
Vol.:(0123456789)

Philosophical Studies (2023) 180:3323–3352
https://doi.org/10.1007/s11098-023-02028-z

1 3

A scoring rule and global inaccuracy measure 
for contingent varying importance

Pavel Janda1 

Accepted: 11 August 2023 / Published online: 27 September 2023 
© The Author(s) 2023

Abstract
Levinstein recently presented a challenge to accuracy-first epistemology. He claims 
that there is no strictly proper, truth-directed, additive, and differentiable scoring 
rule that recognises the contingency of varying importance, i.e., the fact that an 
agent might value the inaccuracy of her credences differently at different possible 
worlds. In my response, I will argue that accuracy-first epistemology can capture the 
contingency of varying importance while maintaining its commitment to additivity, 
propriety, truth-directedness, and differentiability. I will construct a scoring rule — a 
weighted scoring rule — and a global inaccuracy measure that has all four required 
properties and recognises the contingency of varying importance. I will show that 
Levinstein’s and my results coexist without contradicting each other

Keywords  Contingent importance · Weighted scoring rules · Strict propriety · 
Accuracy

1  Introduction

In a recent paper “An objection of varying importance to epistemic utility theory” 
published in Philosophical Studies, Levinstein presented the following challenge 
to accuracy-first epistemology (see Theorem A.4 in Levinstein, 2019, p. 2929). He 
claims that no scoring rule with four properties (additivity, propriety, truth-direct-
edness, and differentiability) usually assumed by accuracy-firsters (see Levinstein, 
2019,  p. 2928 and, for example, compare to Joyce, 2009 or Pettigrew, 2016) rec-
ognises the contingency of varying importance, i.e., the fact that an agent might 
value the inaccuracy of her credences differently at different possible worlds. In my 
response, I will argue that accuracy-first epistemology can accommodate the con-
tingency of varying importance while maintaining its commitment to additivity, 
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propriety, truth-directedness, and differentiability. I will construct an inaccuracy 
measure of individual credences, sX

∗
 , and an inaccuracy measure of entire credence 

functions, Is∗ , that has all four required properties and recognises the contingency of 
varying importance. I will also show that Levinstein’s and my results coexist with-
out contradiction and explain why it is so.

One of the main goals of accuracy-first epistemology is to quantify epistemic 
value of one’s credences (degrees of belief). The idea behind such quantification is 
alethic (Levinstein 2019, p. 2921), i.e., the higher one’s credences in truths and the 
lower one’s credences in falsehoods, the more epistemic value those credences have. 
In this context, one often speaks of the accuracy of one’s credences and assumes 
(which I will follow in this paper) that accuracy is what is ultimately of epistemic 
value (e.g., see Levinstein, 2019,  p. 2920 or Pettigrew’s veritism in Pettigrew, 
2016, p. 8). However, from the formal point of view, it is often more convenient to 
quantify epistemic disvalue (i.e., inaccuracy) rather than epistemic value (i.e., accu-
racy). In this paper, I will quantify inaccuracy and work with measures of inaccu-
racy such as scoring rules; this brings no significant change since the accuracy of 
a credence is the negative of its inaccuracy (see Pettigrew, 2019, p. 141) or is simi-
larly related.1 So, I will say that the lower the credences in truths and the higher the 
credences in falsehoods, the more inaccurate credences one has. I will assume that 
one aims to minimise (expected) inaccuracy of one’s credences since an inaccuracy 
score is a form of penalty.

One immediate question is what properties the measures of inaccuracy should 
have, and a natural follow-up question is whether there exists a measure of inac-
curacy that has all the desired properties. Levinstein’s Theorem A.4 lists four prop-
erties (additivity, propriety, truth-directedness, and differentiability) that accuracy-
firsters usually want measures of inaccuracy to have, but it also adds a fifth property 
to the list, recognising the contingency of varying importance or contingent impor-
tance, for short. This last property, roughly speaking, means that the degree to which 
the inaccuracy of one’s credence in a proposition matters can differ from one propo-
sition to another and from one possible world to another (see Levinstein, 2019, pp. 
2925–2927). To me, this sounds like a desirable additional property. Theorem A.4 
(Levinstein, 2019,  p. 2929),2 however, claims that no scoring rule with the four 
aforementioned properties recognises the contingency of varying importance.

1  When Levinstein discusses accuracy-first epistemology, he often uses an epistemic utility measure U 
(see Levinstein, 2019, pp.  2922–2924). Since, by assumption, an agent wants to maximise (expected) 
utility, Levinstein’s discussion is often presented in the context of maximising one’s (expected) epistemic 
utility. Levinstein, however, expresses U in terms of a measure of inaccuracy I  , i.e., U = 1 − I  (see Lev-
instein, 2019, p. 2924 or Levinstein, 2019, p. 2921, for a construction of a specific utility function, the 
Brier utility). Moreover, in the formulation and the proof of Theorem A.4, he uses I  instead of U. Since 
the central part of my paper works with Theorem A.4 and its proof, this provides additional motivation 
to frame my discussion in terms of minimising expected inaccuracy rather than maximising expected 
epistemic utility.
2  Names in brackets next to results, e.g., theorems, indicate those results’ original author/authors. Some-
times, I will make minor changes, e.g., notational, to such results.
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Theorem A.4  (Levinstein) There does not exist a scoring rule I  that is addi-
tive, proper, truth-directed, and differentiable, such that I  recognises contingent 
importance.

Levinstein discusses possible ways out of the predicament established by The-
orem A.4 (see Levinstein, 2019, p. 2928). He says that accuracy-firsters cannot 
give up truth-directedness and propriety, and one also does not want to deny that 
propositions vary in importance across worlds (see Levinstein, 2019,  p. 2928). 
Levinstein also takes no issue with differentiability (Levinstein 2019,  p. 2924), 
which is a technical property. But he considers denying additivity as a possible 
way out. On the one hand, such a solution sounds possible since non-additive 
measures of inaccuracy exist, as shown in Pettigrew (2022). On the other hand, 
Levinstein himself questions the legitimacy of such a move since, as he says, 
additivity is a nice property (see Levinstein, 2019,  p. 2924). It captures — at 
least in some cases — a reasonable property that the epistemic value of any of 
one’s credences in a given world is separable from the other credences one has in 
that world (Levinstein 2019,  p. 2928). Finally, Levinstein tentatively concludes 
that accuracy-first epistemology cannot capture all facts about epistemic value, 
including the contingency of varying importance, in an attractive way while 
maintaining its commitment to propriety and truth-directedness. Thus, according 
to Levinstein, accuracy-first epistemology fails to capture the entirety of the epis-
temic value of an agent’s credence function (Levinstein 2019, p. 2928).

I am not sure what constitutes an “attractive way” and whether, in general, 
accuracy-first epistemology can capture the entirety of the epistemic value of 
an agent’s credence function. But, in what follows, I will argue that accuracy-
first epistemology can capture the contingency of varying importance while 
maintaining its commitment to additivity, propriety, truth-directedness, and 
differentiability. That is, I will prove that there exists a weighted scoring rule 
sX
∗
 (a weighted inaccuracy measure of individual credences) and a global inac-

curacy measure Is∗ (an inaccuracy measure of entire credence functions) con-
structed from sX

∗
 that possesses each of those properties listed in Theorem A.4. 

But since Theorem A.4 is correct (and there are other similar results, e.g., see 
Ranjan & Gneiting, 2011 or Douven, 2020), the question is how Levinstein’s 
and my results can coexist without contradiction. The central difference between 
Levinstein’s and my approach, which I will elaborate on later, in short, goes as 
follows. Levinstein took a strictly proper inaccuracy measure of individual cre-
dences, added non-constant weights to it (to recognise contingent importance), 
and showed in Theorem A.4 that this combination is not strictly proper. I will 
combine non-constant weights with an inaccuracy measure of individual cre-
dences, i.e., a scoring rule sX , that is not strictly proper such that the whole com-
bination – a weighted scoring rule sX

∗
 – is strictly proper (and has all the other 

properties from Theorem A.4). So, I give up the strict propriety of sX to circum-
vent Theorem A.4 but, in the process, construct sX

∗
 and Is∗ that accommodates all 

five properties listed in Theorem A.4.



3326	 P. Janda 

1 3

The structure of this paper is as follows. In Sect. 1, I introduce terminology and 
notation.3 In Sect. 2, I reconstruct Levinstein’s proof of Theorem A.4. In Sect. 3, I 
define sX

∗
 , construct Is∗ , and show that it has all the properties listed in Theorem A.4. 

In Sect. 4, I discuss an application of sX
∗
 to a concrete example.

2 � Terminology and notation

2.1 � Technical preliminaries

In what follows, assume that Ω is always a finite set of possible worlds � ; this 
assumption is consistent with Levinstein’s account and accuracy-first epistemology 
(e.g., see Levinstein, 2019, p. 2921 or Pettigrew, 2016, p. 222). Let F  be either a 
�-algebra defined on Ω (i.e., a set of subsets of Ω that is closed under countable 
unions, complementation in Ω , and contains Ω ) or a set that is extendible to such a �
-algebra. So, (Ω,F) is a measurable space and let P be a convex set of probabilistic 
measures defined on that space. For a finite Ω , I will write P(�) instead of P({�}) 
for � ∈ Ω and P ∈ P (e.g., see 2.2 in Halpern, 2005 for details).

One can interpret elements of F  (i.e., subsets of Ω ) as propositions; I will use 
capital letters, e.g., X, to denote propositions. A proposition X ∈ F  is modelled 
as a set of possible worlds from Ω (e.g., see Halpern, 2005, p. 12). Let a function 
c ∶ F → [0, 1] be an agent’s credence function; this follows Levinstein (see Levin-
stein, 2019, p. 2921). The value from [0, 1] of one’s credence c(X) in X ∈ F  is one’s 
subjective degree of belief that X is true. For example, assume that X says that it is 
raining. Then, c(X) = 0.8 means that one believes to the degree of 0.8 that it is rain-
ing. Further, let ¬X be a set of � ∈ Ω such that � ∉ X , that is, a set of � where X is 
false. So, X and ¬X partition Ω , i.e., X ∩ ¬X = � and X ∪ ¬X = Ω . Sometimes, for 
the sake of simplicity, I will write only � , X, ¬X , P, or c without specifying that it 
belongs to some Ω , F  , P , or is defined on (Ω,F) , respectively.

One’s ideal credences (i.e., omniscient, perfectly accurate, or vindicated cre-
dences) at a given possible world � assign the maximal degree of belief to all truths 
and the minimal degree of belief to all falsehoods at that � . By convention (e.g., see 
Pettigrew, 2016, p. 2), I will assume that the maximal credence is 1 and the minimal 
credence is 0. That is, the ideal credence is 1 if X is true at � and 0 if X is false at 
� . I will use a characteristic function v�(X) to indicate an ideal credence in X at � , 
where “v” stands for “vindicated” (e.g., see Pettigrew, 2013, p. 899 for similar termi-
nology and notation). So, v�(X) = 1 if � ∈ X and v�(X) = 0 if � ∉ X.

3  I try to stay close to Levinstein’s terminology and notation, but it will sometimes be convenient to 
change it to make later sections of the paper notationally manageable while maintaining clarity and to 
help me compare Levinstein’s definitions and results to other definitions and results in the field. I will 
always point out major divergences from Levinstein’s terminology and the notation that I use.
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2.2 � Inaccuracy measures

Assume, for now, that one wants to quantify the epistemic disvalue of an agent’s 
credence in a single proposition X. Accuracy-firsters use functions called scoring 
rules to measure the inaccuracy of one’s credence in a single proposition at a pos-
sible world � . A scoring rule s takes the omniscient credence in X at � together 
with one’s credence c(X) and returns an inaccuracy score s(v�(X), c(X)) of having 
credence c(X) in X at that � , see (Pettigrew, 2016, p. 36).4 Formally, one can define 
a scoring rule as follows (see Definition I.B.3 in Pettigrew, 2016, p. 86).

Definition 1  (Scoring Rule) A function s ∶ {0, 1} × [0, 1] → [0,∞] such that 
s(0, 0) = s(1, 1) = 0 is a scoring rule.

Note that a particular credence in a proposition gets a score at a world that 
depends only on the value of that credence in that proposition and the truth-value of 
that proposition (i.e., its vindicated credence) at that world. An example of a scor-
ing rule is the squared Euclidean distance: s(v�(X), c(X)) = (v�(X) − c(X))2 , e.g., 
see Pettigrew (2016, pp. 4–5). Sometimes, the requirement that s(0, 0) = s(1, 1) = 0 
is not a part of the definition of a scoring rule, but I will include it since accuracy-
firsters require it anyway. If the context is clear, I will drop the argument of a scoring 
rule and write only s instead of s(v�(X), c(X)).

In Footnote 4 (Levinstein 2019, p. 2924), Levinstein introduces a superscript X, 
which allows one to use different scoring rules to evaluate credences in different 
propositions. Following Levinstein, I will use the same superscript to indicate that a 
given scoring rule is used to score one’s credences in a given proposition. For exam-
ple, I will write sX(v�(X), c(X)) to indicate that s is used to score one’s credences in 
X. But I will assume that one uses the same s to evaluate any of one’s credences in 
a single proposition at any possible world. So, for one’s credence c(X) and any two 
possible worlds �1,�2 ∈ Ω , sX(v�1

(X), c(X)) and sX(v�2
(X), c(X)) use the same s.

One usually has credences in more than a single proposition. If one has credences 
in multiple propositions, one can use scoring rules to measure the inaccuracy score 
of each of one’s individual credences at � and combine those scores into an overall 
(or global) score of one’s credences at that � . Accuracy-firsters (e.g., see Pettigrew, 
2016,  p. 36) call such measures of overall inaccuracy scores “(global) inaccuracy 
measures”. I will use I  to denote such global measures. So, I(c,�) gives an overall 
inaccuracy score of a credence function c (representing all the credences one has) at 
a world � . It will be helpful to use a subscript with I  to indicate what type of scor-
ing rule one uses to construct that global inaccuracy measure. For example, I will 
write Is(c,�) to indicate that one uses a scoring rule – possibly different scoring 
rules for different propositions – satisfying Definition 1 without further qualification. 

4  In his paper, Levinstein uses function w(X), e.g., see Levinstein (2019, p. 2921), instead of v�(X) , but 
I prefer the other notational standard. Levinstein also switches the order of the arguments of s and writes 
sX(c(X),w) , where w stands for a possible world, i.e., the ideal credence in X at a possible world w (e.g., 
see Levinstein, 2019, p. 2924). I will follow Pettigrew’s notation (e.g., see Pettigrew, 2016, p. 86) and 
use s(v�(X), c(X)) instead. I will soon discuss the superscripted X.
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I will sometimes omit the predicate “global” when talking about global inaccuracy 
measures, and, if the context is clear, I will drop the argument and write only Is 
instead of Is(c,�).

2.3 � Four properties

I will use Is and sX for now, but the following definitions also hold for inaccuracy 
measures and scoring rules introduced later. One method of constructing a global 
inaccuracy measure is by adding the inaccuracy scores of one’s individual credences 
at � , which gives an additive inaccuracy measure (compare to Levinstein, 2019, p. 
2924).5

Definition 2  (Additivity) Let (Ω,F) , a credence function c, a world � ∈ Ω , and Defi-
nition 1 be given. A global measure of inaccuracy Is(c,�) is additive just in case 
Is(c,�) =

∑
X∈F sX(v�(X), c(X)).

Truth-directedness captures the alethic idea of accuracy-first epistemology that 
as one’s credence c(X) changes and gets closer to the ideal credence in X at � , the 
inaccuracy score of c(X) will get better, i.e, smaller (e.g., see Levinstein, 2017, p. 
617). A measure of inaccuracy is truth-directed if it always assigns lower inaccuracy 
to one credence function than to another when each credence assigned by the first is 
closer to the ideal credence than the corresponding credence assigned by the second 
(see Pettigrew, 2016,  p. 62); compare Definition  3 to Levinstein  (2019,  p. 2922), 
Joyce (2009, p. 269), or Pettigrew (2016, p. 40).

Definition 3  (Truth-Directedness) Let (Ω,F) , credence functions c and ĉ , a world 
� ∈ Ω , and a global measure of inaccuracy Is be given. If 

	 (i)	 for all X ∈ F  , |v�(X) − c(X)| ≤ |v𝜔(X) − ĉ(X)| , and
	 (ii)	 for some X ∈ F, |v�(X) − c(X)| < |v𝜔(X) − ĉ(X)|,
then Is(c,𝜔) < Is(ĉ,𝜔).

In Definition 3, condition (i) says that, at � , c always assigns credences at least as 
close to the ideal credence v�(X) as ĉ . That is, ĉ(X) ≤ c(X) ≤ 1 for all X true at � and 
0 ≤ c(X) ≤ ĉ(X) for all X false at � . Condition (ii) says that, at � , c assigns a strictly 
higher credence than ĉ to at least one truth or a strictly lower credence than ĉ to at 
least one falsehood. That is, ĉ(X) < c(X) ≤ 1 for some X true at � or 0 ≤ c(X) < ĉ(X) 
for some X false at � . If conditions (i) and (ii) hold, then c gets a strictly lower inac-
curacy score than ĉ at that � according to any legitimate measure of inaccuracy Is.

5  In his paper, Levinstein sometimes calls Is(c,�) a scoring rule (e.g., see Definition A.1 Levinstein, 
2019, p. 2929) and talks about the additivity of scoring rules (e.g., see Theorem A.4 or Definition A.3 
in Levinstein, 2019, p. 2929). In what follows, I will keep calling Is(c,�) a global measure of inaccuracy 
and talk about the additivity of such measures. To predicate that scoring rules – as defined in Definition 1 
– are additive is redundant since it only says that one can add the individual scores to give the overall 
score, which Definition 2 already expresses.
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Differentiability is a technical requirement to which Levinstein pays little atten-
tion (see Levinstein, 2019, p. 2924). Differentiability means that if one differentiates 
sX(v�(X), c(X)) or Is(c,�) with respect to c(X) – where X ∈ F  is in the domain of 
c – that derivative will exist; notice that X in c(X) is fixed while differentiating. Dif-
ferentiability implies continuity (e.g., see Pug, 2015, p. 149), so if sX(v�(X), c(X)) 
and Is(c,�) are differentiable, then they are continuous functions of c(X) and c, 
respectively, for all worlds � . Roughly speaking, continuity means that there are no 
“jumps” in inaccuracy as credences change, so small changes in one’s credence will 
give rise to small changes in inaccuracy (see Pettigrew, 2016, p. 52). I mention this 
relation because accuracy-firsters often require continuity of scoring rules/inaccu-
racy measures (see Pettigrew, 2016, pp. 51–57 for a more detailed discussion).

Finally, strict propriety says that every probability function expects itself to 
be least inaccurate. For a scoring rule, it is defined as follows (see Pettigrew, 
2016, p.66).

Definition 4  (Strictly Proper Scoring Rule) Let (Ω,F) , X ∈ F  , a credence func-
tion c, and Definition 1 be given. A scoring rule sX is strictly proper only if, for all 
0 ≤ p ≤ 1 , it holds that:

is uniquely minimised as a function of c(X) at c(X) = p.

Strict propriety can be generalised for global inaccuracy measures if one has a 
notion of expected inaccuracy for a whole credence function c, which amounts to 
weighting the inaccuracy of c at each world � by probabilistic weights (possibly 
interpreted as one’s credences that a given � is the actual world). Let EPIs(c) stand 
for the expected inaccuracy of a credence function c with respect to an inaccuracy 
measure Is and weights given by a probability function P. Strict propriety of global 
inaccuracy measures means that every probability function P assigns itself the low-
est expected inaccuracy. Definition 5 corresponds to Levinstein’s definition of pro-
priety in Levinstein (2019, p. 2923); Levinstein considers c ∈ P because a stronger 
dominance condition holds for c ∉ P (see Theorem  1 in Predd, 2009,  p. 4788 or 
Pettigrew, 2016,  p. 65), but the inequality in Definition  5 holds for any credence 
function c ≠ P.

Definition 5  (Strictly Proper Global Measure of Inaccuracy) Let (Ω,F) , P , and an 
inaccuracy measure Is be given. Is is strictly proper just in case, for any distinct cre-
dence functions c and P ∈ P , it holds that EPIs(P) < EPIs(c).

Notice that, in Definition 5, the inequality EPIs(P) < EPIs(c) compares only the 
overall expected inaccuracy scores of functions P and c. Beside propriety (what I 
call strict propriety), Levinstein defines strong propriety (see Definition A.1 in 
Levinstein, 2019, p. 2929). Strong propriety makes the overall comparison expressed 
by the inequality EPIs(P) < EPIs(c) but, in addition, looks at the expected inaccu-
racy of single credences. An inaccuracy measure is strongly proper if it expects each 

(1)p sX(1, c(X)) + (1 − p) sX(0, c(X))
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of the credences (not only the whole credence function) to be least inaccurate (Lev-
instein 2019, p. 2929). That is, if one’s optimal credence in X is the probability of 
X, i.e., P(X). To notationally differentiate the global (concerning the whole credence 
function) perspective from the local (concerning credence in a single proposition) 
perspective, let EPs

X(c(X)) =
∑

�∈Ω P(�)sX(v�(X), c(X)) be the expected inaccuracy 
of one’s credence c(X) in a single proposition X with respect to a probability func-
tion P and a scoring rule sX.6

Definition 6  (Strong Propriety) Let (Ω,F) , P , a credence function c, a world 
� ∈ Ω , and Definition  1 be given. An additive global inaccuracy measure 
Is(c,�) =

∑
X∈F sX(v�(X), c(X)) is strongly proper just in case EPIs(c) is uniquely 

minimised at P(X) = c(X) for all X ∈ F  and all probability functions P ∈ P . So, 
given sX , it holds that EPs

X(P(X)) < EPs
X(c(X)) for all X ∈ F  , all probability func-

tions P ∈ P , and all credence functions c such that P(X) ≠ c(X).

2.4 � The contingency of varying importance

The contingency of varying importance is based on two claims. First, varying impor-
tance says that the degree to which the inaccuracy of one’s credence in a proposition 
matters can differ from one proposition to another. In other words, one can value the 
inaccuracy of one’s credence in an important proposition more than in an unimpor-
tant one. For example, having low inaccuracy in propositions concerning fundamen-
tal laws of nature is better than having low inaccuracy in the claim that one wore 
wool socks on January 8th, 2004 (Levinstein (2019,  p. 2925). Secondly, varying 
importance is contingent, according to Levinstein. That is, the degree to which the 
inaccuracy of one’s credence in a proposition matters in one world might differ from 
the degree to which it matters in another world (Levinstein 2019, p. 2926).

Levinstein differentiates two ways in which varying importance is contingent. 
First, the level of importance differs at worlds where a given proposition is true from 
worlds where it is false (Levinstein 2019, p. 2926). Levinstein believes that accu-
racy-firsters can accommodate at least some of these cases; he refers to an approach 
from Merkle and Steyvers (2013) as a possible but complicated solution (see Levin-
stein, 2019, p. 2926). In this paper, I do not discuss these first-type cases since they 
are not the focus of Theorem A.4.

I will exclusively focus on the following second way of recognising the contin-
gency of varying importance: the levels of importance differ at worlds where a given 
proposition has the same truth-value. Levinstein interprets these second-type cases 
as situations when the importance of one proposition depends on the truth-value 
of another proposition (Levinstein 2019,  p. 2926). Consider one of his examples: 
“Bill is obsessed with popular music, but he’s also terribly elitist. He wants to know 
everything about the lives of the singers who are actually the most talented musi-
cians. As it turns out, in one world, Beyoncé meets the cut, but in a very distant one, 

6  EPs
X(c(X)) corresponds to Levinstein’s expected inaccuracy of one’s credence x in X with respect to a 

probability function, e.g., see fPr(x) in Levinstein (2019, p. 2929). Levinstein drops the superscript X in 
calculating the expected inaccuracy of one’s credence in a single proposition.
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she doesn’t. In only some worlds, Bill places high importance on knowing where 
Beyoncé was born, the name of her high school, and the sales figures of her first 
album” (Levinstein 2019, p. 2927). For example, the inaccuracy of Bill’s credence 
about where Beyoncé was born is highly important in the worlds where Beyoncé 
makes the cut and has low importance in the worlds where she does not make it. 
So, how much the inaccuracy of that credence matters changes from one possible 
world to another depending on the truth-value of another proposition, i.e., whether 
Beyoncé makes the cut. To formally capture these levels of importance, let me intro-
duce a weight function �(X,�) that expresses how epistemically valuable it is not to 
be inaccurate (i.e., to be accurate) about X at � and restrict its range to ℝ>0.7

Definition 7  (Weight Function for Varying Importance) Given a space (Ω,F) , let 
�(X,�)∶=F × Ω → (0,∞) be a weight function for some X ∈ F  and � ∈ Ω.

The value of �(X,�) from Definition 7 will be high in worlds where it is impor-
tant to be accurate (i.e., not to be inaccurate) about X and low in worlds where it 
is not that important. The range of a weight function may differ. For example, in 
Holzmann & Klar (2017, pp. 2409–2410), weights are restricted to [0, 1]. But one 
can be less restrictive (e.g., see Theorem 1 in Ranjan & Gneiting, 2011, p. 413). I 
will assume that �(X,�) takes values strictly between 0 and ∞ . So, one always cares 
about the inaccuracy of one’s credence in X at any � ∈ Ω at least a little bit, and the 
inaccuracy of one’s credence in no proposition is infinitely important at any � ∈ Ω . 
One can define a weighted scoring rule by joining a weight function with a scoring 
rule from Definition 1, e.g., compare to Ranjan & Gneiting (2011, p. 413) or Pelenis 
(2014, p. 9) (but I assume a strictly proper scoring rule sX).

Definition 8  (Weighted Scoring Rule) Let (Ω,F) , X ∈ F  , and sX sat-
isfying Definition  1 be given. A weighted scoring rule is a function 
sX
�
∶ {0, 1} × [0, 1] × (0,∞) → [0,∞] such that sX

�
(⋅, ⋅, �) is a scoring rule for each 

weight � ∈ (0,∞).

Definition  8 is a general definition, but, for the purpose of this paper, I will 
restrict Definition  8 to the following interpretation. Let {0, 1} be ideal credences, 
the values from [0, 1] one’s credences, and weights � are values of function �(X,�) 
from Definition  7. Also, I will assume that if 𝜆(X,𝜔) > 𝜆�(X,𝜔) and one’s cre-
dence c(X) is in (0,  1), then sX

𝜆
(v𝜔(X), c(X), 𝜆(X,𝜔)) > sX

𝜆
(v𝜔(X), c(X), 𝜆

�(X,𝜔)) . 
In this paper, weights will scale the score by multiplying it, i.e., 
sX
�
(v�(X), c(X), �(X,�)) = �(X,�)sX(v�(X), c(X)) . One can then define what it 

means to recognise the contingency of varying importance (compare Definition 9 to 
Definition A.3 in Levinstein, 2019, p. 2929). I will write Is� to indicate that one uses 
weighted scoring rules sX

�
 in a global inaccuracy measure.

7  Levinstein did not formally define �(X,�) or restrict its range. But, in Definition 7, I try to follow Lev-
instein’s idea (see Levinstein, 2019, p. 2927) and his use of �(X,�) . For example, he seems to assume 
that constant weights take positive real values (see Levinstein, 2019, p. 2925), so he considers the pos-
sibility of restricting the range to ℝ>0.
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Definition 9  (Recognising Contingent Importance) Assume that (Ω,F) , a credence 
function c, and a weight function �(X,�) from Definition  7 is given. Let then 
Is�

(c,�) =
∑

X∈F �(X,�)sX(v�(X), c(X)) be an additive inaccuracy measure. 
Is�

(c,w) recognises contingent importance just in case there exist worlds �1 and �2 
from Ω and a proposition X from F  such that v�1

(X) = v�2
(X) but �(X,�1) ≠ �(X,�2)

.

For example, let X stand for the proposition that Beyoncé was born in Houston, 
Texas. Let c(X) be Bill’s credence in X and �1,�2 ∈ Ω be two possible worlds. If X 
is true at both �1 and �2 , i.e., v�1

(X) = v�2
(X) , then 

sX(v�1
(X), c(X)) = sX(v�2

(X), c(X)) . But suppose that Beyoncé makes the cut only at 
�1 and not at �2 . It means that, to Bill, the inaccuracy of his credence in X matters 
more at �1 than at �2 , that is, 𝜆(X,𝜔1) > 𝜆(X,𝜔2) . Consequently, 
𝜆(X,𝜔1)s

X(v𝜔1
(X), c(X)) > 𝜆(X,𝜔2)s

X(v𝜔2
(X), c(X)).

3 � The proof and idea behind Theorem A.4

It will be useful to briefly discuss Levinstein’s proof of Theorem A.4 to understand 
the idea behind it. Following Levinstein (see Levinstein, 2019, p. 2929), let me for-
mulate a reductio assumption and then use it to prove that Is� is not a strictly proper 
inaccuracy measure.8

Assumption 1  (Reductio Assumption for Is� ) Suppose Is� is additive, strictly proper, 
truth-directed, differentiable, and recognises contingent importance.

First let me note that Levinstein makes two assumptions about sX in sX
�
 that are 

important for understanding his proof of Theorem A.4. First, sX is differentiable, see 
Levinstein, 2019, p. 2930). Secondly, sX is strictly proper (for example, he considers 
the strictly proper Brier score, see Levinstein, 2019, p. 2927).9 So, let me make the 
same assumptions about sX in sX

�
.

Assumption 2  (Assumptions about sX in sX
�
 ) Given Definition 8, a scoring rule sX(v�(X), c(X)) 

in a weighted scoring rule sX
�
(v�(X), c(X), �(X,�)) = �(X,�)sX(v�(X), c(X)) is strictly 

proper and differentiable with respect to its second argument, c(X).

8  Levinstein formulates his reductio assumption in terms of a scoring rule I  and shows that I  is not 
proper (see Levinstein, 2019,  pp.2929–2930). Following my notational standards and terminology in 
Assumption 1 does not affect the final result and its message.
9  If one wants further confirmation of this second assumption, see Subsection 3.1 in Levinstein (2019, p. 
2925), where Levinstein claims that accuracy-first epistemology can accommodate a situation when the 
weights of importance for each proposition X are constant, i.e., �(X,�) is a constant function with respect 
to X at any � (see also the first paragraph of Levinstein, 2019, p. 2926). This means that if X is important 
in one world just as it is important in every other world, there is no clash between what I call strict pro-
priety and the contingency of varying importance. One can check that there is no such clash if and only if 
scoring rules for individual credences are strictly proper.
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By Lemma A.1 in Schervish et  al. (1989,  p. 1874) (here stated as Lemma  1), 
strictly proper scoring rules are truth-directed. By Assumption 2, sX is truth-directed, 
i.e., sX(1, c(X)) is strictly decreasing in c(X) and sX(0, c(X)) is strictly increasing in 
c(X).

Lemma 1  (Schervish) Let (g0, g1) be a (strictly) proper scoring rule, possibly attain-
ing infinite values on the closed interval [0, 1]. Then, g1(x) is (strictly) decreasing in 
x and g0(x) is (strictly) increasing in x.

Let me now discuss Levinstein’s proof of Theorem A.4. Following Levinstein 
(see Levinstein, 2019, p. 2930 for the same step), let me fix a probability function 
Pr defined on some (Ω,F) such that 0 < Pr(X) < 1 for X ∈ F  and use Pr to define 
another probability function, Pr′.

Definition 10  Given (Ω,F) , �1,�2 ∈ Ω , and Pr ∈ P , define Pr′ as follows:

where 𝜖 < min{Pr(𝜔1),Pr(𝜔2), 1 − Pr(𝜔1), 1 − Pr(𝜔2)} to guarantee that Pr� ∈ P.

Notice that if X is true (or false) at both �1 and �2 , then Pr(X) = Pr�(X) (and 
Pr�(¬X) = Pr(¬X) ) since for a finite number n of � ∈ Ω , one has that:

If, following Definition  9, weighting strictly proper sX by non-constant weights 
�(X,�) preserves strict propriety, then the expected inaccuracy of c(X) with respect 
to sX

�
 and Pr′ , i.e., EPr�s

X
�
(c(X)) , is minimised at c(X) = Pr�(X) . Similarly, EPrs

X
�
(c(X)) 

is then minimised at c(X) = Pr(X) . So, both expectations are minimised at the same 
point since Pr(X) = Pr�(X) . But Levinstein’s Theorem A.4 (see Theorem 1 below) 
shows that EPr�s

X
�
(c(X)) and EPrs

X
�
(c(X)) are not minimised at the same point if one 

assumes the contingency of varying importance. Thus, Is� is not strictly proper, 
which contradicts Assumption 1.

Theorem 1  (Levinstein) Let Is� from Assumption 1 and Assumption 2 be given. If the 
contingency of varying importance holds, then EPr�s

X
�
(c(X)) and EPrs

X
�
(c(X)) are not 

minimised at the same point. Thus, sX
�
 and Is� is not strictly proper.

Pr�(�) =

⎧
⎪⎨⎪⎩

Pr(�1) + � � = �1

Pr(�2) − � � = �2

Pr(�) otherwise,

Pr�(X) =
∑
�∈X

Pr�(�) = Pr�(�1) + Pr�(�2) +⋯ + Pr�(�n)

= [Pr(�1) + �] + [Pr(�2) − �] +⋯ + Pr(�n) =
∑
�∈X

Pr(�) = Pr(X).
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4 � Constructing sX
∗

 and I
s∗

4.1 � Minimisers for weighted scoring rules

By Theorem 1, EPrs
X
�
(c(X)) and EPr�s

X
�
(c(X)) have different minimisers if the con-

tingency of varying importance holds. It will be useful for the construction of sX
∗
 to 

know what those minimisers are. But, instead of finding minimisers for EPrsX� (c(X)) 
and EPr�s

X
�
(c(X)) separately, let me find one for a general expectation EPsX� (c(X)) , so 

I can overlook the use of any specific weight function (Definition 7 still holds) or 
a probability function. Theorem  2 follows from restricting Gneiting and Ranjan’s 
Theorem  1 in Ranjan & Gneiting (2011,  pp. 413–414) to finite cases. The proof 
strategy is the same for both the continuous and discrete cases. Take weighted scores 
and find the normalising constant (I call it � ). Since � is a constant, it can be taken 
out or placed inside the sums and integrals with no issue and used to find the result.

Theorem 2  (Gneiting and Ranjan) Let (Ω,F) , X ∈ F  , a credence function c, P ∈ P , 
and Assumption  2 be given. EPs

X
�
(c(X)) is uniquely minimised at 

c∗(X) =
∑

�∈X P(�)�(X,�)∑
�∈Ω P(�)�(X,�)

.

The strict propriety of sX in sX
�
 (and of s¬X in s¬X

�
 ) means that c∗(X) (and c∗(¬X) ) 

are unique minimisers, where, by Theorem 2, c∗(¬X) =
∑

�∈¬X P(�)�(¬X,�)
∑

�∈Ω P(�)�(¬X,�)
 . In what follows, 

the existence and the uniqueness of minimisers c∗(X) and c∗(¬X) from Theorem 2 is 
an important corollary of Assumption 2 and Definition 7. But, in general, one must 
be careful because uniqueness might not hold, or a minimiser might not exist, for 
example, when �(X,�) is always 0; see (Brehmer & Gneiting, 2020) for further dis-
cussion about the uniqueness and existence of minimisers. Since c∗(X) and c∗(¬X) 
represent one’s optimal credences, one might want to know under what conditions 
they are probabilistic. The numeric bound and the probability of the entire space and 
the empty set follow directly.

Lemma 2  It holds that 0 ≤ c∗(X) ≤ 1 (and 0 ≤ c∗(¬X) ≤ 1 ) and if X = Ω , then 
c∗(X) = 1 (and c∗(¬X) = 0).

Additivity of c∗(X) and c∗(¬X) does not come so easily and requires, for example, 
the following additional assumption.

Assumption 3  Given (Ω,F) , �(X,�i) = �(¬X,�i) for any X ∈ F  and �i ∈ Ω.

Assumption 3 says that, at any � ∈ Ω , an agent values the inaccuracy of her cre-
dence in any X ∈ F  to the same degree as the inaccuracy of her credence in ¬X . For 
example, assume that X says that it is raining. According to Assumption 3, if it is 
raining at � , one values the closeness of her credence in X to the ideal credence of 1 
to the same degree as the closeness of her credence in ¬X to the ideal credence of 0. 
Notice that Assumption 3 considers weights of importance for two propositions (X 
and ¬X ) and requires that those weights are equal at the same � , which I indicated 
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by the subscript i. It does not require the weights of importance for X and ¬X to be 
the same across different possible worlds. So, Assumption 3 does not conflict with 
the contingency of varying importance from Definition 9, which considers weights 
for a single proposition and requires that those weights are different at different pos-
sible worlds.

Lemma 3  Given Assumption 3, then c∗(X) + c∗(¬X) = 1.

4.2 � Scoring rule sX
∗

I will now use the minimiser c∗(X) from Theorem 2 to define a function sX
∗
 and prove 

that sX
∗
 is a strictly proper, truth-directed, and differentiable weighted scoring rule.10

Definition 11  Let (Ω,F) , X ∈ F  , P ∈ P , sX satisfying Definition 1, �(X,�) satisfy-
ing Definition 7, and a credence function c be given. Let c∗(X) be a unique mini-
miser with respect to X, P, and a weighted scoring rule sX

�
 satisfying Definition 8. A 

function sX
∗
 for one’s credence c(X) is then defined as follows:

and

where � = c(X) − P(X) and

By Definition 11, the score assigned by sX
∗
 to c(X) is the score that sX assigns 

to a value of c∗(X) + �k(�) that is then weighted by �(X,�) . Notice that one can 
rewrite c∗(X) + �k(�) as k(�)c(X) + [c∗(X) − P(X)k(�)] , which is a linear function 
of c(X). So, formally, (0, c∗(X) + �k(�)) and (1, c∗(X) + �k(�)) are results of an aff-
ine transformation of (v�(X), c(X)) , see Proposition 1 for details. The product �k(�) 
determines the degree of punishment one receives for not aligning one’s credence 
with a probability function P. That is, the more c(X) diverges from P(X), the big-
ger inaccuracy score sX

∗
 assigns to c(X). So, sX

∗
 is always defined with respect to 

some P ∈ P.

sX
∗
(0, c(X), �(X,�)) = �(X,�)sX(0, c∗(X) + �k(�))

sX
∗
(1, c(X), �(X,�)) = �(X,�)sX(1, c∗(X) + �k(�)),

k(𝜖) =

⎧
⎪⎨⎪⎩

1−c∗(X)

1−P(X)
if 𝜖 > 0,

c∗(X)

P(X)
if 𝜖 < 0,

1 if 𝜖 = 0.

10  Function sX
∗
 in Definition  11 is not a random choice. It is a modification of a scoring rule defined 

by Gneiting and Brehmer in their Theorem  1 (see Brehmer & Gneiting, 2020,  p. 660). Their general 
approach tells us how to properise scoring rules (including the weighted scoring rules), so truth-telling 
becomes an optimal strategy (Brehmer and Gneiting (2020, p. 660). One needs to modify Gneiting and 
Brehmer’s properisation strategy to be applicable to accuracy-first epistemology, which is my goal with 
Definition  11. My modification is not a unique option, but it works.
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Note that function k(�) in Definition 11 (and thus sX
∗
 ) is not well-defined in the 

following two cases: (1). k(�) = c∗(X)

P(X)
 and P(X) = 0 or (2). k(�) = 1−c∗(X)

1−P(X)
 and 

P(X) = 1 . Lemma  4 shows that these two cases cannot happen, so sX
∗
 is always 

well-defined on its respective domain.

Lemma 4  If P(X) = 0 , then k(�) = 1 − c∗(X) or 1 and if P(X) = 1 , then k(�) = c∗(X) 
or 1.

By Definition 11, sX in sX
∗
 satisfies Definition 1, i.e., sX = {0, 1} × [0, 1] → [0,∞] . 

Clearly, the affine transformation maps the vindicated credence 0 to 0 and 1 to 1, so the 
set {0, 1} is preserved. In other words, Definition 11 changes nothing about the assump-
tion that 0 and 1 are the vindicated credences in false and true propositions, respectively. 
But I need to check that the values of c∗(X) + �k(�) always come from the unit interval.

Lemma 5  Any value of c∗(X) + �k(�) comes from [0, 1].

If one pairs sX(v�(X), c∗(X) + �k(�)) with a weight function �(X,�) from Defini-
tion 7, one forms a weighted scoring rule sX

∗
 that is strictly proper, truth-directed, 

and differentiable with respect to c(X) such that the fully accurate credences get 
the zero inaccuracy score.

Proposition 1  sX
∗
 is a strictly proper, truth-directed, continuous, and differentiable 

(with respect to c(X)) weighted scoring rule such that sX
∗
(0, 0) = sX

∗
(1, 1) = 0.

There is an important difference between sX
∗
 and sX

�
 from Theorem A.4 (i.e., 

sX
�
 paired with Assumption 2). By Assumption 2, sX in sX

�
 from Theorem A.4 is 

strictly proper and differentiable, but, by Theorem 1, sX
�
 is not strictly proper. In 

contrast, by Proposition 1, sX
∗
 is strictly proper but, by the following Lemma 6, 

sX in sX
∗
 is not strictly proper. In other words, from Assumption 2, I only keep the 

technical requirement that sX is differentiable.

Lemma 6  sX in sX
∗
 is not strictly proper.

In Lemma 5 and Proposition 1, I showed that the values of c∗(X) + �k(�) always 
come from the unit interval such that if c(X) = 1 , then c∗(X) + �k(�) = 1 and if 
c(X) = 0 , then c∗(X) + �k(�) = 0 . Given these results, one might wonder about addi-
tivity. Assuming that c(¬X) − P(¬X) = �� , a sufficient and necessary condition for 
the additivity of c∗(X) + �k(�) and c∗(¬X) + ��k(��) is that one’s credence function is 
additive, i.e., c(X) + c(¬X) = 1 ; see point 4 of Lemma 7.

Lemma 7  Given Assumption 3, P ∈ P , and c(¬X) − P(¬X) = �� , then 

1.	 � = −�� iff c(X) + c(¬X) = 1,
2.	 if c∗(X) = 0 , then P(X) = 0 and if c∗(¬X) = 0 , then P(¬X) = 0,
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3.	 if c∗(X) = 1 , then P(X) = 1 and if c∗(¬X) = 1 , then P(¬X) = 1 , and
4.	 [c∗(X) + �k(�)] + [c∗(¬X) + ��k(��)] = 1 iff c(X) + c(¬X) = 1.

Finally, assume that a weighted scoring rule sX
�
 (e.g., the one from Theorem 1) 

is strictly proper, i.e., let the value of �(X,�) be constant for the given X at any � . 
Then, sX

∗
 assigns the same inaccuracy score to one’s credence c(X) as that strictly 

proper sX
�
 (see Brehmer & Gneiting, 2020, p. 660 for a more general discussion).

Lemma 8  (Gneiting and Brehmer) If sX
�
 is strictly proper, then sX

∗
 and sX

�
 assign the 

same score to one’s credence c(X).

4.3 � Global inaccuracy measure I
s∗

I will now use sX
∗
 from Definition 11 to construct a global inaccuracy measure Is∗ 

and show that Is∗ has all the properties listed in Theorem A.4, without reaching a 
contradiction.

Proposition 2  Is∗ is additive, proper (strictly and strongly), truth-directed, differenti-
able, and recognises the contingency of varying importance.

Let me start with additivity which follows directly from the assumption that one 
can add weighted scores (e.g., see Levinstein, 2019, p. 2929) and the fact that sX

∗
 is 

a weighted scoring rule. Differentiability also follows easily. By Proposition 1, sX
∗
 

is differentiable with respect to c(X) and summing differentiable functions preserves 
differentiability, so an additive Is∗ is differentiable. Since differentiability implies 
continuity, Is∗ (c,�) is a continuous function of c for all worlds � . Let me now move 
to strict/strong propriety and truth-directedness.

Lemma 9  (Strict and Strong Propriety) Is∗ is strongly and strictly proper, thus 
truth-directed.

Finally, consider the contingency of varying importance. I will show that, 
EPrs

X
∗
(c(X)) and EPr�s

X
∗
(c(X)) have a common minimiser while recognising the con-

tingency of varying importance from Definition 9.

Lemma 10  (Contingency of Varying Importance) Given Is∗ , EPrs
X
∗
(c(X)) and 

EPr�s
X
∗
(c(X)) are uniquely minimised at the same point.

So, the contingency of varying importance does not clash with strict propriety (or 
any other property listed in Proposition 2). Therefore, Proposition 2 holds without 
contradiction.
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5 � Example and discussion

Let me show how some of the abstract results work on a concrete example. I will 
consider the expected total inaccuracy discussed by Kierland and Monton in Kier-
land and Monton (2005). Kierland and Monton introduced expected total inaccu-
racy as a possible expected-inaccuracy-minimising approach to solving the Sleeping 
Beauty problem. The Sleeping Beauty problem has many variations, but following 
the major part of Kierland and Monton (2005), I will consider its basic version that 
goes as follows11: “On Sunday Sleeping Beauty is put to sleep, and she knows that 
on Monday researchers will wake her up, and then put her to sleep with a mem-
ory-erasing drug that causes her to forget that waking-up. She also knows that the 
researchers will then flip a fair coin; if the result is Heads, they will allow her to 
continue to sleep, and if the result is Tails, they will wake her up again on Tuesday. 
Thus, when she is awakened, she will not know whether it is Monday or Tuesday. 
On Sunday, she assigns probability 1

2
 to the proposition H that the coin lands Heads. 

What probability should she assign to H on Monday, when she wakes up?” (Kier-
land & Monton (2005, p. 389). Note that there are three moments at which Beauty 
can be awake: 1.) Monday and Heads, 2.) Monday and Tails, and 3.) Tuesday and 
Tails. In other words, there is one awakening when Heads (i.e., H is true) and two 
awakenings when Tails (i.e., H is false).

To find the expected total inaccuracy SET (H) of Beauty’s credence c(H) in H, 
first, find the inaccuracy score of c(H) for each awakening. Kierland and Monton use 
the Brier score (see Kierland & Monton, 2005, p. 385) to find the inaccuracy score 
of c(H) for each awakening, and I will do the same. Then, weight those scores by the 
probability of reaching the given awakening and sum those weighted scores, which 
gives the following formula to minimise (see Kierland & Monton, 2005, p. 389):

where 1
2
 is the probability of Heads/Tails since the coin is fair by assumption. Note 

that the number of awakenings where H is true/false serves as a weight. Since there 
is one awakening where H is true, (1 − c(H))2 is weighted by 1, and (0 − c(H))2 is 
weighted by 2 since H is false for two awakenings. Since the Brier score is strictly 
proper and SET (H) uses unequal positive weights, by Levinstein’s Theorem A.4, the 
weighted Brier score used in SET (H) is not strictly proper. One can confirm this by 
showing that SET (H) is minimised at c(H) =

1

3
 instead of c(H) =

1

2
 (see Kierland & 

Monton, 2005, p. 389). But if the weights were equal/constant, then SET (H) would 
be minimised at c(H) =

1

2
 (see footnote 9 or Ranjan & Gneiting, 2011, p. 413 for 

details).

(2)
SET (H) =

1

2
(1 − c(H))2 +

1

2

[
(0 − c(H))2 + (0 − c(H))2

]

=
1

2
(1 − c(H))

2
+ 2

1

2
(0 − c(H))

2
,

11  So, for example, I assume that only one round is played (i.e., a fair coin is flipped only once), there are 
no Beauty’s perfect duplicates, etc. See Elga (2000) for the original formulation of the problem.
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I will now consider SET (H) but use it with sX
∗
 from Definition 11. Let X be H and 

S∗
ET
(H) be SET (H) using sH

∗
 . I assume that sH in sH

∗
 works as the Brier score. So, for 

example, sH(1, c∗(H) + �k(�)) = (1 − [c∗(H) + �k(�)])2 . If �H is a world where 
H is true and �¬H is a world where H is false, then weights are �(H,�H) = 1 and 
�(H,�¬H) = 2 (i.e., one counts centres within the given uncentred world). We know 
that SET (H) is minimised at c(H) =

1

3
 , so c∗(H) =

1

3
 . For the sake of notational sim-

plicity, let Beauty’s credence in Heads c(H) = x , so � = x − P(H) . By Definition 11, 
if P(H) =

1

2
 (i.e., the coin is fair), then the values of k(�) in our example are as follows:

If sH
∗

 is strictly proper, then S∗
ET
(H) will be minimised at c(H) =

1

2
 for a fair coin. 

So, my goal is to show that for each of the three values of k(�) , S∗
ET
(H) is minimised 

at c(H) =
1

2
 . I will go case by case, but to avoid repetition, let me make a general 

observation for x = c(H) and � = x − P(H) = x −
1

2
:

I will now crunch the numbers for the three cases (i.e., 𝜖 > 0 , 𝜖 < 0 , and � = 0 ). For 
𝜖 > 0 , one has:

One can now easily verify that S∗
ET
(H) is minimised at c(H) = x =

1

2
 . For 𝜖 < 0 , one 

has:

One can easily verify that S∗
ET
(H) is again minimised at c(H) = x =

1

2
 . Finally, for 

� = 0 , one has:

k(𝜖) =

⎧
⎪⎪⎨⎪⎪⎩

1−c∗(X)

1−P(X)
=

1−
1

3

1−
1

2

=
4

3
if 𝜖 > 0,

c∗(X)

P(X)
=

1

3

1

2

=
2

3
if 𝜖 < 0,

1 if 𝜖 = 0.

S∗
ET
(H) = P(H)sH

∗
(1, x, �(H,�H)) + (1 − P(H))sH

∗
(0, x, �(H,�¬H))

=
1

2
�(H,�H)s

H(1, c∗(H) + �k(�)) +
1

2
�(H,�¬H)s

H(0, c∗(H) + �k(�))

=
1

2
sH
(
1,

1

3
+

(
x −

1

2

)
k(�)

)
+ sH

(
0,

1

3
+

(
x −

1

2

)
k(�)

)
.

S∗
ET
(H) =

1

2
sH
(
1,

1

3
+

(
x −

1

2

)
4

3

)
+ sH

(
0,

1

3
+

(
x −

1

2

)
4

3

)

=
1

2

(
1 −

(
4

3
x −

1

3

))2

+

(
0 −

(
4

3
x −

1

3

))2

=
8x2 − 8x + 3

3
.

S∗
ET
(H) =

1

2
sH
(
1,

1

3
+

(
x −

1

2

)
2

3
) + sH

(
0,

1

3
+

(
x −

1

2

)
2

3

)

=
1

2

(
1 −

2

3
x
)2

+

(
0 −

2

3
x
)2

=
4x2 − 4x + 3

6
.

S∗
ET
(H) =

1

2
sH
(
1,

1

3

)
+ sH

(
0,

1

3

)
=

1

2

(
1 −

1

3

)2

+

(
0 −

1

3

)2

.
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For a variable z ∈ ℝ , we know that 1
2
(1 − z)2 + (0 − z)2 is minimised at z = 1

3
 (one 

can also check Eq. (2)), so 1
2
(1 −

1

3
)2 + (0 −

1

3
)2 gives the minimum. This is achieved 

for � = 0 , i.e., 1
2
= P(H) = c(H) = x , as required. I have verified that S∗

ET
(H) is always 

minimised at c(H) = 1
2
 , as it should be if one uses a strictly proper scoring rule and a 

fair coin.
Note that I used Levinstein’s Theorem A.4 to show that the weighted Brier 

score in SET (H) is not strictly proper and Definition 11 to show that sH
∗

 is strictly 
proper without reaching any contradiction along the way. SET (H) uses the Brier 
score, a strictly proper scoring rule, and unequal positive weights. In this case, 
Levinstein’s Theorem A.4 applies and says that the weighted Brier score is not 
strictly proper. My results about Definition  11 say nothing about a situation in 
which one weights a strictly proper scoring rule (well, Theorem  2 agrees with 
Theorem A.4). My result says that one can use unequal positive weights with a 
scoring rule such that the combination is strictly proper. But it is not done by 
weighting a strictly proper scoring rule. It is done by weighting a scoring rule that 
is not strictly proper. Specifically, note that strictly proper sH

∗
 is a combination of 

weights and a scoring rule sH . But sH is not strictly proper. To see it, consider a 
situation with 𝜆(X,𝜔H) = 𝜆(H,𝜔¬H) > 0 , so weights are positive and equal:

If sH is strictly proper, then equal positive weights will not interfere with its strict 
propriety (see footnote 9 or Ranjan & Gneiting, 2011, p. 413 for details). Differenti-
ating Eq. (3) with respect to x and setting it equal to 0 gives:

Separating x gives (note that k(�) ≠ 0 , so the following equation is well-defined):

which corresponds to the formula c(X) = p−c∗(X)
k(�)

+ p from Lemma 6, where X is H and 

p = P(H) . By plugging values k(�) = 4

3
 , k(�) = 2

3
 , and k(�) = 1 into Eq. (4), one gets 

that c(H) =
5

8
 , c(H) =

3

4
 , and c(H) =

2

3
 , respectively. But we know, by assumption, 

that P(H) =
1

2
 . So, there is no value of k(�) for which S∗

ET
(H) with equal weights is 

minimised at c(H) = P(H) , which would be the case if sH was strictly proper. Hope-
fully, this clarifies the difference between Levinstein’s result and my approach and 
why they coexist without contradicting each other.

(3)

S∗
ET
(H) =

1

2
sH
∗
(1, x, �(H,�H)) +

1

2
sH
∗
(0, x, �(H,�¬H))

=
1

2
�(H,�H)

[(
1 −

[
1

3
+

(
x −

1

2

)
k(�)

])2

+

(
1

3
+

(
x −

1

2

)
k(�)

)2]
.

�S∗
ET
(H)

�x
=

1

2
�(H,�H)

(
4k(�)2x − 2k(�)2 −

2k(�)

3

)
= 0.

(4)c(H) = x =
3k(�) + 1

6k(�)
=

1

2
−

1

3

k(�)
+

1

2
=

P(H) − c∗(H)

k(�)
+ P(H),
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Lastly, one of the reviewers expressed a worry about a case when P is not the 
agent’s credence function but is still an argument of sX

∗
 . This is potentially worrying, 

the reviewer says, because in many applications of scoring rules, we take the dis-
tribution P with respect to which expected inaccuracy is calculated to be the “true” 
distribution. One reason to require strict propriety is so that the expected value of a 
scoring rule measuring the inaccuracy of an agent’s credence function is minimised 
when that credence function matches the true data-generating distribution. In such 
a context, when we define a scoring rule such that the distribution with respect to 
which its expected value is calculated is also an argument of that scoring rule, we 
effectively assume that we have access to the true data-generating distribution when 
evaluating accuracy. But this is not always the case, such that our ability to actu-
ally estimate the expected value of such a scoring rule (i.e., sX

∗
 ) may be significantly 

limited.
Given the discussed example, my understanding is that the reviewer is worried 

about what happens if one does not know the coin’s bias (i.e., P(H), which one can 
see as a true data-generating distribution) since it is needed for constructing sH

∗
 . 

First, let me say that, in the context of accuracy-first epistemology, P is often inter-
preted as one’s probabilistic credence function (e.g., see Pettigrew, 2016, p. 24 or 
Pettigrew, 2016, pp.189–190). But more is needed to answer the point fully. I would 
argue that what limits our ability to estimate the expected value is that one formu-
lates expectation with respect to an unknown probability function P rather than P 
being an argument of sX

∗
 . For example, assume that, in our example, P(H) is the 

chance of the coin landing Heads, and one does not know the value of P(H). Then, 
SET (H) = P(H)(1 − c(H))2 + 2(1 − P(H))(0 − c(H))2 is minimised at c(H) =

P(H)

2−P(H)

.12 So, one is limited in estimating the expected value independently of sH
∗

 (since 
SET (H) does not use it). But note that, for equal weights, SET (H) is minimised at 
c∗(H) = P(H) whether or not one knows the value of P(H). Similarly, S∗

ET
(H) is min-

imised at c(H) = P(H) whether or not one knows the value of P(H). For 
c∗(H) =

P(H)

2−P(H)
 and unknown P(H), one can still find the values of k(�):

One can now plug these values into S∗
ET
(H) , but for the sake of brevity, let me write 

the formula only for k(�) = 2

2−P(H)
 (and leave the rest to the reader):

k(𝜖) =

⎧
⎪⎪⎨⎪⎪⎩

1−
P(H)

2−P(H)

1−P(H)
=

2

2−P(H)
if 𝜖 > 0,

P(H)

2−P(H)

P(H)
=

1

2−P(H)
if 𝜖 < 0,

1 if 𝜖 = 0.

S∗
ET
(H) = P(H)

(
1 −

2x − P(H)

2 − P(H)

)2

+ 2(1 − P(H))

(
2x − P(H)

2 − P(H)

)2

.

12  Note that c(H) = P(H)
2−P(H)

 , where 2 − P(H) = P(H) + 2(1 − P(H)) is the normalising constant. It is a con-

crete instance of c∗(X) =
∑

�∈X P(�)�(X,�)
∑

�∈Ω P(�)�(X,�)
 from Theorem 2.
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Taking the derivative with respect to x gives 8(x−P(H))

2−P(H)
 , which is minimised at 

x = c(H) = P(H) . For k(�) = 1

2−P(H)
, the derivative w.r.t. x gives 2(x−P(H))

2−P(H)
 minimised 

at c(H) = P(H).
Note that Gneiting and Brehmer in Brehmer and Gneiting (2020) do not use P 

as an argument in their properisation approach. But they use P to find a minimiser 
that I have called c∗(X) , which is an argument in their properisation approach (see 
Brehmer & Gneiting, 2020, p. 660). So, knowledge of P plays a crucial role also 
in their approach and work outside accuracy-first epistemology. That said, I admit 
that requiring P(X) and c∗(X) to construct and evaluate sX

∗
 and its expected value is a 

demanding assumption. There may be a way around it, but as it stands now, I do not 
know how to do it.

Let me briefly comment on the existence and uniqueness assumption of mini-
miser c∗(X) . In our example, c∗(H) exists and is unique. But, in general, it is not 
guaranteed that c∗(X) exists or is unique (see Brehmer & Gneiting, 2020, especially 
Sect. 3). There is a need for an argument justifying this assumption in the context 
of accuracy-first epistemology. Accuracy-first epistemology already uses assump-
tions that make such an argument possible. For example, scoring rules are generated 
by strictly convex functions (e.g., see Pettigrew, 2016, pp. 84–85) and are bounded 
from below (i.e., ideal credences get the zero inaccuracy score, e.g., see Definition 1 
or (Schervish et al., 2009, p. 206) for details. But to formulate this argument prop-
erly, one needs a formal set-up that is too complicated to start here and now, so I will 
leave this question open in this paper.

6 � Conclusion

Levinstein argued that there does not exist a scoring rule that is additive, proper, 
truth-directed, and differentiable such that it recognises the contingency of vary-
ing importance (see Theorem A.4 in Levinstein, 2019, p. 2929). He concluded that 
accuracy-first epistemology could not capture the contingency of varying impor-
tance while maintaining its commitment to propriety and truth-directedness. In this 
paper, I argue that accuracy-first epistemology can capture the contingency of var-
ying importance while maintaining its commitment to additivity, propriety, truth-
directedness, and differentiability. I argue that there exists a strictly proper, truth-
directed, and differentiable weighted scoring rule sX

∗
 (an inaccuracy measure of 

individual credences) that recognises the contingency of varying importance and a 
global inaccuracy measure Is∗ (an inaccuracy measure of entire credence functions) 
that also has all the required properties. That is, Is∗ is truth-directed, differentiable, 
proper (strictly and strongly), additive (which, avoiding redundancy, I predicate only 
about global inaccuracy measures), and it recognises the contingency of varying 
importance. I also discuss how Levinstein’s and my results coexist without contra-
dicting each other and why it is so.
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A proofs for Sect. 2 (the proof and idea behind Theorem A.4)

Theorem 1  (Levinstein) Let Is� from Assumption 1 and Assumption 2 be given. If the 
contingency of varying importance holds, then EPr�s

X
�
(c(X)) and EPrs

X
�
(c(X)) are not 

minimised at the same point. Thus, sX
�
 and Is� is not strictly proper.

Proof  Following the notational convention from Subsection 1.3, one has:

By Assumption  2, EPrs
X
�
(c(X)) and EPr�s

X
�
(c(X)) are differentiable with respect to 

c(X), so use the first derivative test to find the optima (let me drop the superscript X 
on the right-hand side of the following equations):

which are equations that any minimiser of EPrs
X
�
(c(X)) and EPr�s

X
�
(c(X)) , respec-

tively, must satisfy. Using basic arithmetic operations, one gets that:

where, by assumption, 0 < Pr(X),Pr�(X) < 1 and 0 < 𝜆(X,𝜔) < ∞ , so the fractions 
are well-defined. Assuming that c∗(X) is the common minimiser of EPrs

X
�
(c(X)) and 

EPr�s
X
�
(c(X)) , then c∗(X) must satisfy both equalities in 5:

It is, however, impossible for Eq. (6) to hold by the construction of Pr′ and Defini-
tion 9; compare to Levinstein (2019, p. 2930). By Definition 9, �(X,�1) ≠ �(X,�2) 
and either �1,�2 ∈ X or �1,�2 ∉ X , thus consider two cases. 

1.	 A s s u m e  t h a t  �1,�2 ∈ X  a n d  �(X,�1) ≠ �(X,�2)  .  B y  D e f i n i -
tion  10, Pr(�) = Pr�(�) for every � other than �1 and �2 ,  so ∑

�∉X �(X,�)Pr
�(�) =

∑
�∉X �(X,�)Pr(�) . The denominator with Pr′ contains 

�(X,�1)[Pr(�1) + �] + �(X,�2)[Pr(�2) − �] , but the denominator with Pr con-

EPrs
X
�
(c(X)) =

∑
�∈Ω

Pr(�)�(X,�)sX(v�(X), c(X)), and

EPr�s
X
�
(c(X)) =

∑
�∈Ω

Pr�(�)�(X,�)sX(v�(X), c(X)).

�EPrs
X
�
(c(X))

�c(X)
= s�(1, c(X))

∑
�∈X

Pr(�)�(X,�) + s�(0, c(X))
∑
�∉X

Pr(�)�(X,�) = 0,

�EPr�s
X
�
(c(X))

�c(X)
= s�(1, c(X))

∑
�∈X

Pr�(�)�(X,�) + s�(0, c(X))
∑
�∉X

Pr�(�)�(X,�) = 0,

(5)

s�(1, c(X))

s�(0, c(X))
= −

∑
�∉X �(X,�)Pr(�)∑
�∈X �(X,�)Pr(�)

and
s�(1, c(X))

s�(0, c(X))
= −

∑
�∉X �(X,�)Pr

�(�)∑
�∈X �(X,�)Pr

�(�)
,

(6)
s�(1, c∗(X))

s�(0, c∗(X))
= −

∑
�∉X �(X,�)Pr(�)∑
�∈X �(X,�)Pr(�)

= −

∑
�∉X �(X,�)Pr

�(�)∑
�∈X �(X,�)Pr

�(�)
.
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tains only a term �(X,�1)Pr(�1) + �(X,�2)Pr(�2) . Since �(X,�1) ≠ �(X,�2) , 
the denominators do not equal. Thus, Eq. (6) cannot hold.

2.	 A s s u m e  t h a t  �1,�2 ∉ X  a n d  �(X,�1) ≠ �(X,�2)  .  S o , ∑
�∈X �(X,�)Pr

�(�) =
∑

�∈X �(X,�)Pr(�) . The nominator with Pr′ contains 
�(X,�1)[Pr(�1) + �] + �(X,�2)[Pr(�2) − �] , but the nominator with Pr contains 
only the term �(X,�1)Pr(�1) + �(X,�2)Pr(�2) . Since �(X,�1) ≠ �(X,�2) , the 
nominators do not equal. Thus, Eq. (6) cannot hold.

So, there exists no c∗(X) that satisfies all the equalities in Eq.  (6), i.e., there is no 
common minimiser for EPrs

X
�
(c(X)) and EPr�s

X
�
(c(X)) . But if sX

�
 is strictly proper, then 

EPr�s
X
�
(c(X)) and EPrs

X
�
(c(X)) are minimised at the same point. So, sX

�
 is not strictly 

proper, which implies that Is� is not strictly proper. For reductio, assume that sX
�
 is 

not strictly proper, but Is� is strictly proper. So, by Definition 5, EPIs𝜆
(P) < EPIs𝜆

(c) 
for any distinct functions c and P ∈ P . But since sX

�
 is not strictly proper, then, by 

Definition  4, there is a credence ĉ(X) ≠ P(X) such that EPs
X
𝜆
(ĉ(X)) ≤ EPs

X
𝜆
(P(X)) . 

Let then one’s credence function c be such that c(X) = ĉ(X) and, for any other propo-
sition Y to which P assigns a value, let c(Y) = P(Y) . Since c(X) ≠ P(X) , P and c are 
different functions. For an additive Is� , it holds that EPIs�

(P) ≥ EPIs�
(c) , which vio-

lates Definition 5. Therefore, Is� is not strictly proper. 	�  ◻

B proofs for Sect. 3 (Constructing sX
∗

 and I
s∗

)

Theorem 2  (Gneiting and Ranjan) Let (Ω,F) , X ∈ F  , a credence function c, P ∈ P , 
and Assumption  2 be given. EPs

X
�
(c(X)) is uniquely minimised at 

c∗(X) =
∑

�∈X P(�)�(X,�)∑
�∈Ω P(�)�(X,�)

.

Proof  For the sake of notational simplicity, let me call the following sum �:

Note that � is the normalising constant. It will be useful noting that if 0 < 𝛾 < ∞ , 
one can multiply both sides of Eq. (7) by 1

�
 to get:

Assume that sX
�
 satisfies Definition  8, so, by Definition  7, 0 < 𝛾 < ∞ . I can then 

write that:

(7)� =
∑
�∈Ω

P(�)�(X,�) =
∑
�∈X

P(�)�(X,�) +
∑
�∉X

P(�)�(X,�).

1 =

∑
�∈X P(�)�(X,�)

�
+

∑
�∉X P(�)�(X,�)

�
.

EPs
X
�
(c(X)) =

�
�∈X

P(�)�(X,�)sX(v�(X), c(X)) +
�
�∉X

P(�)�(X,�)sX(v�(X), c(X))

= �

�∑
�∈X P(�)�(X,�)

�
sX(1, c(X)) +

∑
�∉X P(�)�(X,�)

�
sX(0, c(X))

�
.



3345

1 3

A scoring rule and global inaccuracy measure for contingent…

Note that c∗(X) =
∑

�∈X P(�)�(X,�)∑
�∈Ω P(�)�(X,�)

=
∑

�∈X P(�)�(X,�)

�
 . Assume that ĉ(X) is a credence in 

X such that ĉ(X) ≠ c∗(X) , so:

since, by Assumption 2, sX in sX
�
 is strictly proper. That is, by Definition 4, the unique 

minimiser of EPs
X
�
(c(X)) is at c(X) = p , where p is a weight. By Definition 4, this 

works only if the weights sum up to 1. But we have already established that ∑
�∈X P(�)�(X,�)

�
+

∑
�∉X P(�)�(X,�)

�
= 1 . So, EPs

X
�
(c(X)) is uniquely minimised at:

	�  ◻

Lemma 2  It holds that 0 ≤ c∗(X) ≤ 1 (and 0 ≤ c∗(¬X) ≤ 1 ) and if X = Ω , then 
c∗(X) = 1 (and c∗(¬X) = 0).

Proof  By Definition  7, 0 < 𝜆(X,𝜔) < ∞ . By Theorem  2, 0 ≤
∑

�∈X P(�)�(X,�)
≤
∑

�∈Ω P(�)�(X,�) and so 0 ≤ c∗(X) ≤ 1 . One can use simi-
lar reasoning to show that 0 ≤ c∗(¬X) ≤ 1 . Now, assume that X = Ω , so ∑

�∈X P(�)�(X,�) =
∑

�∈Ω P(�)�(X,�) . Thus, by Theorem 2, c∗(X) = 1 . Moreover, 
the set of � ∉ X , i.e., ¬X , is empty. Probability P of the empty set is 0, so P(�) = 0 for 
any � ∈ ¬X . Thus, 

∑
�∈¬X P(�)�(¬X,�) = 0 and, by Theorem 2, c∗(¬X) = 0 . 	�  ◻

Lemma 3  Given Assumption 3, then c∗(X) + c∗(¬X) = 1.

Proof  By Assumption 3, �(X,�) = �(¬X,�) for any X ∈ F  and � ∈ Ω . Since the 
set of � ∈ ¬X equals the set of � ∉ X , Theorem 2 gives that:

By Theorem 2, it then follows that c∗(X) + c∗(¬X) = 1 . 	�  ◻

Lemma 4  If P(X) = 0 , then k(�) = 1 − c∗(X) or 1 and if P(X) = 1 , then k(�) = c∗(X) 
or 1.

Proof  Assume that P(X) = 0 . By Definition  11, c(X) = � , so 0 ≤ � ≤ 1 since 
c ∶ F → [0, 1] . By Definition  11, if � = 0 , then k(�) = 1 and if 0 < 𝜖 ≤ 1 , 
then k(�) = 1 − c∗(X) . Next, assume that P(X) = 1 . By Definition  11, 

EPs
X
𝜆
(c∗(X)) = 𝛾

�∑
𝜔∈X P(𝜔)𝜆(X,𝜔)

𝛾
sX(1, c∗(X)) +

∑
𝜔∉X P(𝜔)𝜆(X,𝜔)

𝛾
sX(0, c∗(X))

�

< 𝛾

�∑
𝜔∈X P(𝜔)𝜆(X,𝜔)

𝛾
sX(1, ĉ(X)) +

∑
𝜔∉X P(𝜔)𝜆(X,𝜔)

𝛾
sX(0, ĉ(X))

�

= EPs
X
𝜆
(ĉ(X)),

p =

∑
�∈X P(�)�(X,�)

�
=

∑
�∈X P(�)�(X,�)∑
�∈Ω P(�)�(X,�)

= c∗(X).

c∗(¬X) =

∑
�∈¬X P(�)�(¬X,�)∑
�∈Ω P(�)�(¬X,�)

=

∑
�∉X P(�)�(X,�)∑
�∈Ω P(�)�(X,�)

.
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c(X) − P(X) = � ≤ 0 . By Definition  11, if � = 0 , then k(�) = 1 and if 𝜖 < 0 , then 
k(�) = c∗(X) . 	�  ◻

Lemma 5  Any value of c∗(X) + �k(�) comes from [0, 1].

Proof  For c∗(X) + �k(�) to be from [0, 1], one needs to check three possible cases: 
𝜖 > 0 , 𝜖 < 0 , and � = 0 ; remember that c(X) − P(X) = � . 

1.	 Let 𝜖 > 0 , so assume that 0 ≤ c∗(X) +
1−c∗(X)

1−P(X)
� ≤ 1 , which is well-defined by 

Lemma  4. Multiply the inequality by 1 − P(X) and subtract � to get 
−� ≤ c∗(X)[1 − P(X) − �] ≤ 1 − P(X) − �.  I f  1 − P(X) − � = 0  ( i . e . , 
c(X) = P(X) + � = 1 ) or c∗(X) = 0 , then the inequality becomes −� ≤ 0 or 
−� ≤ 0 ≤ 1 − c(X) . These hold for 𝜖 > 0 and thus 0 < c(X) ≤ 1 . If 1 − P(X) − � ≠ 0 
(i.e., 0 ≤ c(X) < 1 ) and c∗(X) ≠ 0 , then −�

1−c(X)
≤ c∗(X) ≤ 1 . Both sides of this 

inequality hold. First, by Lemma 2, 0 ≤ c∗(X) ≤ 1 . Secondly, −𝜖

1−c(X)
< 0 for 𝜖 > 0 

and 0 ≤ c(X) < 1.
2.	 Let 𝜖 < 0 , so assume that 0 ≤ c∗(X) +

c∗(X)

P(X)
� ≤ 1 , which is well-defined by 

Lemma 4. Multiply by P(X) to get 0 ≤ c∗(X)[� + P(X)] ≤ P(X) . If P(X) + � = 0 
(i.e., c(X) = 0 ) or c∗(X) = 0 , the inequality reduces to 0 ≤ P(X) , which holds for 
a probabilistic P. If P(X) + � ≠ 0 (i.e., 0 < c(X) ≤ 1 ) and c∗(X) ≠ 0 , then one has 
0 ≤ c∗(X) ≤

P(X)

�+P(X)
 . Both sides of this inequality hold. First, by Lemma  2, 

0 ≤ c∗(X) ≤ 1 . Secondly, 1 <
P(X)

𝜖+P(X)
 for 𝜖 < 0 and 0 < 𝜖 + P(X) = c(X) ≤ 1.

3.	 Assume that � = 0 . So, �k(�) = 0 and c∗(X) + �k(�) = c∗(X) . By Lemma  2, 
0 ≤ c∗(X) ≤ 1.

	�  ◻

Proposition 1  sX
∗
 is a strictly proper, truth-directed, continuous, and differentiable 

(with respect to c(X)) weighted scoring rule such that sX
∗
(0, 0) = sX

∗
(1, 1) = 0.

Proof  Let T = Ax + b be a map such that A =

[
1 0

0 k(�)

]
 , b = (0, c∗(X) − P(X)k(�)) , 

and x is a transpose of a vector (v�(X), c(X)) . Then, T is an affine transformation of a 
vector (v�(X), c(X)) to (v�(X), c∗(X) + �k(�)) . Notice that c∗(X) , P(X), and k(�) are 
constant for any given c(X). One can then use sX from Definition  1 to score 
(v�(X), c

∗(X) + �k(�)) and weight that score by �(X,�) from Definition 7. Remem-
ber that, by Lemma 5, the value of c∗(X) + �k(�) always comes from [0, 1], so sX in 
sX
∗
 satisfies Definition  1, i.e., sX = {0, 1} × [0, 1] → [0,∞] , and, by Definition  7, 

�(X,�)∶=F × Ω → (0,∞) . So, sX
∗
 gives values from [0,∞] . Thus, one has 

sX
∗
∶ {0, 1} × [0, 1] × (0,∞) → [0,∞] such that sX

∗
(v�(X), c(X), �(X,�)) , so sX

∗
 satis-

fies Definition 8 and is a weighted scoring rule.
Now, pick any X from F  and P from P . If sX

∗
 is strictly proper, then, 

by Definition  4, EPs
X
∗
(P(X)) < EPs

X
∗
(ĉ(X)) holds for any ĉ(X) ≠ P(X) . 

Assume that one’s credence in X is P(X), i.e., c(X) = P(X) . By Defini-
tion  11, � = 0 and so sX

∗
(v�(X),P(X), �(X,�)) = �(X,�)sX(v�(X), c

∗(X)) . 
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If one’s credence in X is ĉ(X) ≠ P(X) , then ĉ(X) − P(X) = 𝜖 ≠ 0 and so 
sX
∗
(v𝜔(X), ĉ(X), 𝜆(X,𝜔)) = 𝜆(X,𝜔)sX(v𝜔(X), c

∗(X) + 𝜖k(𝜖)) , where 𝜖k(𝜖) ≠ 0 . By 
Theorem  2 and Definition  11, the inequality EPs

X
∗
(P(X)) < EPs

X
∗
(ĉ(X)) holds, as 

required:

Truth-directedness follows directly from Lemma 1. Now, consider differentiability. 
One can assume that sX satisfying Definition 1 is differentiable w.r.t. c(X), e.g., as 
Levinstein does (see Assumption  2). Let a function g take c(X) to c∗(X) + �k(�) , 
which is a linear function of the form ax + b , where x is given by c(X), a = k(�) , and 
b = c∗(X) − P(X)k(�) . So, g is differentiable with respect to c(X). Since sX and g are 
differentiable, then sX(v�(X), g(c(X))) is differentiable because a composite function 
of differentiable functions is differentiable. Moreover, multiplying a differentiable 
function by a scalar, i.e., �(X,�) , preserves differentiability, so sX

∗
 is differentiable 

with respect to c(X). It follows that sX
∗
 is a continuous function of c(X) for all worlds 

�.
Finally, there are two cases when an agent has a fully accurate credence c(X) at � . 

First, when c(X) = 1 and X is true at that � , see 1. Secondly, when c(X) = 0 and X is 
false at that � , see 2. 

1.	 Assume that X is true at � and c(X) = 1 . If c∗(X) + �k(�) = 1 , then, by Defini-
tion 1, sX(1, c∗(X) + �k(�)) = sX(1, 1) = 0 . Thus, by Definition 11, sX

∗
(1, 1) = 0 

independently of the value of a weight function. Let me show that if c(X) = 1 , 
then c∗(X) + �k(�) = 1 . 

(a)	 Assume that P(X) = c(X) = 1 . By Definition  11, � = 0 and so 
c∗(X) + �k(�) = c∗(X) . Since P(X) = 1 , P(�) = 0 for any � ∉ X  , so ∑

�∉X �(X,�)P(�) = 0 and 
∑

�∈X �(X,�)P(�) =
∑

�∈Ω �(X,�)P(�) . Thus, 
by Theorem 2, c∗(X) = 1.

(b)	 Assume that P(X) < c(X) = 1 . By Definition 11, 𝜖 = 1 − P(X) > 0 , so 
c∗(X) + �k(�) = c∗(X) + �

1−c∗(X)

1−P(X)
= 1.

2.	 Assume that X is false at � and c(X) = 0 . If c∗(X) + �k(�) = 0 , then, by Defini-
tion 1, sX(0, c∗(X) + �k(�)) = sX(0, 0) = 0 . Thus, by Definition 11, sX

∗
(0, 0) = 0 

EPs
X
∗
(P(X)) =

∑
𝜔∈X

P(𝜔)sX
∗
(1,P(X), 𝜆(X,𝜔)) +

∑
𝜔∉X

P(𝜔)sX
∗
(0,P(X), 𝜆(X,𝜔))

=
∑
𝜔∈X

P(𝜔)𝜆(X,𝜔)sX(1, c∗(X)) +
∑
𝜔∉X

P(𝜔)𝜆(X,𝜔)sX(0, c∗(X))

= EPs
X
𝜆
(c∗(X))

< EPs
X
𝜆
(c∗(X) + 𝜖k(𝜖))

=
∑
𝜔∈X

P(𝜔)𝜆(X,𝜔)sX(1, c∗(X) + 𝜖k(𝜖)) +
∑
𝜔∉X

P(𝜔)𝜆(X,𝜔)sX(0, c∗(X) + 𝜖k(𝜖))

=
∑
𝜔∈X

P(𝜔)sX
∗
(1, ĉ(X), 𝜆(X,𝜔)) +

∑
𝜔∉X

P(𝜔)sX
∗
(0, ĉ(X), 𝜆(X,𝜔))

= EPs
X
∗
(ĉ(X)).
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independently of the value of a weight function. Let me show that if c(X) = 0 , 
then c∗(X) + �k(�) = 0 . 

(a)	 Assume that P(X) = c(X) = 0 . By Definition  11, � = 0 and so 
c∗(X) + �k(�) = c∗(X) . Since P(X) = 0 , P(�) = 0 for any � ∈ X  , i.e., ∑

�∈X �(X,�)P(�) = 0 . By Theorem 2, c∗(X) = 0.
(b)	 Assume that P(X) > c(X) = 0 . By Definition  11, � = −P(X) , so 

c∗(X) + �k(�) = c∗(X) +
c∗(X)

P(X)
� = 0.

	�  ◻

Lemma 6  sX in sX
∗
 is not strictly proper.

Proof  Given Definition  4, take the following expectation psX(1, c∗(X) + �k(�))+

(1 − p)sX(0, c∗(X) + �k(�)) and proceed with the first derivative test by differentiat-
ing with respect to c∗(X) . Cancelling k(�) gives p(sX)�(1, c∗(X) + �k(�))+

(1 − p)(sX)�(0, c∗(X) + �k(�)) = 0 , which is minimised at p = c∗(X) + �k(�) if sX is 
strictly proper. By Definition 4, for a scoring rule to be strictly proper it must be 
minimised at c(X) = p , but p = c∗(X) + �k(�) holds for c(X) = p−c∗(X)

k(�)
+ p , where 

p = P(X).
Lemma 7  Given Assumption 3, P ∈ P , and c(¬X) − P(¬X) = �� , then 

1.	 � = −�� iff c(X) + c(¬X) = 1,
2.	 if c∗(X) = 0 , then P(X) = 0 and if c∗(¬X) = 0 , then P(¬X) = 0,
3.	 if c∗(X) = 1 , then P(X) = 1 and if c∗(¬X) = 1 , then P(¬X) = 1 , and
4.	 [c∗(X) + �k(�)] + [c∗(¬X) + ��k(��)] = 1 iff c(X) + c(¬X) = 1.

Proof 

1.	 (⇒ ) First, assume that � = −�� , which gives c(X) − P(X) = −[c(¬X) − P(¬X)] =

c(X) − P(X) = −[c(¬X) − P(¬X)] = −[c(¬X) − (1 − P(X))]   .  I t  f o l -
lows that c(X) + c(¬X) = 1 . ( ⇐ ) Assuming that c(X) + c(¬X) = 1 gives 
� + P(X) + �� + P(¬X) = � + P(X) + �� + 1 − P(X) = 1 . It follows that � = −��.

2.	 Assuming that c∗(X) = 0 , by Theorem  2, gives 
∑

�∈X P(�)�(X,�) = 0 . 
By Definition 7, 𝜆(X,𝜔) > 0 for any X and � . So, P(�) must be 0 for any 
� ∈ X  , i.e., P(X) = 0 . Similarly, assume that c∗(¬X) = 0 . By Theorem  2, ∑

�∈¬X P(�)�(¬X,�) = 0 . Since �(¬X,�) is always positive, P(�) must be 0 for 
any � ∈ ¬X , i.e., P(¬X) = 0.

3.	 Assuming that c∗(X) = 1 , by Theorem  2, gives 
∑

�∈X P(�)�(X,�)∑
�∈Ω P(�)�(X,�)

= 1 . Thus, ∑
�∈X P(�)�(X,�) =

∑
�∈Ω P(�)�(X,�) and 

∑
�∉X P(�)�(X,�) = 0 . So, by Def-

inition 7, P(�) = 0 for any � ∉ X (i.e., any � from ¬X ) and thus P(¬X) = 0 and 
P(X) = 1 since P is a probability function. Similarly, assuming that c∗(¬X) = 1 
gives 

∑
�∈¬X P(�)�(¬X,�)∑
�∈Ω P(�)�(¬X,�)

= 1 . So, 
∑

�∈¬X P(�)�(¬X,�) =
∑

�∈Ω P(�)�(¬X,�) and ∑
�∉¬X P(�)�(¬X,�) = 0 . So, by Definition 7, P(�) = 0 for any � ∉ ¬X (i.e., any 

� from X). Thus, P(X) = 0 and P(¬X) = 1 since P is a probability function.
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4.	 (⇒ ) Assume that [c∗(X) + �k(�)] + [c∗(¬X) + ��k(��)] = 1 , which reduces to 
�k(�) = −��k(��) if, by Lemma 3, one assumes that c∗(X) + c∗(¬X) = 1 . To prove 
that c(X) + c(¬X) = 1 , I will show that either if �k(�) = −��k(��) holds, then 
� = −�� (cases i - ii) or �k(�) = −��k(��) does not hold (cases iii - iv). Since � and 
�′ is positive, negative, or 0, there are nine options, but I will cluster together 
similar cases. 

i	 Assume that � = 0 and �� = 0 . So, �k(�) = −��k(��) becomes 0 = 0 , and 
� = −�� holds.

ii	 Assume that  𝜖 > 0 and 𝜖′ < 0 .  So,  �k(�) = −��k(��) becomes 
�
1−c∗(X)

1−P(X)
= −��

c∗(¬X)

P(¬X)
 .  Since P(¬X) = 1 − P(X) and,  by Lemma  3, 

c∗(¬X) = 1 − c∗(X) , one has that � = −�� . Similarly, if 𝜖 < 0 and 𝜖′ > 0 , then 
�
c∗(X)

P(X)
= −��

1−c∗(¬X)

1−P(¬X)
 and � = −�� follows.

iii	 Assume that 𝜖 < 0 and 𝜖′ < 0 . So, �k(�) = −��k(��) becomes � c∗(X)

P(X)
= −��

c∗(¬X)

P(¬X)
 . 

Now, c
∗(X)

P(X)
 and c

∗(¬X)

P(¬X)
 is either 0 or positive. Clearly, the equality does not hold 

if one is 0 and the other positive. Now, if c
∗(X)

P(X)
> 0 and c

∗(¬X)

P(¬X)
> 0 , then 

𝜖k(𝜖) < 0 but −𝜖�k(𝜖�) > 0 and �k(�) = −��k(��) cannot hold. So, try 
�
c∗(X)

P(X)
= −��

c∗(¬X)

P(¬X)
= 0 . Then, both c∗(X) and c∗(¬X) must be 0. If c∗(X) = 0 , 

then P(X) = 0 and so, by Definition 11, � ≥ 0 , which contradicts that 𝜖 < 0 . 
If c∗(¬X) = 0 , then P(¬X) = 0 . So, �′ ≥ 0 , which contradicts that 𝜖′ < 0.

	   Now, assume that 𝜖 > 0 and 𝜖′ > 0 , so one has � 1−c∗(X)

1−P(X)
= −��

1−c∗(¬X)

1−P(¬X)
 . 

Again, 1−c
∗(X)

1−P(X)
 and 1−c

∗(¬X)

1−P(¬X)
 is either 0 or positive. The equality �k(�) = −��k(��) 

does not hold for one 0 and the other positive or if 1−c
∗(X)

1−P(X)
> 0 and 1−c

∗(¬X)

1−P(¬X)
> 0 

since then 𝜖k(𝜖) > 0 but −𝜖�k(𝜖�) < 0 . Considering � 1−c∗(X)

1−P(X)
= −��

1−c∗(¬X)

1−P(¬X)
= 0 

means that 1 − c∗(X) = 1 − c∗(¬X) = 0 . If 1 − c∗(X) = 0 , then c∗(X) = 1 and 
P(X) = 1 . So, � ≤ 0 , which contradicts that 𝜖 > 0 . If 1 − c∗(¬X) = 0 , then 
c∗(¬X) = 1 and P(¬X) = 1 . So, �′ ≤ 0 , which contradicts that 𝜖′ > 0.

iv	 Assume that � = 0 and 𝜖′ > 0 . Then, �k(�) = −��k(��) becomes 0 = −��
1−c∗(¬X)

1−P(¬X)
 

and so 1 − c∗(¬X) must be 0, i.e., c∗(¬X) = 1 . Thus, P(¬X) = 1 and so �′ ≤ 0 , 
which contradicts that 𝜖′ > 0 . Similarly, assuming that � = 0 and 𝜖′ < 0 , 
�k(�) = −��k(��) becomes 0 = −��

c∗(¬X)

P(¬X)
 and c∗(¬X) must be 0. Thus, 

P(¬X) = 0 and so �′ ≥ 0 , which contradicts that 𝜖′ < 0.
	   Likewise, assume that 𝜖 > 0 and �� = 0 . So, �k(�) = −��k(��) becomes 

�
1−c∗(X)

1−P(X)
= 0 . It must be that 1 − c∗(X) = 0 , i.e., c∗(X) = 1 . Thus, P(X) = 1 and 

so � ≤ 0 , which contradicts that 𝜖 > 0 . Now, assume that 𝜖 < 0 and �� = 0 . 
So, �k(�) = −��k(��) becomes � c∗(X)

P(X)
= 0 , so it must be that c∗(X) = 0 . Thus, 

P(X) = 0 and so � ≥ 0 , which contradicts that 𝜖 < 0.

(⇐ ) Assume that c(X) + c(¬X) = 1 , so � = −�� . Let also Assumption 3 hold, so I can 
apply Lemma  3, which says  that c∗(X) + c∗(¬X) = 1 . So, 
[c∗(X) + �k(�)] + [c∗(¬X) + ��k(��)] = 1 + �k(�) + ��k(��) , which is 1 only if 
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�k(�) = −��k(��) . If � = �� = 0 , it holds. If 𝜖 > 0 , then 𝜖′ < 0 and � 1−c∗(X)

1−P(X)
= −��

c∗(¬X)

P(¬X)
 , 

that is, � c∗(¬X)

P(¬X)
= �

c∗(¬X)

P(¬X)
 . If 𝜖 < 0 , then 𝜖′ > 0 and � c∗(X)

P(X)
= −��

1−c∗(¬X)

1−P(¬X)
 , that is, 

�
c∗(X)

P(X)
= �

c∗(X)

P(X)
 . 	�  ◻

Lemma 8  (Gneiting and Brehmer) If sX
�
 is strictly proper, then sX

∗
 and sX

�
 assign the 

same score to one’s credence c(X).

Proof  Given Definition 8, let sX
�
(v�(X), c(X), �(X,�)) = �(X,�)sX(v�(X), c(X)) be a 

strictly proper scoring rule, i.e., let weights �(X,�) be constant for the given X at 
any � . By Definition 4 and Theorem 2, if sX

�
 is strictly proper, then the unique mini-

miser c∗(X) = P(X) . By Definition  11, if c∗(X) = P(X) , then k(�) = 1 and so 
c∗(X) + �k(�) = P(X) + � = c(X) . So, by Definition  11, one has that 
sX
∗
(0, c(X), �(X,�)) = �(X,�)sX(0, c(X)) = sX

�
(0, c(X), �(X,�)) and 

sX
∗
(1, c(X), �(X,�)) = �(X,�)sX(1, c(X)) = sX

�
(1, c(X), �(X,�)) . Thus, if sX

�
 is strictly 

proper, then sX
�
 and sX

∗
 assign the same score to one’s credence c(X). 	�  ◻

Lemma 9  (Strict and Strong Propriety) Is∗ is strongly and strictly proper, thus 
truth-directed.

Proof  By Definition 6, Is∗ (c,�) =
∑

X∈F sX
∗
(v�(X), c(X), �(X,�)) is strongly proper 

just in case EPIs∗
(c) is uniquely minimised at P(X) = c(X) for all X ∈ F  and all 

probability functions P ∈ P . Pick any X ∈ F  and differentiate EPIs∗
(c) with respect 

to c(X) as follows; I omit the superscript X in the middle part of the following 
equation:

By Proposition  1, sX
∗
 is strictly proper, so �EPIs∗

(c)

�c(X)
= 0 =

d EPs
X
∗
(c(X))

d c(X)
 holds at 

P(X) = c(X) . That is, EPIs∗
(c) is uniquely minimised at P(X) = c(X) for all X ∈ F  

and all probability functions P ∈ P , as required. In other words, for any X ∈ F  , any 
probability function P ∈ P , and any credence function c such that P(X) ≠ c(X) , it 
holds that EPs

X
∗
(P(X)) < EPs

X
∗
(c(X)) . Strict propriety of Is∗ follows. By Definition 5, 

Is∗
 is strictly proper if for any distinct credence functions P ∈ P and c it holds that (I 

use the fact that Is∗ is additive):

By the strict propriety of sX
∗
 , the inequality EPs

X
∗
(P(X)) < EPs

X
∗
(c(X)) holds for any 

c(X) ≠ P(X) . So, for any distinct P and c, there is X ∈ F  such that c(X) ≠ P(X) and, 

�EPIs∗
(c)

�c(X)
=

∑
�∈X

P(�)s�
∗
(1, c(X), �(X,�)) +

∑
�∉X

P(�)s�
∗
(0, c(X), �(X,�)) =

d EPs
X
∗
(c(X))

d c(X)
.

(8)
EPIs∗

(P) < EPIs∗
(c)∑

X∈F

EPs
X
∗
(P(X)) <

∑
X∈F

EPs
X
∗
(c(X)).
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by additivity, EPIs∗
(P) < EPIs∗

(c) . Truth-directedness of Is∗ follows from the truth-
directedness of sX

∗
 and additivity of Is∗ . 	�  ◻

Lemma 10  (Contingency of Varying Importance) Given Is∗ , EPrs
X
∗
(c(X)) and 

EPr�s
X
∗
(c(X)) are uniquely minimised at the same point.

Proof  By Proposition  2, assume that Is∗ recognises the contingency of varying 
importance. That is, by Definition 9, assume that there are worlds �1,�2 ∈ Ω and a 
proposition X ∈ F  such that v�1

(X) = v�2
(X) but �(X,�1) ≠ �(X,�2) . Assume there 

are probability functions Pr and Pr′ as defined in Definition  10. Focusing on X, 
EPrs

X
∗
(c(X)) is a part of EPrIs∗

(c) and EPr�s
X
∗
(c(X)) is a part of EPr�Is∗

(c) . By Proposi-
tion 1, sX

∗
 is strictly proper (or one can use strong propriety of Is∗ ), so EPrs

X
∗
(c(X)) is 

uniquely minimised at c(X) = Pr(X) and EPr�s
X
∗
(c(X)) is uniquely minimised at 

c(X) = Pr�(X) . By construction, if v�1
(X) = v�2

(X) , then Pr(X) = Pr�(X) . Therefore, 
EPrs

X
∗
(c(X)) is minimised at the same point as EPr�s

X
∗
(c(X)) while Is∗ recognises the 

contingency of varying importance. 	�  ◻
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