A: Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. – Tree Physiol. **28**: 947-957, 2008.

- Wei, Y., Xu, Xu, Tao, H., Wang, P.: Growth performance and physiological response in the halophyte *Lycium barbarum* grown at salt-affected soil. – Ann. Appl. Biol. **149**: 263-269, 2006.
- Yang, C.W., Jianaer, A., Li, C.Y., Shi, D.C., Wang, D.L.: Comparison of the effects of salt-stress and alkali-stress on photo-

synthesis and energy storage of an alkali-resistant halophyte *Chloris virgata*. – Photosynthetica **46**: 273-278, 2008.

- Zheng, H.Y., Li, J.D.: Form and dynamic trait of halophyte community. – In: Zheng, H.Y., Li, J.D. (ed.): Saline Plants in Songnen Plain and Restoration of Alkaline–Saline Grass. Pp. 137-138. Science Press, Beijing 1999.
- Zhu, J.K.: Regulation of ion homeostasis under salt stress. Curr. Opin. Cell Biol. 6: 441-445, 2003.

ERRATA

S.Z. Ryang, S.Y. Woo, S.Y. Kwon, S.H. Kim, S.H. Lee, K.N. Kim, and D.K. Lee: Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of *Liriodendron tulipifera* under elevated ozone – Photosynthetica 47: 19-25, 2009.

Please correct:

On p. 21, replace Table 1 as follows:

Table 1. Protocol of exposure to ozone. O₃ concentrations $[\mu g kg^{-1}]$ and AOT40 $[\mu g kg^{-1} h^{-1}]$ are shown. Plants were not exposed to ozone on some days (17, 26, and 31 July).

Date	17	18	19	20	22	23	24	25	27	28	29	30
O ₃	100	100	100	100	150	150	200	200	250	250	300	300
AOT40	480	960	1 440	1 920	2 800	3 680	4 960	6 240	7 920	9 600	11 680	13 760

On p. 23, replace the legends of Fig. 3 and Fig. 4 as follows:

Fig. 3. Antioxidant enzyme activities (APX – ascorbate peroxidase, DHAR – dehydroascorbate reductase, GR – glutathione reductase, MDHAR – monodehydroascorbate reductase, SOD – superoxide dismutase) [%NBT inhibition rate for SOD, nmol kg⁻¹(protein) s⁻¹ for others] expressed as ratio of ozone affected to control plants during gradual O₃ exposure from 100 to 300 μ g kg⁻¹ (cf. Table 1). *Dotted lines* indicate constant value of control. Statistical differences between control and O₃ treatment are shown above bars: *** p < 0.001, *p < 0.05, n.s. non significant (n = 3).

Fig. 4. Peroxidase (POD) and catalase (CAT) activities [nmol kg⁻¹(protein) s⁻¹] expressed as ratio of ozone affected to control plants during gradual O₃ exposure from 100 to 300 μ g kg⁻¹ (cf. Table 1). *Dotted lines* indicate constant value of control. Statistical differences between control and O₃ treatment are shown above bars: *** p < 0.001, *p < 0.05, n.s. non significant (n = 3).

The publisher and authors apologize for these errors and for inconveniences they may have caused.