technol 2:93–97

    Google Scholar 

  • Yu T, Lee YJ, Jang HJ et al (2011) Anti-inflammatory activity of Sorbus commixta water extract and its molecular inhibitory mechanism. J Ethnopharmacol 134(2):493–500

    PubMed  Google Scholar 

  • Zhang X, Chen ZG, Choe MS et al (2005) Tumor growth inhibition by simultaneously blocking epidermal growth factor receptor and cyclooxygenase-2 in a xenograft model. Clin Cancer Res 11:6261–6269

    PubMed  CAS  Google Scholar 

  • Zhang L, Feng L, Jia Q et al (2011) Effects of β-glucosidase hydrolyzed products of harpagide and harpagoside on cyclooxygenase-2 (COX-2) in vitro. Bioorg Med Chem 19(16):4882–4886

    PubMed  CAS  Google Scholar 

  • Zhao GR, Zhang HM, Ye TX et al (2008) Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol 46:73–81

    PubMed  CAS  Google Scholar 

  • Zivkovic J, Zikovic Z, Mujic I et al (2010) Scavenging capacity of superoxide radical and screening of antimicrobial activity of Castanea sativa Mill. Extracts. Czech J Food Sci 1:61–68

    Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from Council of Scientific and Industrial research (CSIR) [38(1265)/10/EMR-II], New Delhi (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satwinderjeet Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Kumar, S. & Kaur, S. Role of ROS and COX-2/iNOS inhibition in cancer chemoprevention: a review. Phytochem Rev 11, 309–337 (2012). https://doi.org/10.1007/s11101-012-9265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-012-9265-1

Keywords

Navigation