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Abstract
I identify and characterize a type of noncausal explanation in physics. I first 
introduce a distinction, between the physical properties of a system, and the 
representational properties of the mathematical expressions of the system’s physical 
properties. Then I introduce a novel kind of property, which I shall call a dual 
property. This is a special kind of representational property, one for which there 
is an interpretation as a physical property. It is these dual properties that, I claim, 
are amenable to noncausal (mathematical, in fact) explanations. I discuss a typical 
example of such a dual property, and an example of an explanation as to why that 
dual property holds (the explanation of the quantization of the linear momentum).

Keywords Noncausal explanation · Quantum mechanics · Mathematics

1 Introduction

Not all explanatory requests in science are the same. Some can be met by indicating 
the cause of the phenomenon of interest; others cannot. This paper identifies and 
examines certain why-questions in physics that belong, I shall argue, to this 
second category. Their answers are given by appealing to what I shall call here 
representational features of the mathematical formalism which expresses the 
physical properties of the system of interest.

These answers are philosophically relevant for two reasons. First, since they 
answer why-questions, they can be considered ‘explanations’; second, in virtue of 
their mathematical character, these answers-explanations are arguably ‘noncausal’. 
Hence—my thesis here—such answers should count as noncausal scientific expla-
nations. In holding this, I aim to provide support for a much-debated more general 
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thesis, that there are noncausal scientific explanations of physical phenomena.1 This 
is a claim which, it seems, is still far from been definitively established—Michael 
Strevens, for one, has recently maintained that, in essence, none of the currently dis-
cussed examples of noncausal explanations passes the bar2—hence any additional 
examples will help supporting it.

I begin in Sect.  2 by engaging the view (causal ‘exclusivism’) which contests 
the existence of noncausal explanations; then, I sketch what I take to be a novel 
path around exclusivism. In Sects.  3 and 4, I examine closely a (new) example 
of mathematical noncausal explanation: the quantization of linear momentum. 
While discussing this example, which is in fact representative for a whole family 
of examples, I also gesture at some other illustrations and suggest that our notion 
here, of a formal-mathematical explanation, may have a distinguished predecessor 
in relativistic quantum mechanics: the idea of formal- mathematical prediction, 
illustrated by Paul Dirac’s postulation of the positron in the early 1930s. In Sect. 5 
I propose a general account of this kind of explanation. In Sect. 6, I highlight the 
virtues of my account by comparing it, and my examples, with other accounts (and 
other examples) offered in the literature.

2  Dual properties: a strategy to identify noncausal explanation 
in physics

So, let causal ‘exclusivism’ be the view that scientific explanations can only be 
causal. The view has been influential in the past, and it is popular among recent 
authors. Angela Potochnik, for instance, maintains that “to explain something 
is to show what is responsible for that thing—and whatever is responsible for 
something is its cause.” (Potochnik, 2020: 22–23). In the same vein, Brad Skow 
writes that “maybe causal explanation is not just one kind of explanation. Maybe, 
instead what it is to be an explanation is to be a causal explanation. Whatever set 
of features constitutes the nature of causal explanation also constitutes the nature of 
explanation” (Skow, 2014: 445).

The opponents of exclusivism, the (explanatory) ‘pluralists’, do not foreclose 
the possibility that, in addition to causal explanations, there could also be non-
causal ones.3 Pluralists typically question the two commitments taken on by the 

2 As he puts it, his examination of “some well-known examples of explanations that seem to operate 
largely or wholly through mathematical derivation” reveals that they are “causal through and through.” 
Strevens (2018, 96). However, Strevens refrains from “[arguing] for such a sweeping conclusion” that 
“all scientific explanation [is] causal.” (2018, 115).
3 Although I am not aware of any systematic survey, exclusivism seems to be the dominant view, with 
Salmon (1984, 1998) as its best-known exponent. Other, more recent examples of exclusivists (such as 
Strevens (2018), although his view is rather nuanced; see fn. 2) can be found in Saatsi and Reutlinger’s 
(2018) collection. Lewis is also a prominent possible exclusivist, since his “main thesis [is that]: to 

1 Here I assume the explananda to be natural phenomena, or general facts about the physical world. I 
thus take a side in the debate on the proper object of an explanation, whether it is (general) facts or, as 
Lewis (1986) has it, (particular) events. See Bennet (1988) for a discussion of this distinction.
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exclusivists: to a theory of causal explanation, and to this theory’s relevance for sci-
ence. The latter commitment is important since the exclusivists maintain that such a 
theory of explanation is not merely a philosophical fantasy, but is able to accommo-
date examples of explanations one finds in scientific practice. Unsurprisingly then, 
one of the pluralist strategies against exclusivism has been to scrutinize this commit-
ment; more concretely, two kinds of problems with it have been flagged up.

First, the pluralists noted that the causal exclusivist theories of explanation 
have difficulties to capture some central explanatory practices in science. Wesley 
Salmon’s theory, for instance, faces such a difficulty when it comes to quantum 
mechanics, as he honestly acknowledged himself:

In answer to the question of this section, ‘Can quantum mechanics explain?’ 
the answer must be, for the time being at least, ‘In a sense ‘yes,’ but in another 
sense ‘no.’’ In Salmon, (1984, 242–59) I had admitted only the negative 
answer to this question. (Salmon, 1998, 76)

Second, the pluralists have remarked that the exclusivists theories are not able to do 
justice to a number of examples of scientific explanations of a seemingly noncausal 
type. Marc Lange (2017) has most recently adopted this strategy, by presenting a 
variety of cases of what he calls ‘distinctively mathematical explanations’. Among 
the examples he has discussed, we can find earlier examples by Lipton (2004), Baker 
(2005), and Pincock (2007, 2012), as well as several of his own. Batterman’s (2001) 
asymptotic explanations are also often cited as examples of noncausal explanations.

Yet, in fairness to the causal exclusivists, I should also  note that all these 
contributions have come under heavy criticism. Actually, Lange (2015, 2017) rejects 
Lipton’s, Baker’s and Batterman and Rice’s (2014) claims that they have offered 
examples of noncausal explanations. Moreover, Lange’s own position has been 
contested (see Craver and Povich (2017), Skow (2017), Andersen (2018)). As it will 
become clear later, the kind of strategy and the examples I articulate here are of a 
very different nature from Lange’s and others’ proposals—hence, I shall argue, they 
are not exposed to these objections.

The pluralist approach advanced here is a variant of the abovementioned strategy 
of arguing by (counter-)example; the gist of my argument is an extended exposition 
and analysis of such a putative counterexample (from quantum mechanics). I chose 
this example because, I believe, it is possible to classify it as an explanation without 
an appeal to our intuitions about, or theories of, explanation.4 Thus, our main 
object of investigation here is a special case of a true and relevant answer to a why-
question, answer that should count as a genuine explanation. Yet, I stress, this is so 

4 Since such ‘battles of intuitions’ are hardly ever settled, they should be avoided.

explain an event is to provide some information about its causal history. (Lewis, 1986, 217; emphasis 
in original). But he takes the object of an explanation to be events (as does Skow, 2014), so it is an open 
question whether his/their views are directly relevant for the present discussion. Among the pluralists we 
find, most recently, Woodward (2018), Lange (2017), Morrison (2015, 2018), as well as Batterman and 
Rice (2014).

Footnote 3 (Continued)



792 S. Bangu 

1 3

not because this answer fits our intuitions regarding what is explanatory, and also 
not because it is deemed so by a certain theory of explanation. Rather, this answer 
has this status in virtue of adopting ‘minimalism’ about scientific explanation: 
namely, that to explain is, first and foremost (i.e., minimally), to provide a true and 
informative answer to a why-question.5

Another worry to address at the outset is the characterization of this answer-
explanation as ‘noncausal’. To a first approximation, I claim that it deserves 
this label in so far as it is given by appealing to a representational property—of 
a mathematical formula. Since, as we’ll see, this answer exploits only features of 
the mathematical description of the physical systems of interest, this answer will a 
fortiori bypass any considerations regarding the stuff described. We shall return to 
this crucial point later.

Now, I would like to introduce a key distinction, between two kinds of proper-
ties: physical properties, on one hand, and representational properties, on the other. 
Physical properties are the usual properties of physical systems, e.g., mass, velocity, 
momentum, energy, etc. By contrast, what I call here a ‘representational’ property 
is not a property of the physical system per se; it is a property of a canonical math-
ematical expression of one of the system’s physical properties. Based on this distinc-
tion, I next introduce what I shall call here dual properties. These are properties that 
have a special dual nature, in that they are representational properties and also have 
an interpretation as physical properties.

To be sure, more needs to be said about the very notion of a dual property. We 
will encounter one below (actually, a whole class), but let me first try to clarify the 
concept of a representational property. An example will help, so consider the stand-
ard mathematical expression of the potential energy stored in a simple harmonic 
oscillator, i.e., the formula kx2∕2 , standardly abbreviated as ‘U’ (as usual, k is the 
force constant and x the coordinate of the position of the oscillating mass). That the 
oscillator stores energy is (obviously) a physical property of this physical system. A 
representational property, on the other hand, is a certain kind of property of this very 
formula, property that it has in virtue of its specific symbolic constitution—here, ‘is 
quadratic’ would be such a property of formula U. Representational properties like 
these6 will be central in what follows, since some of them will turn out to also be 
dual properties. But note the emphasis: not all representational properties are dual 
properties; for instance, the one we just encountered—call it ‘quadradicity’—is not.

6 The qualification ‘a certain kind’, and the reference to the ‘specific symbolic constitution’ are impor-
tant. Not all properties possessed by formulae are representational properties; for instance, ‘is abstract’ 
is a property possessed by any formula (if we don’t take formulae to be physical signs, as is customary). 
But this is not a representational property in the sense intended here, since it doesn’t involve its symbolic 
structure. I thank an anonymous reviewer for pressing these points.

5 My ‘minimalism’ is a common stance in the literature. De Regt, for example, says that “an explana-
tion is an attempt to answer the question of why a particular phenomenon occurs” (2018, 24–25). Skow 
(2016) also takes this idea as a starting point in formulating his theory of explanation. Moreover, the 
qualification that the answer must be ‘informative’ is important, since, obviously, not just any answer to a 
why-question counts as relevant, or as an explanation. (Famously, when Willie Sutton was asked why he 
robbed banks, he answered that ‘because this is where the money is’!).
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So, dual properties will be those representational properties which are also prop-
erties of the system itself (i.e., physical properties); or, put as above, they are rep-
resentational properties with a (natural) interpretation as physical properties. And, 
as already noted, the answers to the why-questions of interest here will consist in 
essence in accounts as to why such dual properties hold. Therefore, I shall argue, 
these answers/explanations, in virtue of being entirely formal, will fall outside the 
domain of causality, no matter how large and inclusive one takes this domain to be.

To dispel some possible confusion regarding dual properties, let me also note 
that many mathematical formulae admit physical interpretations. (To take a most 
crude illustration, consider formula ‘x + y’. A natural interpretation of it is to assign 
the variables x and y values of the masses of a two-component physical system, 
and to take this expression as giving the total mass of such a system.) However, 
it is crucial to understand that here we shall focus on certain properties of such 
formulae, not on the formulae themselves. To stress: it is these properties that have 
to admit physical interpretations, not the formulae per se. So, when we consider a 
representational property of a given formula (e.g., that it is invariant under certain 
substitutions), the question to ask is whether this property corresponds, or not, to a 
physical property (physical fact).

Returning to the example above of the potential energy stored in a simple har-
monic oscillator, we saw that the formula U = kx2/2 has the property ’is quadratic’. 
I also said that this was only a representational property of U, and not a dual prop-
erty. But we now note that in addition to its quadradicity, formula U has another 
representational property, namely invariance under the x→–x substitution. (Trivi-
ally, we have U(x) = U(–x), since kx2/2 = k(–x)2/2.)7 Importantly, this symmetry is 
a representational property of the formula U which does have a physical interpreta-
tion—namely, that the amount of energy stored in the oscillator when it is located at 
the left of the equilibrium point is the same as the amount of energy it stores when it 
finds itself at the same distance to the right side of that point. Hence, this symmetry 
counts as a dual property, too.

To consider another example, which provides us with a template more relevant 
for the discussion in the later sections, it may be that a formula φ (expressing a phys-
ical quantity Q) lacks a term for a certain quantity W. This—‘lacks a term for W’—
qualifies as a representational property of φ, and moreover it is a property that has 
a (trivial) physical interpretation; namely, that the Q of the system does not depend 
on the W of the system,8 hence it is a dual property. In more concrete terms, one can 
take the formula φ to be giving the period T of a simple pendulum (of length L, in a 

7 This invariance property is related to its quadradicity, but not identical to it; any formula whose vari-
ables are raised to even powers have the invariance property.
8 An issue with this property can be raised, however, by noticing that any formula φ which seems to 
lack a term, can be rewritten such that it contains it. Take, for instance, Einstein’s E = mc2, and rewrite it 
as E = mc2 + h–h, where h is the Planck constant. While the first formula gives the energy of a body (at 
rest) as depending only on its mass m and (the square of) the speed of light c, the other formula seems to 
give this energy as depending on Planck’s constant h as well, since this formula contains h, after all. This 
point can be countered by recalling that, as we emphasized above, we should consider only the canoni-
cal expressions of the physical quantities of interest—and, obviously, the second expression is not the 
canonical expression of energy. I thank an anonymous reviewer for requesting this clarification.
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gravitational field g), and as quantity Q its period T. That is, φ = 2π 
√

L∕g , a formula 
which does not contain the term for the mass of the pendulum’s bob (here, mass is 
the generic quantity W above). The physical interpretation of this representational 
property of φ (namely, that it does not feature a mass term) is clear and admittedly 
surprising: the period of a simple pendulum does not depend on the mass of the bob.

Below I shall discuss a certain dual property in detail; however, before I do this, 
let me say more about what I mean by a ‘representational property’ of a mathemat-
ical expression. As intimated above, this is a property of the structured symbolic 
constitution of an expression. We call two expressions representationally equiva-
lent when, despite some superficial differences, they can be (mathematically) trans-
formed into each other; e.g., φ = (x + y)2 and θ =  x2 + 2xy +  y2 are representationally 
equivalent. On the other hand, other expressions, e.g., 

√

2xy and (x2–y2)/3, or sin(x) 
and cos(x), can’t be so transformed, so we will say that they are not representation-
ally equivalent. Thus, to identify the representational properties of an expression is 
to describe how it is constructed (from what mathematical operations, or functions) 
and, most importantly, to indicate how it behaves under mathematical transforma-
tions.9 Moreover, we can think of representational equivalence as identity of the 
range of values. This is relevant because although two expressions look markedly 
different, they may yield the same numerical value for certain substitutions of the 
variables in them. For instance, if we substitute x = 4 and y = 2 in the formulae 

√

2xy 
and (x2–y2)/3, they both yield the same numerical value, namely 4. But this does not 
always hold, as there are values of the variables (e.g., x = 2 and y = 1) for which the 
output of the two formulae is different (2 and 1, respectively). On the other hand, 
substitutions of numerical values for variable(s) in formulae that are representation-
ally equivalent always produce the same numerical output.

Thus understood, the representational properties of a mathematical expression 
of a physical quantity (or process) are quite important in physics. It is well-known 
that sometimes it makes a significant difference whether a formula contains only 
linear terms, whether it is continuous or discrete, whether it is an ordinary differen-
tial equation or a partial one, whether it is a vectorial or a scalar quantity, whether 
it is factorizable or not, and so on. One well-known episode in the history of phys-
ics when the representational properties of an expression were regarded as essential 
involves Paul Dirac’s search for the relativistic equation for the electron (we will 
encounter it in Sect. 4). His dissatisfaction with the earlier Klein–Gordon equation 
(also meant to describe the relativistic electron) stemmed from the fact that that 
equation was not linear. Pais (1986, 289) quotes Dirac as saying that “The linearity 
in �∕�t was absolutely essential for me”. Indeed, the equation he eventually found 
((5) below) was linear.

Returning to the general strategy that I intend to implement here, the leading 
idea is to identify a special class of cases in physics having the following remark-
able feature: the explanation as to why a certain physical property (of the system) 
holds amounts to an explanation as to why a certain representational property (of 

9 Thus, I should say that formulae  ex and its power series representations, e.g., 1 + x +  x2/2! +  x3/3! + … 
are representationally equivalent. The same holds for x/(

√

x + 1 + 
√

x ) and x(
√

x + 1 −
√

x ), as well as 
others.
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a mathematical expression of a physical property of the system) holds. These are 
cases where such physical and representational properties appear ‘fused’ as dual 
properties—metaphorically, they are like the two sides of the same coin. Thus, a 
dual property will have a representational facet and a physical one, and hence—in 
virtue of having a representational facet—it lends itself to a formal-mathematical 
noncausal explanation. The example(s) below will hopefully make this somewhat 
abstract characterization clearer.

Finally, another distinguishing feature of the why-questions discussed here is 
that the formal-mathematical answers-explanations they receive are the only ones 
available. They are not replaceable—that is, by other, more ‘substantial’, presumably 
causal, answers. Since there is consensus in physics that such replacements are 
missing, the causal exclusivists (who would reject these formal-mathematical 
explanations) are pressed hard to accept that physics simply has no explanations to 
offer in these cases.

Now, this position is admittedly available in the logical space; after all, physics is 
not omniscient. Yet raising the white flag for the kind of examples discussed here is, I 
urge, unwarranted, if not ill-advised. This is so since my case studies, and especially 
the main one  below, the quantization of linear momentum, belong to mainstream 
physics, and have extensively been treated in research papers and textbooks; they 
are well-understood, and far from the cutting edge of knowledge. Therefore, such 
a defeatist stance is prima facie less plausible than the one I endorse—to wit, that 
the physicists are not helpless when it comes to these why-questions, since they can 
formulate some answers-explanations. It is just that these explanations have to be 
recognized for what they are: a special kind, i.e., formal-mathematical.

3  A formal‑mathematical explanation of a dual property

As announced above, the main case study I discuss here is the quantization of linear 
momentum for a particle in circular motion on a ring. See Fig. 1.

We consider a free particle of energy E and mass m moving in one dimension 
on a circle of circumference 2�r . It is well known that the linear momentum p of 
the particle has a surprising property: the spectrum of values for this quantity is not 
continuous, but discrete. In striking contrast with the classical situation (where the 
momentum of such a particle is allowed to take any values), only a discrete array of 
values exists. Thus, the request for an explanation suggests itself: why is the motion 
of the particle constrained like this? Why is its momentum ‘quantized’?

More specifically, the textbook expression for the values of the momentum is the 
following10:

where n takes values ±1,±2,…

(1)pn = (ℏ∕r)n

10 I follow Shankar (2016, Sect. 22.1).
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This expression shows, as expected, that the momentum is quantized; however, 
one would like to know why this is so. So, naturally, the causal exclusivist would 
recommend here to look for some physical-causal factor which somehow cancels, 
and thus eliminates, the other possible values of the momentum. But, as the physi-
cists assure us, such factor(s) are not to be found.

Note, moreover, that this is not merely an epistemic limitation. This is not due 
to our ignorance—as if this physical system were new and insufficiently studied, 
and surprises are still possible. After almost a century of working with quantum 
mechanics, physicists are pretty confident that there are no such (yet undetected) 
physical-causal ‘blocking’ processes whose effect is that certain types of motions do 
not happen (e.g., those motions in which p = 1.5 (ℏ∕r))

Thus, from the exclusivist perspective, this is the end of the story: absent such 
‘cancelling’ factors, the puzzling phenomenon has no explanation. However, as I 
noted, this is too early a capitulation. There is another way to address the why-ques-
tion, and the proposal is to explore the possibility of an explanation by focusing on 
the representational properties of expression (1) above. The property of interest here 
is the fact that (1) consists in a discrete array of values.

Next, I claim that this discreteness is an example of what I have called above a 
dual property. On the one hand, it is a representational property; namely, a property 
of the very expression (1) above. There, momentum p appears as an array of 
discrete values, and not as a continuous function. On the other hand, it is obvious 
that discreteness can also be seen as a physical property of the system: it indicates 
that certain motions of the particle (or, more generally, certain physical states) are 
physically prohibited.

Yet, this duality is not an accident, but has a deeper root. It exists in virtue of 
a general interpretive principle, which can be formulated roughly in the following 
conditional form: if the spectrum of values for a physical quantity Q is not 
continuous, but discrete, then certain physical states, corresponding to the values 
missing from the spectrum, do not exist. Let me abbreviate this principle as  PD.

Principle  PD is, I submit, fairly uncontroversial, perhaps even trivial; it is widely 
used in scientific practice, and not only in physics. It is a connective principle, in 
that it links the discreteness of the spectrum of a physical quantity Q—discreteness 
which, again, is a representational property (of the formula expressing Q)—with the 
physical fact that certain states do not exist, which is a bona fide physical property of 
the system of interest. Given this connection, it is natural to think that one may try to 
explain the latter by accounting for the former, i.e., for the representational property. 
Then, the next question to consider is, why does the expression for the momentum p 
take discrete form (1) above?

The answer is, as we shall now see, of a mathematical nature. It does not rely 
on identifying a physical-causal factor responsible for eliminating the other possible 
motions of the particle (and implicitly for the elimination of other values of its linear 
momentum). The argument consists in a mathematical derivation, embedded in the 
formalism, as follows.

We know that states of definite momentum p = ℏk are given by the wave-function
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Since the particle moves on a closed trajectory, the state (2) has to be periodic of 
period 2�r . Hence, we must have that �(x) = �(x + 2�r) . By imposing this condi-
tion, we obtain

Note that we have reached this point by codifying all the physics available; and 
yet we still do not have an answer as to why p takes a discrete form. But now we 
can account for this form in exclusively mathematical terms: as a matter of pure 
mathematics, Eq. (3) is satisfied only for a discrete set of values for p. Thus, we have 
an answer to the question as to why the representational property holds, i.e., why the 
momentum p has the discrete form given by (1). And, given our assumptions above, 
I contend that such an answer should count as an explanation.

Before we move on, let me parse the example more carefully.11 The explanation 
was formulated in two stages. The first, preliminary step identified a representational 
property—discreteness; again, this is the property that the values of the momentum 
of the particle ‘jump’ from one integer multiple of (ℏ∕r) to another, without taking 
the intermediary values. This property is representational, since it is a property of 
the mathematical expression of the momentum given by (1). Yet discreteness is also 
a physical property of the system (of its momentum) and, as such, it is a dual prop-
erty. As a dual property, it features two facets, or aspects: a representational one, and 
a physical-causal one.

The next step in explaining why this dual property holds consisted in offering 
a purely mathematical argument as to why it holds: more precisely, as to why its 

(2)𝜓(x) = (1∕
√

2𝜋r)eipx∕ℏ

(3)e2𝜋ipr∕ℏ = 1

Fig. 1  A particle, described by 
its wave-function � , moving on 
a circumference of length 2�r

11 Unfortunately, I do not have the space to enter a discussion about the possible (ontological) interpreta-
tions of the wave-function. (See Ney & Albert, 2013). I am aware that the theoretical context here may 
seem somewhat problematic, due to the interpretational muddles and disagreements regarding quantum 
theory. Nevertheless, I believe that the argument put together here works on a standard-textbook concep-
tion of the wave-function.
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representational facet holds, i.e., as to why expression (1) has a discrete form. Thus, 
what we wanted was an explanation as to why the dual property qua representational 
property held. This explanation was formulated as a mathematical derivation. Cru-
cially, note that this derivation was performed after we used all the physical-causal 
information available.

In essence, what we did can be characterized as follows. We managed to turn 
the initial why-question about a physical property of the system into a why-question 
about the representational property of a mathematical expression (namely, that (1) is 
an array of discrete values.) And, once this representational property was accounted 
for, we found ourselves in the position to claim that a complete and correct expla-
nation of a dual property was provided. Then, given the nature of dual properties, 
this also functioned as an explanation of a physical property as well.12 Finally, note 
that a large burden of the explanatory work has been carried by the interpretation of 
the formalism. The underlying general interpretive principle instrumental here  (PD 
above) is what connects the representational property with the physical property, 
and thus generates the dual property of interest here.

4  Further clarifications

To return to our main why-question (why is the momentum quantized?), one may 
wonder whether the two-step argument above really explains this quantization of 
the linear momentum—for one may feel that it does not. Thus, one may face an 
uncomfortable sentiment already experienced in other situations involving quantum 
mechanics, that something is missing. And this is, unsurprisingly, a physical-causal 
factor that removes (eliminates, cancels, blocks, stops, etc.), in a causal-mechanical 
fashion, the other ways the particle might move on the ring. A candid confession 
that Salmon made a long time ago in a different context13 is relevant here: “I do have 
a profound sense that something that has not been explained needs to be explained.” 
(1989, 186).

Salmon’s sense of dissatisfaction is shared by many, among them the prominent 
philosopher-physicist James Cushing. He made a somewhat similar complaint: “I 
do not see how an understanding of physical processes is possible if the move to a 
causal story is blocked.” (Cushing, 1991, 350) He says this while also aware of that 
this reaction may be subjective; he realizes that “of course, this may be a difficulty 
peculiar to me” (1991, 350). As is clear from the quotation, Cushing’s focus is 
on how understanding is a product of explanation (actually, the main topic of his 
insightful paper), issue which, for reasons of space, is unfortunately not possible to 
discuss here. He embraces the pessimistic hypothesis that the explanations offered 
within quantum mechanics may not yield understanding—but, importantly, we 

12 Returning to the metaphor employed above, the fact that a mathematical explanation of the represen-
tational facet of a dual property work as a mathematical explanation of the physical aspect of the dual 
property (i.e., an explanation of a physical property) is analogous to the fact one who drills through the 
Heads side of a coin drills through the Tails side too!
13 In relation to the failure to find the cause of the EPR correlations.
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should not forget that he construes understanding in a causal-mechanical, even 
pictural-visual way. On the other hand, the more recent accounts of the notion of 
understanding “find this [construal] implausible”—as Khalifa (2017, 116) put it 
in direct reference to his views. However, the Cushing-type of discontent is not to 
be quickly dismissed. This is so especially since, as we will see below, there are 
situations when such canceling causal factors can be found.

Before we investigate these situations, let me note that this kind of dissatisfac-
tion stems, on reflection, from two sources. The first is some kind of (classically-
induced?) causal exclusivist nostalgia. To confront it, one just has to be reminded 
that there is no requirement in physics or philosophy that all explanations must be 
of one kind, i.e., causal. The second source is not epistemological, but metaphysical. 
What is felt to be missing is, in fact, not so much a specific (causal) factor responsi-
ble for the gaps, but an answer to a much deeper concern, about the very nature of 
reality. It can be expressed as another why-question: ‘but, why is Nature quantized?’.

When facing such a profound query, one has to consider the possibility that 
maybe an issue of this magnitude is just not physics’ business to address. Thus, by 
separating the grand metaphysical (why-)question from the initial specific (why-)
question, we are led to making a constructive suggestion about the latter: admit that 
at least in a sense (precisely the formal-mathematical sense of explanation isolated 
here) the answer above does explain why the momentum is quantized. Thus, what 
one could (and should) do—in order to alleviate the tension between physics’ 
(limited) resources and one’s (legitimate) metaphysical anxieties—is to simply 
recognize this formal-mathematical sense of explanation as epistemically valid.

A general account of this kind of explanation will be sketched in the next sec-
tion. Now, we shall take a brief detour and look at a (famous) example from clas-
sical mechanics, the double-slit experiment. This is one of those cases where the 
why-question of interest regards the existence of some ‘gaps’ as well, but in which a 
physical-causal cancelling factor responsible for their existence can be found. Thus, 
despite the similarity of the explananda in the two examples (the discreteness of the 
spectrum), in this new case we will not deal with an instance of a noncausal expla-
nation (although we will make use of mathematics).

The well-known (idealized) physical setup is presented in Fig. 2. A water wave 
comes from the left, hits a dam, and passes through two openings in it  (O1 and  O2), 
drilled at distance d of each other. The baffling phenomenon to explain is the exist-
ence of certain points (in fact, narrow regions) on the shore (‘screen’) where no 
wave arrives.

The explanation of the existence of these ‘gaps’ is as follows. Once the wave 
reaches the dam’s openings, two new waves are created at each opening, of equal 
wavelength λ. (One is depicted in the diagram). They travel together toward the 
shore. Now consider an arbitrary point P on the shore. It will be located at distances 
 O1P and  O2P, respectively, from the two openings. Let us assume that  O2P >  O1P.

Different numbers of wavelengths λ fit into each of the paths  O1P and  O2P. The 
key observation is that if P is located on the shore such that the two paths differ in 
length by half a wavelength (e.g.,  O2P–O1P = 1

2
 λ, or 3

2
 λ, etc.), then the waves that 

leave the openings in phase (crest to crest) arrive at P out of phase (crest to trough). 
Thus, no wave hits the shore at P because of destructive interference. On the other 
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hand, for those points on the shore where the two paths differ by a whole wave-
length, the waves arrive in phase (crest to crest). In this case, there is a maximum 
positive value for the intensity of the wave, because of constructive interference. 
Most points on the screen are of course somewhere in between these minima (zeros) 
and maxima.

However, what interests us here is (the property of the system) that these minima 
do occur. We have established that there are points on the shore where destructive 
interference takes place, and thus no waves arrive. They correspond to ‘gaps’. The 
question then is why do these gaps arise?14

These gaps can be easily characterized mathematically, as follows. Assum-
ing that the distance between the dam and the shore is much larger than d, the 
angle θ  between path  O1P and a perpendicular to the dam is approximately equal 
to the angle between  O2P and that perpendicular. Then, simple trigonometry shows 
that the path difference can be calculated to be  O2P–O1P = dsin� . As argued above, 
the points of destructive interference are located where this difference is a half-inte-
gral multiple of the wavelength, so they can be identified from the following discrete 
set:

where n = 0,± 1, ± 2…15

To conclude, the point of this example is to show that there are cases when the 
explanation of the existence of some gaps (a physical property) is given by indi-
cating a physical-causal mechanism responsible for the appearance of these gaps; 
here, the mechanism is destructive interference. Thus, although this is an explana-
tion making use of mathematics, it is not a mathematical-noncausal explanation, but 
a causal one.

Back to the main argument, we are now in the position to see the general struc-
ture of the kind of formal-mathematical noncausal explanation I aim to articulate 
in this paper. I will do this in the next section. Meanwhile, however, let us note that 
the central idea here—that in order to gain physical insight physicists sometimes 
exploit the representational features of the mathematical descriptions of the physi-
cal systems—is actually known, and has been studied in the literature on the history 
and philosophy of physics. I shall now briefly present what seems to be a ‘cousin’ of 
the central notion here, namely a case of formal-mathematical prediction. The case 
study that illustrates it is well-known, and hence in no need of extensive elaboration: 
Dirac’s prediction of the positron in 1931.

What is now called the ‘positron’, Dirac named initially the ‘anti-electron’.16 
The beginning of the story is the equation for the (free) electron he found in 1928, 
equation whose remarkable property was that it accommodated Special Relativity:

(4)dsin� =
(

n +
1

2

)

�,

14 This is the more concrete version of the more abstract question asked above, ‘why is the spectrum 
discrete?’.
15 Similarly, constructive interference obtains when the difference  O2P−O1P is an integral multiple of 
the wavelength, i.e., dsin� = nλ, for n = 0,± 1, ± 2…
16 See Dirac (1931, 61).
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where �� are the 4 × 4 Dirac matrices (and we put ℏ = c = 1) . From (5), it is clear 
that two of its four solutions, wave-functions ψ1 and ψ2, describe the states they were 
meant to describe, the spin-up and spin-down electron.17 But in 1928 no physical 
sense could be made of the other two solutions, ψ3 and ψ4 (the so-called ‘negative-
energy’ states). As a testament to his genius, Dirac did not dispose of these two 
other solutions. Instead, fully aware that the new quantum theory he was elaborating 
may allow them, he went on and took these two pieces of mathematical formalism 
to be as descriptive as the other two solutions. He conjectured that they, too, corre-
spond to a yet-undetected particle: the spin-up and spin-down positron. Essentially, 
his argument was that both spinors ψ1 and ψ2, and the ‘surplus’ ones ψ3 and ψ4, are 
solutions to the same equation, and this makes them formally similar. Thus, since 
the former have a physical correspondent, so could/should the latter. This reasoning 
puts his prediction in the same category as the kind of formal reasoning investigated 
here.

However, note an important dissimilarity between the Dirac case and the cases 
discussed above. In making his prediction, Dirac did not rely on an entirely unprob-
lematic interpretive principle such as  PD. So, although one can say that he, too, 
interpreted the formalism (in a referential way), his interpretation was quite different 
from the interpretation we have encountered above. As we recall, that was an inter-
pretation supported by a widely accepted understanding of the connection between 
the representational and physical properties; so, the dual property that resulted was 

(5)
(

i���� − m
)

� = 0

Fig. 2  A water wave coming from the left passes through two openings  O1 and  O2

17 The Dirac equation is actually even more remarkable in that it implicitly contains the electron’s spin.
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not arrived at in a controversial way at all. By comparison, Dirac’s interpretation18 
was of a different type: a much bolder move, not often used in scientific practice, a 
genuine step in the dark. It can be called a ‘Pythagorean’ interpretation, an apt name 
since it licensed reading the existence of a physical entity directly off the mathemati-
cal formalism.19

5  How formal‑mathematical noncausal explanations work

I have maintained that the quantization of momentum case study presented above 
exemplifies a specific kind of scientific explanation. It is an instance of a formal-
mathematical/noncausal explanation insofar as we

 (i) Identify a dual property,
   and
 (ii) Account for its representational facet (a representational property) in 

mathematical/noncausal terms.

As indicated, such an explanation proceeds in two steps. First, we find a very special 
kind of property: a dual property, whose two facets (the representational and the 
physical) are ‘fused’ together, as it were, by the interpretive principle  PD. Second, 
we formulate a mathematical derivation, hence (I submit) a noncausal explanation, 
of the representational facet of the dual property (i.e., of the representational prop-
erty). Then, given the interpretation linking the representational and the physical 
property, I maintain that we are entitled to say that we have accounted for the physi-
cal property as well. To insist, although the mathematical expression in question is 
a piece of formalism, it is linked to physical reality through a natural interpretation 
ensured by the principle  PD. I stress this link in order to forestall a serious objection: 
the explanatory exercise described here does not take place in a void, and it is not 
a manipulation of empty mathematical symbols; on the contrary, it has immediate 
physical significance.20 Finally, note that this exercise is generalizable. The example 

18 See Bueno (2005), especially his discussion of the role of interpretation of the formalism. Pashby 
(2012) is a more recent analysis.
19 Kragh (1990, 283) labels Dirac’s view as ‘Pythagoreanism’. He also mentions Murray Gell-Mann as 
another physicist who appealed to a similar principle (Kragh, 1990, 272). Gell-Mann alluded on vari-
ous occasions  to a contemporaryversion of Lovejoy’s ‘Principle of Plenitude’ (any genuine possibility 
actualizes at some moment in an infinite time) called by him the ‘Totalitarian Principle’: anything which 
is not (theoretically) prohibited is compulsory. Steiner (1998) is another work where Pythagoreanism is 
thoroughly discussed.
20 To think in analogical terms again, note that it is not as if we try, e.g., to explain facts about the city 
by appealing to facts about the map. The kind of connection relevant here (established by  PD) has a dif-
ferent nature than the (superficial) one between the map and the city; as far as I can tell, none of proper-
ties of the map are dual properties. Recall that these dual properties are rather special; to the best of my 
knowledge, only certain mathematical representations have them, not just any representation (such as a 
geographical map).
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presented here illustrates one (type of) interpretation, i.e., via principle  PD above, 
but I conjecture that others can be envisaged.

A diagram summarizing the dialectic we have followed here may help; see below. 
Overall, we offer a formal-mathematical explanation as to why a ‘composite’ dual 
property holds. The essential fact that the physical property (understood as one facet 
of the dual property) receives a formal-mathematical explanation is indicated by the 
dotted diagonal arrow:

The way to read this diagram is as follows: “a formal-mathematical explanation 
of a dual property is an explanation of a representational property (i.e., of the repre-
sentational facet of the dual property), and thus, since the representational property 
is interpreted as a physical property (vertical arrow down), it is an explanation of a 
physical property (dotted diagonal arrow).”

This diagram has been extracted from the example analyzed above, and it reflects 
its structure. As we recall, the example involved a situation in which what required 
explanation was the existence of some puzzling physical ‘gaps’. Moreover, it should 
be stressed that such type of phenomenon is by no means singular in physics. In 
addition to the quantization of momentum, one could also mention the quantiza-
tion of the energy for the particle on a ring, or the same kind of quantization results 
for a particle in an infinite square well, or for the simple harmonic oscillator, or the 
quantization of intrinsic angular momentum/spin, and so on. Indeed, the example 
we have been dealing with here is not isolated, but a member of a whole family of 
examples. For instance, the energy of the particle of mass m moving on the ring is 
also quantized, and the values are given by the following array of values:

where n = 0,± 1, ± 2, ± 3…
The explanation in this situation is entirely analogous to the one formulated for 

the quantization of the momentum: we identify the same kind of dual property, con-
sisting of a representational property (the discreteness expressed by the mathemati-
cal representation (6)) which receives a natural physical interpretation (via principle 
 PD)—namely, that certain physical configurations do not exist, i.e., those states in 
which the energy of the particle has certain ‘intermediary’ values. In the absence 
of a physical-causal element responsible for these gaps—showing, for instance, that 
such states are annihilated, in the same manner in which a particle interacts with 
its antiparticle—the second step in the formal-mathematical explanation has to be 

(6)En = (n2ℏ2)∕2mr2
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formulated, and it consists in an analogous mathematical argument which elucidates 
why the representational property of (6) holds.

The important idea is that a representational property (of a mathematical 
expression) takes center stage in the explanatory endeavor; then, our main concern 
becomes how to account for it.21 But something else is also remarkable here: both 
elements of this kind of explanation (the merely representational and the physical) 
are directly connected, and in an unproblematic fashion. This is noteworthy, and we 
shall focus on this aspect in the next section. The way we establish the link between 
the abstract formalism and the actual physics is precisely what marks the significant 
difference between the kind of formal-mathematical noncausal explanation identified 
here, and other cases of mathematical-noncausal explanations currently discussed in 
the literature.

6  A comparison

As noted above, the recent analyses of noncausal mathematical explanations appeal 
to a variety of examples—e.g., Lipton’s flying sticks (Lipton, 2004), Baker’s 
cicadas (Baker, 2005), Lyon and Colyvan’s honeycombs (Lyon & Colyvan, 2008), 
Pincock’s Koenigsberg bridges (Pincock, 2007, 2012), Baron’s Levy walks (Baron, 
2014), Lange’s strawberries (Lange, 2017), and so on.22 I do not deny that in these 
explanations mathematics plays an essential role—although I do concur with 
some of Lange’s (and others’) objections that some of these may fail to qualify as 
noncausal. So, while the latter label (‘noncausal’) may not always be warranted, 
I agree that in all these cases of explanations mathematics carries the explanatory 
burden indeed.

Now, I would like to close this paper by pointing out an important comparative 
aspect; namely, that the examples above (those which do qualify as noncausal expla-
nations) rely on mathematics in a different way than do the examples I  introduced 
here. The main difference consists in how one deals with the connection between 
the mathematical formalism and the physical reality. While for my explanations this 
connection is natural and vindicated by scientific practice (principle  PD is, as we 
recall, uncontroversial), such connection is not presented explicitly in these other 
explanations; more importantly, when probed, it turns out to be deeply problematic. 

21 It has been pointed out to me by an anonymous reviewer that the kind of explanation I am trying to 
articulate here has some similarity with the ‘structural’ type of explanation explored by authors such 
as McMullin, Hughes and Clifton in the 1980s and 1990s, and recently investigated, among others, by 
Bokulich (2011), Feline and Dorato (2010) and Feline (2018). I am happy to acknowledge that I am 
not alone in pursuing this line of thinking; yet I also note that I do not share a number of concerns with 
the proponents of structural explanations (e.g., whether fictions can explain, whether explanation satis-
fies counterfactual strictures à la Woodward, etc.) More specifically, in my account the explanandum is 
formulated in terms of some very special properties, the dual properties (‘why does discreetness hold?’), 
while such a notion is missing from these other accounts.
22 See also the examples in Bangu (2012). More examples can be found in Saatsi (2021). Note that this 
section draws on, and develops ideas in, Bangu (2017) and (2021), especially footnote 19.
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The way in which the formal-abstract part of these explanations (the mathematical 
results they employ) is related to the concrete-physical part is left unelucidated.

All these other examples face this problem, and showing this would require ana-
lyzing all of them in detail. Since this is not possible here, I will only consider the 
most recent, and also the simplest, example from the list above: Lange’s much-dis-
cussed explanation as to why Mother cannot distribute 23 uncut strawberries evenly 
to her three children. Crucial to our comparison is that in the explanation of this 
impossibility what bears the explanatory burden is the pure mathematical fact that 
23 is not divisible by 3. A more precise way to formulate this distinctly mathemati-
cal explanation [DME] is as follows:

[DME]
Given two constitutive assumptions, that (A) Mother has 23 strawberries and 

three children, and (S), that the strawberries (and the children) are not modified dur-
ing the distribution process,

Mother’s attempt (D) to distribute evenly 23 uncut strawberries to her 3 children,
must fail because
(M) 23 does not divide evenly by 3.
This, Lange notes, is a ‘because without cause’, and thus the DME above is a 

typical instance of a class of noncausal explanations. For them,

the explanatory power arises in some other way. Even if they happen to appeal 
to causes [(A) above; my note23], they do not appeal to them as causes— they 
do not exploit their causal powers. [Lange 2013: 496] (see also [Lange, 2017: 
20])

More generally, the notion of a ‘distinctively mathematical explanation’, can be 
spelled out in the following terms:

(a) The explanans (M above) is a mathematical truth, and thus it is noncausal
(b) The explanation may mention causal facts (e.g. (A)), yet it is noncausal in so far 

as it does not exploit them,
(c) The explanans constrains the physical setup
(d) The explanandum (D) is a special kind of necessary fact (about the natural 

world)

The issue I signaled above can be re-expressed as follows: it is unclear what is 
the nature of the connection between (M) and (D), i.e., point (c) above. As noted, 
this problem is in fact more general and affects, as far as I can tell, all examples 
mentioned above.24 More specifically, there is no indication in Lange’s theory of 
DMEs as to how the ‘constraint’ that mathematics is supposed to impose, actually 

23 Lange acknowledges “that Mother had 3 children and 23 strawberries were causes of her failure” 
(2017, 19).
24 One (e.g., a platonist) may remark that this difficulty is not novel but a species of the venerable prob-
lem of the interaction between two ‘realms’: mathematical abstraction, on one hand, and physical con-
creteness, on the other. See Steiner (2005) for an elaboration of this problem and for historical references.
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operates. This notion is, I insist, unaccounted for, despite the numerous appearances 
of the word (‘constraint’) in Lange’s works.25 We are told that these mathematical 
constraints “apply to causal processes” (Lange, 2017: xvi, among other places), but 
virtually nothing specific about how they do the constraining (so to speak).

Now, in fairness to Lange, he does mention that the constraints have a “modal” 
and “counterfactual” nature (see e.g., Lange (2017: 10) and other places). Yet in 
making such observations, he only mentions the issue without really addressing it: 
the appeal to such notoriously murky notions (modality and counter-factuality) does 
not actually help here, but makes the clarification a case of obscurum per obscurius. 
He describes what the constraints are meant to be doing, while remaining silent, 
once again, on any details about how they (might possibly) do it. To repeat, the key-
question, left unanswered, is precisely how the explanandum “arises” (Lange 2013, 
496)—or, to be even more precise, how properties of numbers (can) constrain prop-
erties of strawberries and people.

Note, finally, that this objection may not constitute a decisive refutation of 
Lange’s account. Several ways out are still open to him, but the lingering worry is 
that all of them seem to require taking onboard metaphysical commitments which, 
all things considered, should be avoided (and which, as far as I can tell, I do avoid). 
This is so since, in the end, such metaphysical ‘baggage’ can only weaken the cred-
ibility of a theory. For instance, one such commitment may be to a (rather hard to 
defend) empiricist philosophy of mathematics, according to which numbers, and 
facts about them, are not abstract, but concrete, and thus are able to operate con-
straints, by interacting, in the usual sense of the word, with the world. Another meta-
physics to appeal to, and equally unpalatable to many, may be some form of interac-
tionist dualism, in which mathematical entities, while remaining abstract, do affect 
(somehow!) objects and events in the physical world.26

To close, let me address one more way out available to Lange27 which, once 
articulated, may also pose a problem for my strategy. Suppose we ask: don’t 
(virtually) all representational properties of mathematical expressions have 
interpretations as physical properties, in some context or other? Hence, isn’t there 
an abundance of dual properties out there? I claimed that dual properties exist, and 
suggested that they are sparse. But if there are many of them around, then one may 
wonder whether Lange’s strawberry explanation can also be approached in these 
terms as well—and then it, too, can be classified as a noncausal explanation, through 
my own lenses. More precisely, the idea is to propose that ‘indivisibility’ is such 
a dual property; thus, the indivisibility (of 23 by 3) would be a representational 
property, while the indivisibility of the given collection of strawberries into smaller 
collections is a physical property.

25 Skow (2017) also gestures at this issue.
26 As Steiner points out, Descartes faced this problem, so acutely that “the applicability of mathematics 
is coopted by the mind–body problem.” (2005, 626). More recently, Lange (2021) seems to have realized 
that he too faces this problem, and ends up by endorsing a—highly problematic, from my perspective—
metaphysical doctrine, a form of Aristotelianism about mathematics.
27 I thank an anonymous reviewer for it.
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This is a thoughtful suggestion, but I believe it should be resisted. The key point 
against it is that indivisibility (by 3) is a property of the number 23; as such, it is not 
a representational property as understood here, since representational properties are 
properties of mathematical expressions, i.e., of the formulae themselves, and not of 
what they stand for (here, a mathematical object, viz. a number). Of course, a math-
ematical formula can be identified here, and this is ‘23’, which is how we express 
number twenty-three in base 10. As such, the expression/formula ‘23’ does have 
representational properties, e.g., that it consists of two digits. This is a representa-
tional property indeed, but not a dual property, insofar as it seems to lack a physi-
cal interpretation in the sense discussed here. Moreover, if we consider a different 
expression of the number twenty-three, e.g., in base 2, we find this to be ‘10111’. 
This new formula has several representational properties too, e.g., it contains five 
digits, its last three digits are identical, and so on. And yet, once again, none of these 
is a dual property in the sense relevant here.

7  Conclusion

The idea that there can be noncausal/mathematical explanations of physical 
phenomena is admittedly intriguing; it has many and influential opponents (the 
‘exclusivists’), and a few supporters (the ‘pluralists’). The latter have proposed a 
series of examples of such putative explanations, but most of them, if not all, have 
been met with disbelief. It was rightly (I believe) pointed out that, upon closer 
inspection, such explanations turned out to draw on what intuitively seemed like 
causal factors, or (as I objected  here) neglected to account satisfactorily for the 
nature of the connection between the mathematical and the physical. Thus, to 
bolster pluralism, new strategies and examples are welcome. Moreover, the strategy 
and the example(s) pursued here, built around the notion of a dual property, have 
been especially chosen to bypass these objections. If what I have argued so far is 
anywhere close to the mark, then this type of explanation, of dual properties, is most 
securely located outside the domain of causality indeed.
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