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Abstract
Is there a relation of logical consequence in natural language? Logicality, in the 
philosophical literature, has been conceived of as a restrictive phenomenon that is 
at odds with the unbridled richness and complexity of natural language. This article 
claims that there is a relation of logical consequence in natural language, and moreo-
ver, that it is the subject matter of the bulk of current theories of formal semantics. I 
employ the framework of semantic constraints (Sagi in Log Anal 57(227):259–276, 
2014), which generalizes the Tarskian definition of logical consequence. I apply the 
widely accepted criterion of invariance under isomorphisms (Sher in J. Symb Log 
61(2):653–686, 1996) generalized to the framework of semantic constraints (Sagi 
in Bull Symb Log 28(1):104–132, 2022b), combined with a theory of Glanzberg 
(in Metasemantics: new essays on the foundations of meaning, 2014) to delineate 
the relation of logical consequence in natural language.

Keywords Logical consequence · Logicality · Natural language semantics · 
Invariance criteria

1 Introduction

Is there a relation of logical consequence in natural language? How should we 
understand this question? How can we make it interesting? I believe that there are 
several different interesting ways of understanding the question, involving differ-
ent interpretations of “logical consequence”, “natural language” and logical conse-
quence being “in” natural language. Here I would like to explore one of them.

In a recent article, Glanzberg (2015) gave a negative answer to the question of 
logic in natural language. Here, my understanding of the question will be very much 
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in line with Glanzberg’s, but with some divergences that will lead to an opposite 
conclusion.1

Natural language will be treated here as a natural phenomenon—as the object of study 
of empirical linguistics. Logical consequence will be taken to be a relation between sets 
of sentences (constituting premises) and sentences (serving as conclusions) in a given 
language. This relation holds if the conclusion necessarily follows from the premises by 
virtue of the form of the sentences. These assumptions are widely shared, though devel-
oping the understanding of form beyond common contentions will be one of the present 
objectives. Both logic and natural language can be seen to involve both normative and 
descriptive aspects. Here, we’ll put normative issues aside: the approach to natural lan-
guage will be descriptive, and the formal framework will be a tool used in its study.

As Glanzberg points out, one can be restrictive or permissive to varying extents 
in one’s approach to logical consequence. On a permissive approach, one can surely 
identify a relation of logical consequence in natural language. Glanzberg’s negative 
conclusion regards the restrictive take on logic. Glanzberg’s restrictive take basically 
limits logic to classical first or second order predicate logic. My approach to logic here 
will be more permissive than that. Nonetheless, my approach will be in keeping with a 
common way of restricting logic, countenanced by Glanzberg, using invariance crite-
ria of logicality.

In the present context, when we ask whether there is a logical consequence relation 
in natural language, one way to approach the issue would be to see whether formal 
systems that satisfy basic conditions we would expect from systems for logic are good 
models for some phenomenon in natural language. I shall claim that indeed, contem-
porary semantic theory for natural language can be phrased as such a formal system. 
The overarching formal framework that I will use will be a model-theoretic framework 
of semantic constraints [as in Sagi (2014)], and the criterion by which I shall explicate 
logicality will be invariance under isomorphisms [as in Sher (1996)].

I will use contemporary theories of formal semantics as our access to linguistic 
phenomena. The understanding of logicality, on the other hand, will be taken from 
the philosophy of logic.

Now, if we look at basic examples from semantic theory, we see that despite the 
extant use of formal tools, the results are far from what would be considered a logic 
by those interested in drawing bounds for logic. Glanzberg bases his arguments on 
such examples:

What is characteristic of most work in the model-theoretic tradition is the 
assignment of semantic values to all constituents of a sentence, usually by rely-
ing on an apparatus of types (cf. (Chierchia & McConnell-Ginet, 1990; Heim 
& Kratzer, 1998)). Thus, we find in model-theoretic semantics clauses like:2 

2 Glanzberg explains:
 In common notation, [[�]] is the semantic value of � . I write �x ∈ D

e
.�(x) for the function from the 

domain D
e
 of individuals to the domain of values of sentences (usually truth values) (ibid).

1 For a critique of Glanzberg (2015), see Sagi (2022a), where I contest Glanzberg’s arguments, and 
argue that his own assumptions even lead to a positive approach towards logic in natural language.
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(3) a. [[Ann]] = Ann
b. [[smokes]] = �x ∈ De. x smokes

... [These clauses] provide absolute statements of facts about truth and refer-
ence... We see that the value of ‘Ann’ is Ann, not relative to any model. (Glan-
zberg 2015, p. 89)

The expressions ‘Ann’ and ‘smokes’ are, by accepted restrictive standards, non-
logical terms. Accordingly, they shouldn’t be fixed in a definition of logical conse-
quence. There might be an intended model for the full vocabulary of the language, 
but logical consequence is defined on the backdrop of a range of models, abstracting 
away from the meaning of nonlogical terms. But in natural language, as noted by 
Glanzberg, we find entailments that defy accepted delineations of the logical-non-
logical vocabulary:

(6) a.  We loaded the truck with hay.
  ENTAILS
b. We loaded hay on the truck.

 DOES NOT ENTAIL

 We loaded the truck with hay.

(Glanzberg 2015, p. 93)

Here, the claim is that these entailments require fixing ‘load’, ‘truck’ and ‘hay’ as logi-
cal terms. There is a consensus among all those who consider logical consequence to 
be a formal relation that these words are not logical. For one, they are not invariant 
under isomorphisms, taken by many to be at least a necessary condition on logical 
terms. Previously, I claimed that these examples do not show that there isn’t a rela-
tion of logical consequence in natural language—they still leave room for a restricted 
relation that is a proper subset of all entailments (Sagi, 2022a). Here, I take a different 
approach. First, I deny that those entailments require fixing ‘load’, ‘truck’ and ‘hay’ as 
logical. Moreover, these entailments can be captured in a logic that abides by the crite-
rion of logicality of invariance under isomorphisms. In addition, while I agree that the 
above clauses (3a-b) are nonlogical as they stand (meaning that they defy the isomor-
phism invariance criterion for logicality), they should be cleaned up in order that we 
can discern their actual contribution to semantic theory.

The plan of the paper is as follows. In the next section (Sect. 2), I present the 
framework of semantic constraints, which generalizes the standard first order 
model-theoretic semantics. I explicate the notion of logical consequence through 
this framework (Sect. 2.1), and generalize the commonly accepted criterion for logi-
cality of isomorphism invariance to apply in the framework (Sect. 2.2). In Sect. 3, I 
discuss another paper by Glanzberg, “Explanation and Partiality in Semantic The-
ory” (2014). I show how Glanzberg’s ideas presented there, in combination with 
the framework of semantic constraints, can give a theory of logical consequence in 
natural language.
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2  The framework of semantic constraints

The logical framework of semantic constraints is a model-theoretic framework that 
is not based on a sharp division of the vocabulary into logical and nonlogical. In this 
section I present the framework. In Sect. 2.1, I present the basics of the framework, 
following (Sagi, 2014). In Sect. 2.2, I show how a criterion of invariance under iso-
morphisms can be generalized and reformulated for this framework, based on (Sagi, 
2022b). Then, in the next section (Sect. 3), I apply the framework and its notion of 
logicality to semantics of natural language, offering a theory of logical consequence 
in natural language.

2.1  The basic framework

In his argument from lexical entailments, Glanzberg claims that if we were to cap-
ture all entailments such as those mentioned on p. 3, we would have to fix ‘load’ 
and ‘cut’ as logical constants, and that if we were to capture all entailments in natu-
ral language, we would probably need to fix all expressions as logical (Glanzberg, 
2015,  §3.3.2).3 The framework of semantic constraints avoids this conclusion. In 
this framework, one can fix the meanings of terms in the language in various ways 
and to various degrees, sufficient to capture some entailments without committing to 
a determinate reference. We thus lose the strict division of the vocabulary into logi-
cal and nonlogical, the former completely fixed and the latter maximally variable. 
This is a formal framework, but it can be used to model natural language semantics 
as other model-theoretic frameworks do.

A language L will consist of terms (the primitive expressions of L) and phrases 
(the meaningful expressions of L, which include the terms and strings of terms with 
auxiliary symbols). A semantic constraint is a statement in the metalanguage which 
restricts the range of models for the language. Given a set of semantic constraints, 
we obtain a class of models, and we define a logical consequence relation as truth 
preservation over that range of models. Clauses fixing logical terms are a special 
case of semantic constraints: they restrict the range of models to those that give the 
fixed meaning to those terms.

We should say what models are here, as they are more general than in the stand-
ard model-theoretic framework. We start with a very wide class, which is then nar-
rowed down using constraints. A model is a pair ⟨D, I⟩ where D is a non-empty set 
(the domain), and I an interpretation function which assigns to phrases in L values in 
the set-theoretic hierarchy built over D ∪ {T ,F} (T and F are the truth values). The 
function I can assign any such value to any phrase of L, and it becomes limited only 
by adopting a set of semantic constraints.

The usual semantic clauses for connectives and quantifiers can be formulated as 
semantic constraints—those are special cases which completely fix the extension of 

3 Glanzberg qualifies this strong conclusion by considering the option that certain patterns among fami-
lies of expressions can be identified that will allow us not to take every single word as a constant (Glanz-
berg 2015, p. 95), but still, nothing like a logic (according to Glanzberg) would come out.
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the terms. For example, ‘ I(∃) = {A ∶ � ≠ A ⊆ D} ’ is a semantic constraint which 
limits us to the class of models where the existential quantifier receives its standard 
interpretation as a second level predicate which holds of all and only non-empty 
sets. Then, we have a semantic constraint such as ‘ I(Red) ∩ I(Green) = � ’ which 
fixes neither Red or Green, but constrains their interpretations to be mutually exclu-
sive. Then there will be semantic constraints regarding the interpretation of non-
atomic phrases (that may cover, for example, standard recursive clauses). For exam-
ples and further details, I refer the reader to Sagi (2014, 2022b).

As formulated here, the framework is extensional, and the models are just a 
domain and an interpretation function. But surely, the framework can be extended 
to an intensional setting, where models include a range of possible worlds. Cur-
rent semantic theory, where we would like to apply the framework of semantic 
constraints, is normally phrased using intensional semantics. However, since the 
examples we shall deal with do not involve intensional operators, we can continue 
to use extensional models for the sake of simplicity. And so, we can reformulate the 
semantic clauses presented in the previous section as semantic constraints, adding a 
third that will serve us later on. 

1. (a) [[Ann]] = Ann
(b) [[smokes]] = �x ∈ De. x smokes

(c) [[most]]M = {⟨A,B⟩ ∈ P(M)2 ∶ �A ∩ B� > �A�B�}

   will be reformulated as:4

2. (a) I(Ann) = Ann

(b) I(smokes) = �x ∈ D. x smokes

(c) I(most) = {⟨A,B⟩ ∈ P(D)2 ∶ �A ∩ B� > �A�B�}

The question now is whether there is a way to demarcate the “logical” semantic con-
straints, those that would provide the logic of natural language. We give an answer 
in the next subsection. Before that, we mention some reasons from linguistics for 
moving to a generalized conception of logicality provided by Chierchia (2021). The 
distinction between logical/nonlogical terms, or rather between function/content 
items has undeniable theoretical significance in linguistics (although, how exactly 
these distinctions line up is itself a theoretical issue). Logicality, as argued by Chier-
chia and others, is intricately connected with grammaticality, and more specifically, 
logical triviality explains cases of ungrammaticality (Gajewski, 2002; Chierchia, 
2013, 2021; Del Pinal, 2019). Criteria for logicality are thus relevant also for sheer 
linguistic concerns. And those concerns too may invite the kind of view we present 

4 Note that constraint 2(a) fixes the extension of ‘Ann’ to be Ann, and by that restricts us to models 
where Ann is a member of the domain. We read constraint 2(b) as giving to ‘smokes’ as semantic value 
the function, from the domain to the truth values that for every element of the domain gives the value T 
if and only if that element smokes (see n. 2).
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here. Chierchia gives the example of gender features, with the following semantic 
clauses from Italian:

(37)  a. i. ||fem|| = �xe : female(xe ). xe     ||male|| = �xe : male(xe ). xe
 ii. ||ragazz-a|| = �xe : fem(xe ). young adult(xe)
 iii.  ||ragazz-o|| = �xe : male(xe ). young adult(xe)

 b. ∀ x [female(x) → ¬male(x)]

...

Use of features of this sort induces disjointness constraints such as (37b), 
which are among the most common across languages. This seems to require an 
extension of what counts as ‘logical’ to constraints that define ‘subcategories’ 
of various content words. (Chierchia 2021, p. 247)

The simplicity of standard “term-based” logical systems is certainly a virtue, 
yet such systems are just a special case from the perspective of the framework of 
semantic constraints—logical consequence does not eo ipso require a strict division 
of the vocabulary into logical and nonlogical. This applies also, more specifically, to 
natural language semantics: term-based systems have been useful in its study, but we 
shouldn’t be limited to them when considering logical consequence in natural lan-
guage. Chierchia’s example motivates forgoing the familiar term-based perspective.

2.2  Invariance criteria in the framework

The framework of semantic constraints is a generalization of standard model-theo-
retic semantics: in it, first order predicate logic is one system among many, where 
semantic constraints can be added to it or removed from it. Formality here receives 
a new interpretation. On the standard conception, the form of an argument is deter-
mined by the logical vocabulary. Logical terms provide the skeletons of argument 
schemas, and an argument is valid if and only if it is an instance of a schema all 
of whose instances are valid. Here, forms of arguments are rather determined by 
semantic constraints. Accordingly, the notion of a schema receives a new interpreta-
tion (for details, see Sagi, 2014, p. 270).

When it comes to the question of the logicality of natural language, the demarcation 
of the logical vocabulary is regarded as a central issue. Standard logical systems include 
a strict demarcation of the logical vocabulary, and that is the vocabulary that has seman-
tic clauses fixing its interpretation. One of the guiding questions in constructing such 
systems is which terms are logical, and so will have their interpretation fixed. We have 
mentioned invariance under isomorphisms as a widely accepted criterion for logicality.

In the framework of semantic constraints, the question of the logical vocabulary 
loses its significance: now the choice is not of a subset of the vocabulary that gets 
a fixed interpretation, but rather more generally of constraints on models, restrict-
ing the interpretations of terms but not necessarily fixing them completely. In Sagi 
(2022b) I present a generalization of invariance criteria for logical terms that applies 
to semantic constraints, including those that completely fix the interpretation of 
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terms and those that do not. Here, I shall merely phrase the generalization, and see 
how it may apply to natural language semantics, and thus to the question of logical 
consequence in natural language.

The idea of the generalization is the following. A semantic constraint will satisfy 
the condition of invariance under isomorphisms if it does not distinguish between 
isomorphic models. I shall formulate the invariance criterion for both terms and 
constraints below. But first let me mention the primary motivation for the invariance 
criterion for logical terms: logical terms should not distinguish between elements in 
the model domains; logical terms should be blind to permuting elements or switch-
ing them with others. The same idea will apply to semantic constraints: a semantic 
constraint satisfying the condition will be indifferent to permuting or switching ele-
ments of domains with others.

Both criteria will refer to bijections between model domains, extended to truth 
values and sets formed over the domains. We thus define recursively, for any func-
tion f from a set D to a set D′ the function f + on elements in the set-theoretic hier-
archy over D ∪ {T ,F} as follows (we assume that T ,F ∉ D ∪ D� and also that D and 
D′ consist of ur-elements, and so they include as members no sets built over D and 
D′ , so that a recursive definition can be applied):

• f +(x) =

{
f (x) if x ∈ D

x if x ∈ {T ,F}

and for a set A belonging to the set-theoretic hierarchy over D ∪ {T ,F},

• f +(A) = {f +(B) ∶ B ∈ A}

Since this extension of f is a natural one, we will omit the superscript and simply 
speak freely of f applying to the relevant sets.

Now, when a term t is claimed to be invariant under isomorphisms, what is stand-
ardly meant is that there is an operation Ot associated with t that gives its intended 
interpretation in all domains, and this operation is invariant under isomorphisms. 
And so, if we accept invariance as a criterion for logicality, we may then fix t in 
all models by the operation Ot . We note that the standard term-based framework 
assumes that each candidate logical term has some such operation associated with 
it (either stipulated or capturing a preconceived meaning), and this assumption, 
required by invariance criteria for logical terms, is not needed in the framework of 
semantic constraints.

Definition 1 (Invariance under isomorphisms: terms) Let t be a term and Ot be the 
operation associated with t. The term t is invariant under isomorphisms if for any sets 
D and D′ and a bijection f ∶ D → D� appropriately extended, f (Ot(D)) = Ot(D

�).

The standard logical terms of first-order logic are invariant under isomorphisms. 
In addition, so are generalized quantifiers such as Most and ∃ℵ0

 (there exist infinitely 
many).
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The definition of invariance under isomorphisms for semantic constraints uses 
the notion of isomorphic models, which we define below. Note that since, in this 
framework, we do not assume a division of the vocabulary into logical and nonlogi-
cal, or recursive clauses for complex formulas at the outset, we cannot use the stand-
ard definition of isomorphic models which refers to the interpretations of the non-
logical terms. The definition of isomorphism thus refers to all phrases in the given 
language.5

Definition 2 (Isomorphic models) We say that M = ⟨D, I⟩ is isomorphic to 
M� = ⟨D�, I�⟩ ( M ≅ M� ) if there is a bijection f ∶ D → D� that when appropriately 
extended yields f (I(p)) = I�(p) for every phrase in the given language L.

And so, isomorphic models have the same structure imposed on them by the 
interpretation function. The idea of the following definition is that semantic con-
straints that are invariant under isomorphisms will not distinguish between isomor-
phic models.

Definition 3 (Invariance under isomorphisms: semantic constraints) A semantic 
constraint C is invariant under isomorphisms if for any models M and M′ such that 
M ≅ M� , if M is a {C}-model, then M′ is a {C}-model.6

Note that the models M and M′ in the definition are any models, not necessarily 
satisfying some given set of constraints. Basically, a constraint on models is invar-
iant under isomorphisms if the class of models satisfying the constraint is closed 
under isomorphisms. In Sagi (2022b) it is argued that this the right way to general-
ize the criterion of invariance under isomorphisms for logical terms. In the special 
case of semantic constraints fixing terms completely, the criteria are equivalent—
it’s proved that a term is invariant under isomorphisms if and only if its associated 
semantic constraint fixing its interpretation is invariant under isomorphisms. More-
over, the generalized criterion is faithful to the desideratum of not distinguishing 
between individuals. We can thus formulate the following criterion (to be modified 
later on):

Invariance criterion for semantic constraints: A semantic constraint is logical 
if it is invariant under isomorphisms.

Now, which semantic constraints are invariant under isomorphisms? A whole 
host of them. Any semantic constraint that does not distinguish between individuals 
in the domain vis-á-vis their non-semantic properties will be invariant under iso-
morphisms. Some examples include:

5 For the relation between the present definition of isomorphic models and the standard one, see Sagi 
(2022a, p. 127).
6 Cf. Zimmermann (2011, p. 790).



1075

1 3

Logicality in natural language  

• I(∃) = {A ∶ � ≠ A ⊆ D}7

• I(Red) ∩ I(Green) = �

• I(Red) ⊆ I(Colored)

• I(wasBought) = I(wasSold)

And so, if we use the criterion of invariance under isomorphisms to explicate 
logicality, but generalize to a framework of semantic constraints, logic appears to be 
much more permissive than in the special case of a term-based semantics. However, 
not all semantic constraints pass the test. Examples of semantic constraints that are 
not invariant under isomorphisms include:

• I(naturalNumber) = {0, 1, 2...}

• 3 ∈ I(Odd)

• I(Even) ∩ I(Prime) = {2}

From these examples we see that semantic constraints that pertain to the “material” 
of the domain, to what the domain is made up of, are those that are not invariant 
under isomorphisms.

Still, the few examples we give seem to support the impression that the crite-
rion of invariance under isomorphisms vastly overgenerates. Indeed, any constraint 
stating a cardinality property or a set-theoretic relation between the interpretation 
of terms will be invariant under isomorphisms, and so the following semantic con-
straints satisfy the criterion as well:

• I(John) ∈ I(Bachelor)

• I(Red) ∩ I(Big) = �

• |I(Red)| ≥ 375 (i.e., the size of the extension of Red is at least 375.)

These are semantic constraints we would not like to accept in a theory for natu-
ral language—of either its logical or its nonlogical part.8 Surely, invariance under 
isomorphisms is not a sufficient condition for accepting a semantic constraint. The 
problem here seems to be that the example constraints are not faithful to the intended 
meanings of the terms involved, and in any case do not set conditions that would be 
reasonable to accept in semantic theory.9

The line I will take here will be based on a proposed strengthening of the invari-
ance criterion for logical terms by  McGee. McGee (1996) supports permutation 
invariance as a criterion for logical operations, and submits that a criterion for 

7 Recall that semantic constraints implicitly generalize over domains and interpretation functions: ‘I’ 
stands for an interpretation function, ‘D’ stands for a domain.
8 It may seem odd to consider these constraints as “semantic”, but all that is meant by the term is that 
these are restrictions on the range of models.
9 In the case of the invariance criterion for logical terms, examples along similar lines have been pre-
sented in Gómez-Torrente (2002). For even further examples regarding invariance and meaning, see 
McCarthy (1981), Hanson (1997), for a response, see Sagi (2015) and for further proposals and discus-
sions, see Woods (2017), Zinke (2018).
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logical terms cannot be straightforwardly derived: while the denotation of a logi-
cal term must be permutation-invariant, permutation invariance does not suffice, and 
meaning in a wider sense than mere extension comes into play. McGee gives a start-
ing point for the discussion on the logicality of terms by posing the following as a 
conjecture:

A connective is a logical connective if and only if it follows from the meaning 
of the connective that it is invariant under arbitrary bijections. (McGee, 1996, 
p. 578)

McGee admits that what it means for invariance to follow from the meaning of 
the connective is somewhat vague. We can offer the following explication. In the 
present context, we take semantic theory for natural language to decide what fol-
lows from the meanings of expressions. Further, we are interested in a criterion for 
semantic constraints rather than connectives. So our modified criterion for logicality 
will be:

Logicality Thesis: A semantic constraint is logical if and only if it follows from 
the semantic theory for the language and it is invariant under isomorphisms.

For a semantic constraint to follow from the semantic theory, it must be a true 
generalization on models according to the theory. A semantic theory for natural lan-
guage thus, inter alia, delineates the logic of natural language. What should be prop-
erly included in such a theory will be the subject of the next section. In the mean-
time, let us test the criterion on our example constraints. If any one of the examples 
above does not follow from the semantic theory for the relevant language, it will not 
be considered as logical.10 But basically, the strengthening of the invariance crite-
rion by the addition of a further condition does not make a difference in the present 
discussion: we were in any case looking at the semantic theory for natural language. 
So the last batch of examples (p. 10) would not even be considered, given that none 
of them would follow from semantic theory. Whether any of the examples in the 
first batch on p. 10 follows from semantic theory is less clear, and would depend 
on a more particular specification of methods and domain of inquiry. We leave this 
specification out of the present discussion.

Now let us thus evaluate the example constraints we drew from Glanzberg: 

(a) I(Ann) = Ann

(b) I(smokes) = �x ∈ D. x smokes

(c) I(most) = {⟨A,B⟩ ∈ P(D)2 ∶ �A ∩ B� > �A�B�}

10 Note that the reference to the meaning of a connective or to a semantic theory only makes sense if 
we assume that the expressions we deal with are meaningful, and that the language from which they are 
drawn has an independent semantic theory. Otherwise the aforementioned problem with the invariance 
criterion does not arise.
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Constraint (a) is not invariant under isomorphisms; (b) is invariant only if 
‘smokes’ is trivial—if everything smokes or if nothing does; (c) is invariant under 
isomorphisms.

We can make a first step here in a characterization of logic in natural language, 
which I shall defend in the next section. Natural language semantics, formulated 
model-theoretically can help us model logical consequence in natural language. The 
criterion of invariance under isomorphisms tells us which semantic clauses provided 
by natural language semantics characterize its logic. It seems that if there is a logi-
cal consequence relation in natural language to be modeled, (c) would be included 
in the model and (a) and (b) wouldn’t. Nevertheless, in the next section I argue that 
natural language semantics, as a whole, is a model for logical consequence in natu-
ral language, even though it appears to include non-invariant constraints. I do this 
by employing Glanzberg’s idea of partiality in semantic theory: while (a) and (b) 
may both hold, they include elements external to proper natural language semantics. 
When we weed those elements out, I argue, we are left only with constraints that are 
invariant under isomorphisms.

3  Semantic theory and logicality

3.1  Glanzberg on partiality in semantic theory

Observe the following clause: 

(a) [[Ann]] = Ann

What does it teach us? That ‘Ann’ refers to Ann. Assuming competence in the meta-
language (English), and so with the use of ‘Ann’ in the metalanguage, we can thus 
tell what ‘Ann’ in the object language (again, English) refers to. But then, this is no 
thanks to the given semantic clause. The clause does not appear to be theoretically 
useful.11 Similarly, from:
(b) [[smokes]] = �x ∈ De. x smokes

we learn that ‘smokes’ denotes a function which gives True to whatever smokes and 
False otherwise. But then, if we are able to successfully apply the function, and so are 
competent with ‘smokes’ as used in the metalanguage, it is not this semantic clause 
that tells us which function it is.
The apparent uninformativeness of such clauses provided by natural language seman-
tics calls for explanation of their value and utility. We first note that these clauses 
are not trivial. They partially determine the role of the words ‘Ann’ and ‘smokes’ in 
English—they say that the former is singular term denoting an individual, and the 
latter is a predicate of individuals (Higginbotham, 1988, p. 42).

11 We refer here to semantic theories where the object language is included in the metalanguage, as is 
customary in contemporary semantic theories for natural language.
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By contrast, the following clause seems to deliver significant information on the 
word ‘most’:
(c) [[most]]M = {⟨A,B⟩ ⊆ P(M)2 ∶ �A ∩ B� > �A�B�}

No familiarity with the word ‘most’ is assumed here. Thus, while clauses (a) and 
(b) contain a disquotational component, (c) is disquotation-free. Further, we note 
that ‘most’, as analysed here, is invariant under isomorphisms. So model-theo-
retic tools are sufficient and appropriate for giving its meaning in full.

Glanzberg explains that the more a semantic clause leans on disquotation, the 
less explanatory it is:

Good explanations tend to appear where we apply model theory or other 
branches of mathematics to semantics, while mere disquotation signals 
explanatory weakness (Glanzberg, 2014, p. 268).

The study of determiners through theories of generalized quantifiers has proved 
fruitful, and indeed explanatory, because of the successful application of math-
ematical tools in lieu of disquotation. Now, both kinds of clauses, those that lean 
heavily on disquotation, and those that don’t lean on it at all, give us the full 
meaning of the relevant expressions, in the sense that they give a determinate 
semantic value. But the former group is partial in the explanatory force of the 
semantic content attributed. Glanzberg entertains the hypothesis that this partial-
ity will not be overcome by future semantic theories, and so there are aspects of 
meaning that defy explanation by semantic theory (Glanzberg, 2014, p. 279).

It would be reasonable to associate a discipline with the domain in which 
its theories are explanatory. In our present case, the theory at stake is seman-
tic theory of natural language, and its domain is linguistic competence. When 
demarcating the domain through explanatory force, we see that semantic theory 
is only a partial theory of content, and that where disquotation is appealed to, 
other theories are needed. Linguistic competence, then, does not provide us with 
fully determined content: we need other cognitive faculties to achieve that. This, 
in a nutshell, is Glanzberg’s idea. “[S]emantics, narrowly construed as part of 
our linguistic competence, is only a partial determinant of content” (Glanzberg, 
2014, p. 259). Semantic theories have weak explanatory value when it comes to 
certain expressions. Some lexical items, for example predicates, are provided a 
type by the semantic theory, and while they are also provided with an extension 
as their semantic value—what their extension is is not explained by the theory—
but is rather taken for granted. This would mean that full truth conditions exceed 
semantic competence [by contrast to Glanzberg’s assumptions in Glanzberg 
(2015)].

Let us take up Glanzberg’s idea, and see what it implies with respect to our main 
topic, of logicality in natural language. Before we move on, we should qualify 
the opening statement of the previous paragraph. It is not at all certain that being 
explanatory is the primary virtue by which theories should be measured. But in our 
present case, lack of explanation is bound together with lack of informativeness, 
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since disquotational facts lean heavy on prior knowledge of meaning of the same 
expressions as included in the metalanguage.

If we follow Glanzberg’s line, this is where we stand. The way our semantic theo-
ries are formulated, they include clauses which fully determine the semantic values 
of expressions. In some cases, notably of lexical categories, a component of disquo-
tation is included. In other cases, where expressions are more amenable to math-
ematical treatment, notably in the case of isomorphism invariant expressions, the 
component of disquotation is null.

Nonetheless, we shall not derive a dichotomous picture of natural language 
expressions. Glanzberg shows that there are intermediate levels of disquotation and 
thus of explanatory value. Some semantic clauses, while using some form of dis-
quotation, provide more structure than mere grammatical category. A case in point 
is that of gradable adjectives. Glanzberg adopts a common approach, by which the 
semantic value of a gradable adjective is a function from individuals to degrees on a 
scale.12 So the meaning of ‘tall’, for example, is given by:

[[tall]](x) = d

Above we have a schema, where d is the degree assigned to x on the scale associ-
ated with ‘tall’. Adjectival scales in fact have three crucial parameters, each of which 
must be specified in the lexical entry of any particular gradable adjective: a set of 
degrees, which represent measurement values; a dimension, which indicates the 
kind of measurement (height, cost, temperature, speed, volume, and so forth); and 
an ordering relation on the degrees. The set of degrees will have mathematical prop-
erties such as being open or closed on either end. A scale closed on both ends will 
have minimum and maximum degrees (as in ‘full’), a scale open on both ends will 
have neither (as in ‘tall’), and there are scales that are closed on one end and open 
on the other (as in ‘pure’ and ‘bent’).

The dimension, analysed from our perspective, includes the disquotational com-
ponent. The dimension for ‘tall’ would be tallness, or height. That of ‘flexible’ 
would be bendability. We might or might not use a (near) homophonic translation 
to the metalanguage, but in any case we use a nearby concept the quality of which 
provides an interpretation for the degrees on the scale (see Glanzberg, 2014, p. 276). 
The disquotation is not pure, as it is complemented by the mathematical analysis of 
the scale.

The ordering relation is a significant additional parameter. The adjectives ‘tall’ 
and ‘short’ share a set of degrees and a dimension, but their ordering relations are 
inverses of each other. In general, the relation between antonyms can be analysed in 
this exact manner. Let us take, for example, the antonyms ‘wet’ and ‘dry’. For ‘wet’, 
we will have a scale with a minimum (something can be minimally wet—have no 
water on it at all). For something to be wet, it has to have degree of wetness that is 
above the minimum. For ‘dry’ we shall have the same dimension, but an inverted 

12 We rely on Glanzberg’s presentation and on Kennedy and McNally (2005). For further references, see 
Glanzberg (2014, p. 273).
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scale which includes a maximum. For something to be dry, it has to be minimally 
wet. And so we have the entailment (see Glanzberg, 2014, p. 274):

The door is not wet.
entails
The door is dry.

Semantic theory is partially explanatory of the semantic values of gradable adjec-
tives. In usual cases, it will not give a full explication of the dimension associated 
with the adjective, and in many cases we will have straightforward disquotation. 
However, we are also provided with some structure that explains entailments as the 
one above.

The explanatory part of natural language semantics is thus not confined to expres-
sions whose semantic value is invariant under isomorphisms. A gradable adjec-
tive such as ‘tall’, while not invariant under isomorphisms, still has an interesting 
mathematical structure associated with it. And so, we have expressions for which 
semantic theory gives us a full meaning without appeal to disquotation, expressions 
where some structure is identified, but the full meaning is given with some appeal to 
disquotation, and expressions whose semantic clauses merely provide semantic cat-
egories, but are otherwise disquotational. In the next subsection we separate out the 
disquotational element from the relevant semantic clauses. What we shall receive 
would then be “semantic theory proper” by Glanzberg’s lights. We shall see that if 
formulated in the framework of semantic constraints, the outcome will satisfy the 
criterion of logicality we have set in Sect. 2.2.

3.2  Identifying logic in natural language

Let us return to the main theme of this paper. The logic of natural language, I pro-
pose, is its isomorphism-invariant part. Further, I conjecture that if we follow Glan-
zberg demarcation of the explanatory part of semantic theory, we shall see that all 
of it is invariant under isomorphisms and thus semantic theory can be adequately 
described as the study of the logic of natural language.

The first step would be to consider semantic clauses as semantic constraints. 
Recall that we have done so in Sect. 2.1 and obtained: 

(a) I(Ann) = Ann

(b) I(smokes) = �x ∈ D. x smokes

(c) I(most) = {⟨A,B⟩ ∈ P(D)2 ∶ �A ∩ B� > �A�B�}

We can add to these the semantic constraints for ‘tall’ and ‘short’, after appropri-
ately extending the class of possible values of the interpretation function to include 
degrees, with an order < for height:13

13 We have taken a simplified version of the semantics of ‘tall’ and ‘short’, following Kennedy and 
McNally (2005). As they point out, the values of ‘tall’ and ‘short’ may be analysed as intervals rather 
than points (Kennedy & McNally, 2005, n. 17). This, besides complicating the presentation, would not 
affect our overall argument.
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(d) I(tall)(x) = d where the degree of height of x is d.
(e) I(taller)(x)(y) = T  iff I(tall)(x)) > I(tall)(y)

(f) I(short)(x) = d where the degree of height of x is d.
(g) I(shorter)(x)(y) = T  iff I(short)(x)) < I(short)(y)

Now, of the semantic constraints above, only the one pertaining to ‘most’ is invariant 
under isomorphisms.14 This is completely in line with our observations in Sect. 2.2. 
All the constraints above completely fix the meanings of the terms they involve, and 
so they are invariant under isomorphisms if and only if the term fixed is invariant 
under isomorphisms.15

According to the modified criterion for logicality proposed in Sect. 2.2, a seman-
tic constraint is logical if it follows from the semantic theory for the language and is 
invariant under isomorphisms. If we take the the semantic constraints above as part 
of a semantic theory for English, we can look into those following from them that 
are invariant under isomorphisms, and in this way identify the logic of English. But 
we were opting for a stronger claim: that all of natural language semantics describes 
(or models) the logic of natural language. This claim is based on Glanzberg’s idea 
of partiality in semantic theory. The semantic constraints above assign a determi-
nate semantic value to the expressions they involve, but by this they outstrip proper 
semantic theory and its explanatory power.

The natural move at this point is to separate the explanatory from the nonexplana-
tory in those constraints. Basically, this means that we formulate weaker constraints 
that do not necessarily give a determinate semantic value, but include no disquo-
tational element. We note that if we follow Glanzberg’s line of thought, we have 
a fundamental tension in semantic theory. On the one hand, the aim of semantic 
theory is to give (full) truth conditions for sentences compositionally. This means 
that we need semantic clauses that provide the (full) contribution of expressions 
to truth conditions, and therefore a determinate semantic value is required. On the 
other hand, many semantic clauses use disquotation, which is a sign of explanatory 
weakness. If, indeed, semantic theory is only partly explanatory of content, and we 
demarcate this discipline according to where it is explanatory, then giving (full) 
truth conditions goes beyond proper semantic theory. Henceforth we shall accept 
this conclusion.

The framework of semantic constraints invites us to restrict models vis-à-vis the 
interpretations of some terms without completely fixing their meaning. Observe the 
following semantic constraints, which are weakenings of those formulated above: 

(a′)  I(Ann) ∈ D

(b′)  I(smokes) ∈ {f ∶ f ∶ D → {T ,F}}

14 We adjust the definition of isomorphic models to accommodate degrees as semantic value. As we did 
with the truth values, we demand that isomorphisms are constant on degrees.
15 This follows from the proposition mentioned on p. 9, by which a term is invariant under isomorphisms 
if and only if the semantic constraint completely fixing its meaning is invariant under isomorphisms. See 
Sagi (2022a).
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(c′)  I(most) = {⟨A,B⟩ ∈ P(D)2 ∶ �A ∩ B� > �A�B�}
(d′)  I(tall) ∈ {f ∶ f ∶ D → S, S a scale with no minimum or maximum}

(e′)  I(short) = I(tall)16

(f′)  I(taller)(x)(y) = T  iff I(tall)(x)) ≻ I(tall)(y) , where ≻ is the order relation of 
associated with the range for ‘tall’

(g′)  I(shorter)(x)(y) = T  iff I(short)(y)) ≻ I(short)(x) , where ≻ is the order relation 
of associated with the range for ‘tall’

These semantic constraints are all invariant under isomorphisms. Also, they 
include no element of disquotation. Further, it seems that they capture precisely 
what we have identified as the explanatory part of the semantic clauses from which 
they originate. In each case, we replaced the disquotational part with a set-theoretic 
classification of the relevant value: we replaced ‘Ann’ with being a member of the 
domain; ‘smokes’ with being a function from members of the domain to truth val-
ues; ‘most’ was left untouched; the height dimension for ‘tall’ was replaced by a 
specification of the mathematical properties of the scale; likewise with ‘short’, while 
the mathematical relation with ‘tall’ remains untouched.

In this way we lose absolute semantic values, and we obtain a range of mod-
els. Glanzberg (2015) describes absolute semantics as the aim of natural language 
semantics. However, there are questions that semantic theory does not aim to solve 
regarding the extension of expressions (is John in the extension of ‘bachelor’? Is 
John taller than Ann?). Hence, we have a range of models. Zimmermann (1999) 
characterizes this range of models as displaying the linguist’s ignorance. Here, we 
contend that since these questions are beyond the domain of linguistic inquiry, it is 
not a matter of ignorance but rather of irrelevance.

The expressions we picked are representative of wider classes of lexical catego-
ries. The more sophisticated and developed semantic theory gets, the more we can 
add to the set of semantic constraints forming its logic. The logical consequence 
relation we shall obtain, if we include a further constraint for ‘John’ and some con-
straints for the composition of terms, will capture:
Ann is taller than John.
entails

John is shorter than Ann.

16 The simplified semantics we have attributed to ‘tall’ and ‘short’ ignores an apparent asymmetry, as in: 
(a)  Tao is seven feet tall.
(b)  ??Julian is three feet short.

 (Kennedy & McNally, 2005, n. 17). Using intervals as semantic values for ‘tall’ and ‘short’, requiring 
slightly more complicated constraints, would account for the asymmetry without affecting the overall 
argument. See n. 13.
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We have not fixed ‘taller’ or ‘shorter’ as logical terms—we have only restricted their 
interpretations by isomorphism invariant semantic constraints.

Presumably, we can formulate isomorphism invariant semantic constraints that 
will capture the examples discussed in Sect.  1 regarding ‘load’ and ‘cut’. Admit-
tedly, however, these examples pose an additional challenge. As Glanzberg explains, 
there are good explanations of these kinds of entailments that are not mathematical, 
but rather have to do with verb categorization or more generally, with “elucidations 
of meaning” (Higginbotham, 1989).17 Glanzberg leaves room for the possibility that 
later versions of these analyses will become more mathematical, but concedes that at 
this point non-mathematical explanations remain a loose end for his theory. It would 
be interesting to take Glanzberg’s project further into this realm. In the meantime, 
we may note that any entailment can be captured by means of isomorphism-invari-
ant semantic constraints. The explanatory value of some such constraints might be 
doubtful, but if semantic theory predicts an entailment, we can be sure that the rel-
evant semantic constraint will follow from the semantic theory for the language, and 
the relevant entailment will be included in logic of the language as we characterize 
it here.

Here is our rejoinder to Glanzberg (2015): there is a logical consequence relation 
in natural language. While it may be treated as permissive by Glanzberg, we empha-
size that it abides by the strictures of invariance under isomorphisms. Once the strict 
division of terms into logical and nonlogical, completely fixed and variable, is given 
up, one can accept all the entailments provided by natural language semantics as 
logical.

Contemporary semantic theory thus models the phenomenon of logic in natural 
language.18 Surely, the logic we get via this theory is complicated, always partial 
and up for refinement and revision. It is nothing like a foundation as envisioned by 
Frege or the useful framework for science as envisioned by Carnap. Those tradi-
tional aims would better find their fulfillment out and away from natural language, 
as in the work carried out by thinkers in the past 150 years. Yet, if what we look for 
is an entailment relation where our generalized and modified criterion for logicality 
is satisfied—that is defined by a set of semantic constraints that are invariant under 
isomorphisms—then formal semanticists give us just that.

4  Conclusion

This paper included two main claims. First, I presented an alternative framework for 
logical systems, and claimed that we can formulate an appropriate criterion for logi-
cality—for semantic constraints rather than for logical terms—that can be applied 

17 For verb categorization and analysis of ‘cut’ and ‘load’ and many other examples, see e.g. Dowty 
(1979), Levin and Hovav (2005).
18 We have only dealt with examples in an extensional framework, but, as mentioned, the framework 
of semantic constraints can be extended to an intensional setting, to accommodate the bulk of semantic 
theory.
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in the study of logical consequence in natural language. The second main claim is a 
strengthening of the first. I used Glanzberg’s theory of explanation and partiality in 
semantic theory to claim that natural language semantics is actually a theory of logic 
in natural language. Many semanticists claim that their object of study is the logic of 
natural language—here we give substance to this claim using a notion of logicality 
accepted by philosophers. Admittedly, the second claim relies on heavy assumptions 
regarding the study of natural language,19 and the first on a non-standard conception 
of logic. The logic we receive might be considered by Glanzberg’s position to be a 
permissive one. Note, however, that this non-standard conception of logic falls right 
out of the model-theoretic tradition by giving up the assumption that there must be 
a sharp division of the vocabulary into logical and nonlogical. Holding on to this 
assumption is a more committed position, even if usually taken for granted. Natural 
language semantics gives us the opportunity to revisit and let go of this traditional 
assumption.
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19 One can apply the framework of semantic constraints with its invariance criterion to other theories of 
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inferential and referential competence. The former is a competence with entailments, and the latter with 
application of words to entities to which they refer. In this framework, the logic of natural language 
would be associated with inferential competence. Presumably, referential competence, for Marconi a part 
of linguistic competence, would belong for Glanzberg to other cognitive faculties.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1085

1 3

Logicality in natural language  

References 

Chierchia, G. (2013). Logic in grammar: Polarity, free choice, and intervention Logic in grammar: Polar-
ity, free choice, and intervention (Vol. 2). Oxford: Oxford University Press.

Chierchia, G. (2021). On being trivial: Grammar vs. logic. In G. Sagi & J. Woods (Eds.), The semantic 
conception of logic (pp. 227–248). Cambridge: Cambridge University Press.

Chierchia, G., & McConnell-Ginet, S. (1990). Meaning and grammar meaning and grammar. Cam-
bridge, MA: MIT Press.

Del Pinal, G. (2019). The logicality of language: A new take on triviality, “ungrammaticality’’, and logi-
cal form. Noûs, 534, 785–818.

Dowty, D. R. (1979). Word meaning and Montague grammar. Dordrecht: Reidel.
Gajewski, J. (2002). On analyticity in natural language. Manuscript, https:// jon- gajew ski. uconn. edu/ wp- 

conte nt/ uploa ds/ sites/ 1784/ 2016/ 08/ analy tic. pdf
Glanzberg, M. (2014). Explanation and partiality in semantic theory (pp. 259–292). Metasemantics: New 

Essays on the Foundations of Meaning.
Glanzberg, M. (2015). Logical consequence and natural language. In C. Caret & O. Hjortland (Eds.), 

Foundations of logical consequence. Oxford: Oxford University Press.
Gómez-Torrente, M. (2002). The problem of logical constants. The Bulletin of Symbolic Logic, 8(1), 

1–37.
Hanson, W. H. (1997). The concept of logical consequence. The Philosophical Review, 106(3), 365–409.
Heim, I., & Kratzer, A. (1998). Semantics in generative grammar semantics in generative grammar. Mal-

den, MA: Blackwell.
Higginbotham, J. (1988). Contexts, models, and meanings: A note on the data of semantics. In R. Kemp-

son (Ed.), Mental representations: The interface between language and reality (pp. 29–48). Cam-
bridge: Cambridge University Press.

Higginbotham, J. (1989). Elucidations of meaning. Linguistics and Philosophy, 12(4), 465–517.
Kennedy, C., & McNally, L. (2005). Scale structure, degree modification, and the semantics of gradable 

predicates. Language, 81(2), 345–381.
Levin, B., & Hovav, M. R. (2005). Argument realization argument realization. Cambridge University 

Press.
Marconi, D. (1997). Lexical competence lexical competence. Cambridge, MA: MIT press.
McCarthy, T. (1981). The idea of a logical constant. The Journal of Philosophy, 78(9), 499–523.
McGee, V. (1996). Logical operations. Journal of Philosophical Logic, 25, 567–580.
Sagi, G. (2014). Formality in logic: From logical terms to semantic constraints. Logique et Analyse, 

57(227), 259–276.
Sagi, G. (2015). The modal and epistemic arguments against the invariance criterion for logical terms. 

Journal of Philosophy, 112(3), 159–167.
Sagi, G. (2022a). Invariance criteria as meta-constraints. Bulletin of Symbolic Logic, 28(1), 104–132.
Sagi, G. (2022b) Considerations on logical consequence and natural language Dialectica, 999(1). https:// 

doi. org/ 10. 48106/ dial. v74. i2. 06
Sher, G. (1996). Did Tarski commit ‘Tarski’s fallacy’? The Journal of Symbolic Logic, 61(2), 653–686.
Woods, J. (2017). Characterizing invariance. Ergo, 3, 778–807.
Zimmermann, E. (1999).  Meaning postulates and the model-theoretic approach to natural language 

semantics. Linguistics and Philosophy, 22(5), 529–561.
Zimmermann, T. E. (2011). Model-theoretic semantics. In C. Maienborn, K. von Heusinger, & P. Port-

ner (Eds.), Semantics: An international handbook of natural language meaning. Berlin: Walter de 
Gruyter.

Zinke, A. (2018). A bullet for invariance: Another argument against the invariance criterion for logical 
terms. The Journal of Philosophy, 115(7), 382–388.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://jon-gajewski.uconn.edu/wp-content/uploads/sites/1784/2016/08/analytic.pdf
https://jon-gajewski.uconn.edu/wp-content/uploads/sites/1784/2016/08/analytic.pdf
https://doi.org/10.48106/dial.v74.i2.06
https://doi.org/10.48106/dial.v74.i2.06

	Logicality in natural language
	Abstract
	1 Introduction
	2 The framework of semantic constraints
	2.1 The basic framework
	2.2 Invariance criteria in the framework

	3 Semantic theory and logicality
	3.1 Glanzberg on partiality in semantic theory
	3.2 Identifying logic in natural language

	4 Conclusion
	Acknoledgements 
	References




