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Abstract
A norm of local expert deference says that your credence in an arbitrary proposi-
tion A, given that the expert’s probability for A is n, should be n. A norm of global 
expert deference says that your credence in A, given that the expert’s entire prob-
ability function is E, should be E(A). Gaifman taught us that these two norms are 
not equivalent. Stalnaker conjectures that Gaifman’s example is “a loophole”. Here, I 
substantiate Stalnaker’s suspicions by providing characterisation theorems which tell 
us precisely when the two norms come apart. They tell us that, in a good sense, Gaif-
man’s example is the only case where the two norms differ. I suggest that the lesson 
of the theorems is that Bayesian epistemologists need not concern themselves with 
the differences between these two kinds of norms. While they are not strictly speak-
ing equivalent, they are equivalent for all philosophical purposes.

Keywords Expert deference · Chance deference · Principal principle · Rational 
reflection

1 Introduction

Principles of expert deference play a prominent role in Bayesian epistemology.1 For 
an example of a principle of expert deference: Lewis (1980)’s Principal Principle 
tells you that, in the absence of an extraordinary form of evidence, you should defer 
to the future objective chances. That is, given that the objective chance of an arbi-
trary proposition, A, is n, your own subjective probability, or credence, in A should 
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be n, too. That is, if C is your credence function, and ⟨Cht(A) = n⟩ is the proposition 
that the time t chance of A is n, then you should satisfy the equality:2

That’s one principle of expert deference. For another: Rational Reflection says that 
you should defer to the ideally rational credences for someone with your evidence 
to have. (For discussion, see Christensen, 2010, Elga, 2013, and Lasonen-Aarnio, 
2015.) That is, given that the rational credence function for you to have is R, your 
credence in any proposition A should be R(A).

(Here, ‘ ⟨R = R⟩ ’ says that the rational credence function for someone with your evi-
dence is R.)

These principles both tell you to defer to some expert probability function, but 
they take different forms. The first tells you to defer to the expert conditional on 
their views about any proposition; whereas the second tells you to defer to the expert 
conditional on their views about every proposition (that is: conditional on their 
entire probability function). We can call the first a norm of local expert deference, 
and the second a norm of global expert deference.

Local deference You locally defer to an expert, E , iff, for any proposition, A, and 
any number n, your credence in A, given that E ’s probability for A is n, is n.

Global deference You globally defer to an expert, E , iff, for any proposition A, and 
any probability function E, your credence in A, given that E ’s entire probability 
function is E, is whatever probability E gives to A.

It’s not obvious what the relationship is between these two different ways of show-
ing deference to an expert. It’s natural to think that they’re equivalent, in the sense 
that you will globally defer to an expert function E if and only if you locally defer to 
E . However, as we’ll see in §2 below, this isn’t quite right. While globally deferring 
to E entails locally deferring to E , an example from Gaifman (1988) teaches us that 
the converse is not true. In some cases, you can locally defer to E without globally 
deferring to E.

Stalnaker (2019, pp. 111–12) speculates that Gaifman’s example is “a loophole—a 
contrived case where [a principle of local deference] is satisfied without its usual moti-
vation”. Here, I will substantiate Stalnaker’s suspicions. I’ll argue that the differences 

C(A ∣ ⟨Cht(A) = n⟩) = n

C(A ∣ ⟨R = R⟩) = R(A)

C(A ∣ ⟨E(A) = n⟩) = n

C(A ∣ ⟨E = E⟩) = E(A)

2 Or, maybe more carefully, we should say: C(A ∣ ⟨Cht(A) = n⟩) should be n whenever it is defined To 
avoid interrupting the exposition with constant reminders about this proviso, I’ll adopt the non-stand-
ard convention of treating an equality as trivially true whenever one side is undefined. Thus, even when 
C(A ∣ E) is undefined, I will treat the equality C(A ∣ E) = n as true for all n.
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between local and global deference are so incredibly slight as to be philosophicaly neg-
ligible—there is no good reason to accept the weaker local deference norm without 
accepting the stronger global deference norm. To that end, I will precisely characterise 
the situations in which global and local deference principles come apart. This char-
acterisation will show us that Gaifman’s original example of an expert who may be 
deferred to locally but not globally is—in a good sense—the only expert like this. So 
the kinds of situations in which it is possible to defer locally without deferring glob-
ally are incredibly singular and fragile. And there is no reason to think that these kinds 
of cases are epistemologically singular. The upshot is that Bayesians should have no 
qualms about moving freely back and forth between global and local formulations of 
principles of expert deference. While they are not strictly speaking equivalent, they are 
equivalent for all philosophical purposes.

2  How local and global deference norms differ

I’m going to take for granted here that your credence function, C, is a countably addi-
tive probability function, defined over subsets of a space of possible worlds, W . For the 
sake of simplicity, I’m going to assume that W is at most countably infinite. I’ll call 
any A ⊆ W a ‘proposition’, and since W is at most countably infinite, we can suppose 
that C gives a probability to every proposition.

I’ll suppose that you are certain that the expert’s probability function is defined 
over exactly the same algebra of propositions as your own, namely the powerset of W , 
ℙ(W) . And I’ll suppose that we have a function from worlds in W to probability distri-
butions over ℙ(W) , which I’ll write ‘ E ’. The value of this function, given the argument 
w—which I’ll write ‘ Ew’—will be interpreted as the probability function the expert has 
at the world w. With this function, we can form the proposition that the expert’s prob-
ability function is E (for some probability distribution E), by gathering together all the 
worlds w ∈ W such that Ew = E.

We may likewise form the proposition that E ’s probability for A is n by gathering 
together all of the worlds w ∈ W such that Ew(A) = n.

Given this setup, if you defer to E globally, then you will defer to E locally as well. 
To appreciate this, just notice that ⟨E(A) = n⟩ is partitioned by the set of all propo-
sitions of the form ⟨E = E⟩ , for some E that gives a probability of n to A. It then 
follows from conglomerability that, if C(A ∣ ⟨E = E⟩) = n for each E such that 
E(A) = n , then C(A ∣ ⟨E(A) = n⟩) must also be n.3

So global deference implies local deference. But the converse is false.

⟨E = E⟩ =df {w ∈ W ∣ Ew = E}

⟨E(A) = n⟩ =df {w ∈ W ∣ Ew(A) = n}

3 Conglomerability tells us that, if Q is partitioned by {P1,P2,…} , and C(A ∣ Pi) = n , for each Pi , then 
C(A ∣ Q) = n as well. So long as we assume that W is at most countably infinite, conglomerability fol-
lows from our assumption that C is a countably additive probability.
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Example 1 (Gaifman, 1988) There are three worlds in W , which we will call ‘1’, ‘2’, 
and ‘3’. At world 1, the expert gives 50% probability to 1 and 50% probability to 2. 
At world 2, the expert gives 50% probability to 2 and 50% probability to 3. At world 
3, the expert gives 50% probability to 3 and 50% probability to 1.

We can represent the expert from Example 1 with a square matrix, where the 
entry in the rth row and the cth column gives us the probability which the expert 
gives to world c at the world r, Er(c) . (Throughout, I’m going to adopt the conven-
tion of using expressions like ‘ E1(3) ’ and ‘ E2(1 ∨ 3) ’ for E1({3}) and E2({1, 3}) , 
respectively.)





1 2 3

E1 1/2 1/2 0
E2 0 1/2 1/2
E3 1/2 0 1/2





Gaifman’s example is interesting because, if you spread your credences uni-
formly—C(1) = C(2) = C(3) = 1∕3 , then you will defer to E locally, but not 
globally. For instance, your credence in 1 ∨ 2 , given ⟨E(1 ∨ 2) = 1∕2⟩ , is just 
C(1 ∨ 2 ∣ 2 ∨ 3) (since E ’s credence in 1 ∨ 2 is 1/2 at worlds 2 and 3), and if your 
credences are uniform, then C(1 ∨ 2 ∣ 2 ∨ 3) is 1/2. Moreover, as you can check 
for yourself, this works for every A ⊆ {1, 2, 3} and every n. C(A ∣ ⟨E(A) = n⟩) = n 
whenever ⟨E(A) = n⟩ is given a credence greater than 0. So, with the uniform cre-
dence distribution, you defer to E locally. But you do not defer globally, since 
C(2 ∣ ⟨E = E2⟩) = C(2 ∣ 2) = 1 , even though E2 ’s credence in 2 is only 1/2.

We can pull the same trick with more worlds. For instance, if W = {1, 2, 3, 4, 5} , 
and the expert function is given by this matrix,





1 2 3 4 5

E1 1/2 1/2 0 0 0
E2 0 1/2 1/2 0 0
E3 0 0 1/2 1/2 0
E4 0 0 0 1/2 1/2
E5 1/2 0 0 0 1/2





Then the uniform credence distribution (the one which gives credence 1/5 to 
every world) will defer locally, but not globally, to this expert.

Another helpful way of looking at an expert function, E , is with a Kripke frame 
(W,R) , where we stipulate that world w ‘sees’ a world, x, wRx, iff the expert at w 
gives positive probability to x, Ew(x) > 0 . For illustration, the expert from the 5 
world model above gives rise to the frame in Fig. 1.

Call any collection of worlds like this—a collection C  , containing at least 3 
worlds, such that each world in C  bears R to itself and exactly one other world, 
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and every w ∈ C  bears R+ (the transitive closure of R) to every other world in 
C  —a cycle. If C  is a cycle and, moreover, for every w ∈ C  , Ew gives exactly half 
of its probability to w, then I’ll say that C  is a ‘half-cycle’. Finally, if the frame E 
gives rise to contains some half-cycle, then I’ll say that E is a half-cyclic expert.

Half-cyclicity An expert E is half-cyclic if and only if the frame it generates con-
tains a cycle C  such that, for every w ∈ C  , Ew(w) = 1∕2.

Whenever an expert is half-cyclic, it will be possible to defer to them locally 
but not globally. In the appendix, I prove the following theorems:

Theorem  1 If E is half-cyclic, then C will defer to E locally but not globally if it 
spreads its credence uniformly over each half-cycle and gives a probability of 0 to 
any world not in a half-cycle.

Theorem 2 If E is half-cyclic, then C defers to E locally only if C is uniform over 
every half-cycle.

When else is it possible to defer locally but not globally? Never. The half-
cyclic experts are the only ones to whom you can defer locally without deferring 
to them globally. In the appendix, I prove

Theorem 3 If E is not half-cyclic, then C defers to E locally iff C defers to E globally.

This tells us that Gaifman’s example is incredibly singular. We can vary the 
size of the half-cycles, but that’s it. In no other kind of case do the local and global 
norms pull apart.

3  Why the difference Is philosophically negligible

In my view, this theorem teaches us something helpful. It teaches us that we don’t 
have to concern ourselves with the differences between local and global norms of 
deference. For it teaches us that there is no philosophically plausible reason any-
one could have to endorse a norm of local deference while denying the correspond-
ing norm of global deference. I’ll give two independent reasons to think that such a 
position is implausible in §3.1 and §3.2 below.

Fig. 1  The expert frame gener-
ated by the 5 world cyclic expert
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3.1  Drawing new distinctions

Suppose that we begin with the model from Example 1, and we simply introduce a 
new distinction. Perhaps, for each world w, we introduce two new worlds, wH and 
wT , where wH is the possibility previously represented by w, plus the additional 
information that a flipped coin landed heads, and wT is the possibility previous rep-
resented by w, plus the additional information that the coin landed tails. And sup-
pose that each possible expert gives a probability of 1/2 to the coin landing heads 
and a probability of 1/2 to the coin landing tails, and takes the outcome of the coin 
flip to be independent of whether 1, 2,  or 3. Then, including this additional distinc-
tion gives us the following expert:





1H 1T 2H 2T 3H 3T

E1H 1/4 1/4 1/4 1/4 0 0
E1T 1/4 1/4 1/4 1/4 0 0
E2H 0 0 1/4 1/4 1/4 1/4
E2T 0 0 1/4 1/4 1/4 1/4
E3H 1/4 1/4 0 0 1/4 1/4
E3T 1/4 1/4 0 0 1/4 1/4





And Theorem  3 assures us that, while the half-cyclic expert from Example 1 
could be deferred to locally, this non-half-cyclic expert cannot.4 Attending to an 
additional distinction like whether a coin landed heads or tails should only make 
a difference to whether the expert E is deserving of epistemic deference if there is 
something irrational about the probabilities E assigns to the coin landing heads or 
tails. But in this case, there is nothing irrational about E ’s probabilities. The coin 
is fair and independent of whether 1, 2,   or 3. So conditional on 1, conditional on 
2, and conditional on 3, the expert should divide their probability evenly between 
heads and tails. So, if a half-cyclic expert is deserving of epistemic deference, then, 
after we introduce a new, independent distinction—dividing each former possibility 
into an equally likely ‘heads’ and ‘tails’ possibility—the new expert should also be 
deserving of epistemic deference.

However, if you endorsed a local norm of deference while rejecting the corre-
sponding global norm of deference, you would be forced to disagree. For then, you 
would think that introducing this new distinction does make a difference to whether 

4 To see this without slogging through the proof of Theorem 3, note that your credence in {1H , 1T , 2H} , 
conditional on the expert’s credence in {1H , 1T , 2H} being 1/4, is your credence in {1H , 1T , 2H} , condi-
tional on {2H , 2T} (since these are the possibilities in which E({1H , 1T , 2H}) = 1∕4 ). So, if you are going 
to defer to E locally, then your credence in 2H must be 1/4 your credence in 2T . But then, take the propo-
sition {1H , 1T , 2T} . Since ⟨E({1H , 1T , 2T}) = 1∕4⟩ is {2H , 2T} , you can defer to E locally only if your cre-
dence in 2T is 1/4 your credence in 2H . But this can only happen if your credence in both 2H and 2T is 
zero. But there was nothing special about 2. Run the same argument swapping ‘3’ for ‘2’, ‘2’ for ‘1’, and 
‘1’ for ‘3’, and you get that your credence in both 3H and 3T must be zero. Swap the labels again, and the 
same argument gets that your credence in both 1H and 1T must be zero. But then your credences aren’t 
probabilistic.



2759

1 3

Local and global deference  

E is deserving of epistemic deference. I take that to be rather implausible; so I take 
it to be rather implausible that a local norm of deference holds without the corre-
sponding global norm holding.

3.2  Learning the expert’s evidence

In the introduction, I said that Lewis’s Principal Principle tells you to locally defer 
to the future objective chances. That’s true, but it’s slightly misleading, because it 
also tells you to globally defer to the future objective chances. Lewis’s principle has 
the form of what we can call a conditional local deference principle. It says that your 
initial or ur-prior credence function, C0 , should locally defer to the future objective 
chances conditional on any admissible evidence. That is: for any proposition A, any 
future time t, any number n, and any admissible evidence proposition F, you should 
satisfy the equality

If your total evidence is admissible, then conditionalisation says that C(−) should be 
C0(− ∣ F) , so this norm implies the one from the introduction.

Lewis thought (back in 1980, at least) that propositions about the time t chances 
were themselves admissible. And he thought that admissibility was closed under 
conjunction. So we can take any probability function ch such that ch(A) = n , and any 
admissible evidence F, and the Principal Principle will require that

Now, notice that ⟨Cht(A) = n⟩ ∩ ⟨Cht = ch⟩ is just ⟨Cht = ch⟩ , and n is just ch(A), so 
this is equivalent to a conditional global norm which requires that

which is why, in his original 1980 article, Lewis was able to freely move back and 
forth between a local and a global version of the Principal Principle.

There’s a general lesson here. For we often don’t just want to suggest that you 
should defer to an expert now, given the evidence you currently have. We generally 
want to say that you should continue to defer to them, even after you’ve received 
certain kinds of evidence. Taking Lewis’s lead, call this kind of evidence ‘admissi-
ble’. Then, consider the following two ways of showing deference:

Conditional local deference You conditionally locally defer to an expert, E , iff, for 
any proposition A, any number n, and any admissible evidence F, your credence in 
A, given that E ’s probability for A is n, and given F, is n.

Conditional global deference You conditionally globally defer to an expert, E , iff, 
for any proposition A, any probability function E, and any admissible evidence F, 
your credence in A, given that E ’s entire probability function is E, and given F, is 
whatever probability E gives to A.

C0(A ∣ ⟨Cht(A) = n⟩ ∩ F) = n

C0(A ∣ ⟨Cht(A) = n⟩ ∩ ⟨Cht = ch⟩ ∩ F) = n

C0(A ∣ ⟨Cht = ch⟩ ∩ F) = ch(A)

C(A ∣ ⟨E(A) = n⟩ ∩ F) = n
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Intuitively, evidence F is admissible iff you should continue deferring to E even after 
you have F as your total evidence. Here’s a general principle about admissible evi-
dence that we should want to accept in a wide variety of cases: if F might be the 
expert’s total evidence, then F is admissible.

Admissibility of expert evidence For any possible world w such that C(w) > 0 , E ’s 
total evidence at w is admissible.

In other words, if you should show epistemic deference to E , then for any possible 
world w with positive credence, after learning E ’s total evidence at w, you should 
continue to show epistemic deference to E.

If we accept the admissibility of expert evidence, then there will be no differ-
ence between a norm of conditional local deference and a norm of conditional 
global deference. To appreciate this, notice that a norm of conditional local defer-
ence says not only that C(−) should locally defer to E , but also that, for any admis-
sible F, C(− ∣ F) should locally defer to E , too. But Theorem 3 teaches us that the 
only way it could be possible for C(− ∣ F) to defer to E locally but not globally is if 
E is a half-cyclic expert. But then, E ’s evidence at every world w in a half-cycle is 
w ∨ wR , where ‘wR’ is w’s successor in the cycle. If expert evidence is admissible, 
then for any world w with positive credence, w ∨ wR is admissible, and a norm of 
conditional local deference will require that C(− ∣ w ∨ wR) locally defer to E . Since 
C(− ∣ w ∨ wR) only gives positive probability to two worlds within a cycle, it does 
not spread its probability uniformly over every cycle. So Theorem 2 assures us that it 
does not locally defer to E . So, if expert evidence is admissible, then it is impossible 
to conditionally locally defer to a half-cyclic expert. So, if expert evidence is admis-
sible, then it is possible to conditionally locally defer to all and only the experts it is 
possible to conditionally globally defer to. And whenever you conditionally locally 
defer, you will also conditionally globally defer.

That is: if expert evidence is admissible, then there is no difference between a 
norm of conditional local deference and the corresponding norm of conditional 
global deference. It is not plausible to think that some expert E is deserving of epis-
temic deference, but that E might not be deserving of deference, were you to learn 
what E ’s evidence is. So it is not plausible to endorse a norm of local deference 
without endorsing the corresponding global norm.

Appendix Proofs

Recall, an expert function E generates a Kripke frame (W,R) where, for any two 
w, x ∈ W wRx iff Ew(x) > 0 . If wRx, I’ll say colloquially that w sees x.

Lemma 1 If C defers to E locally, then, for any world w ∈ W , if C(w) > 0 , then 
wRw.

C(A ∣ ⟨E = E⟩ ∩ F) = E(A)
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Proof Suppose otherwise. Then, w ∈ ⟨E(w) = 0⟩ , so C(w ∣ ⟨Ew(w) = 0⟩) is defined 
and not equal to 0. So you don’t defer to E locally. Contradiction.   ◻

Theorem  1 If E is half-cyclic, then C will defer to E locally but not globally if it 
spreads its credence uniformly over each half-cycle and gives a probability of 0 to 
any world not in a half-cycle.

Proof Assume that E is half-cyclic and that C gives only positive credence to the 
worlds in some half-cycle. Suppose further than, for any two worlds in the same 
half-cycle, w and x, C(w) = C(x) . We will now show that C defers to E locally.

For every world in a half-cycle, w, and each A ⊆ W , there are only three pos-
sibilities for the value of Ew(A) : 0, 1/2, and 1. For take any A ⊆ W and any w in a 
half-cycle. Use ‘wR’ for the unique x ≠ w such that wRx. Then, either (i) both w and 
wR are in A; (ii) exactly one of w and wR are in A; or (iii) neither w nor wR are in A. 
If (i), then Ew(A) = 1 . If (ii), then Ew(A) = 1∕2 . And if (iii), then Ew(A) = 0.

Now, take any A ⊆ W , any n ∈ {0, 1∕2, 1} , and any half-cycle C  . We will show 
that

(where ‘ ‖A‖ ’ is the cardinality of A.)
Start with the case n = 0 . For every w ∈ ⟨E(A) = 0⟩ such that C(w) > 0 , w ∉ A by 

Lemma 1, hence ‖A ∩ ⟨E(A) = 0⟩ ∩ C‖ = 0 , for every C .
Next, consider the case n = 1 . For every w ∈ ⟨E(A) = 1⟩ such that C(w) > 0 , w ∈ A 

by Lemma 1. So, for every half-cycle C  , ‖A ∩ ⟨E(A) = 1⟩ ∩ C‖ = ‖⟨E(A) = 1⟩ ∩ C‖.
Next consider the case n = 1∕2 . Every world with positive credence is in a half-

cycle, so for every w ∈ ⟨E(A) = 1∕2⟩ such that C(w) > 0 , exactly one of w and wR 
are in A. If w ∉ A but wR ∈ A , then call w an entrance world. If w ∈ A but wR ∉ A , 
then call w an exit world. As we travel around each half-cycle C  , we must enter A 
as many times as we leave it, so for each half-cycle C  , there are as many entrance 
worlds in that cycle as there are exit worlds. ⟨E(A) = 1∕2⟩ contains only entrance 
and exit worlds, and the exit worlds are exactly those members of ⟨E(A) = 1∕2⟩ 
which are in A. So, for each half-cycle C ,

With (1) established, we can show that, if C is uniform over every half-cycle, and 
gives only positive credence to worlds in half-cycles, then C defers locally to E . For, 
in that case, there is a collection of weights �C  , one for each half-cycle C  , such that, 
for every A ⊆ W,

In particular, for n ∈ {0, 1∕2, 1},

(1)‖A ∩ ⟨E(A) = n⟩ ∩ C‖ = n ⋅ ‖⟨E(A) = n⟩ ∩ C‖

‖A ∩ ⟨E(A) = 1∕2⟩ ∩ C‖ = 1∕2 ⋅ ‖⟨E(A) = 1∕2⟩ ∩ C‖

C(A) =
�

C

�C ⋅ ‖A ∩ C‖
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By (1), then,

So, for any A ⊆ W , and any n,

So C defers to E locally.
But C does not defer to E globally, since, for any world w such that C(w) > 0 , w is 

in a half-cycle, and ⟨E = Ew⟩ = {w} , so C(w ∣ ⟨E = Ew⟩) = 1 ≠ Ew(w) = 1∕2 .   ◻

Theorem 2 If E is half-cyclic, then C defers to E locally only if C is uniform over 
every cycle.

Proof For each half-cycle, use ‘ C  ’ for the set of worlds in the cycle, and for any 
world w, let wR be the unique x ≠ w such that wRx. Then, take any world w ∈ C  . If 
C(w) > 0 , then C(⟨E(wR) = 1∕2⟩) = C(w ∨ wR) > 0 . So C(wR ∣ ⟨E(wR) = 1∕2⟩) is 
defined. Since C defers to E locally, C(wR ∣ ⟨E(wR) = 1∕2⟩) = C(wR ∣ w ∨ wR) must 
be 1/2. So C(wR) must be equal to C(w). The world w was arbitrary, so the credence 
of every world in the cycle must be the same as the credence of the unique distinct 
world it ‘sees’. So every world in the cycle must have the same credence. The cycle 
was arbitrary, so if C defers locally to a half-cyclic E , then C is uniform over every 
cycle.   ◻

Lemma 2 If C defers to E locally, then, for any two worlds w, x ∈ W , if wRx and 
C(w) > 0 , then Ew(x) = Ex(x).

Proof Suppose, for reductio, that C defers to E locally and that, for some two worlds 
w, x ∈ W , wRx, C(w) > 0 , and Ew(x) ≠ Ex(x) . Then, x ∉ ⟨E(x) = Ew(x)⟩ . Since 
C(w) > 0 , C(⟨E(x) = Ew(x)⟩) > 0 . So C(x ∣ ⟨E(x) = Ew(x)⟩) is defined and equal to 0. 
Since C defers to E locally, Ew(x) must be 0, which contradicts our assumption that 
wRx.   ◻

Lemma 3 If C defers to E locally, then, for any two worlds w, x ∈ W , if wRx and 
C(w) > 0 , then C(x) > 0.

Proof By Lemma 2, Ew(x) = Ex(x) > 0 . Since C(w) > 0 , C(⟨E(x) = Ex(x)⟩) > 0 . 
So C(x ∣ ⟨E(x) = Ex(x)⟩) is defined. Since C defers to E locally, 

C(A ∩ ⟨E(A) = n⟩) =
�

C

�C ⋅ ‖A ∩ ⟨E(A) = n⟩ ∩ C‖

and C(⟨E(A) = n⟩) =
�

C

�C ⋅ ‖⟨E(A) = n⟩ ∩ C‖

C(A ∩ ⟨E(A) = n⟩) = n ⋅
�

C

�C ⋅ ‖⟨E(A) = n⟩ ∩ C‖

C(A ∣ ⟨E(A) = n⟩) = C(A ∩ ⟨E(A) = n⟩)
C(⟨E(A) = n⟩) =

n ⋅
∑

C
�C ⋅ ‖⟨E(A) = n⟩ ∩ C‖

∑
C
�C ⋅ ‖⟨E(A) = n⟩ ∩ C‖

= n
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C(x ∣ ⟨E(x) = Ex(x)⟩) = C(x)∕C(⟨E(x) = Ex(x)⟩) must be equal to Ex(x) > 0 , which 
requires that C(x) > 0 .   ◻

Lemma 4 If C defers to E locally, then, for any world w such that C(w) > 0 , and any 
world x, if wRx, then xR+w . ( R+ is the transitive closure of R.)

Proof Take an arbitrary world w such that C(w) > 0 . If w doesn’t see any world 
besides itself, then the lemma is trivial. So suppose there’s some x such that wRx. 
Let A ≡ {y ≠ w ∣ xR+y} . Since C(w) > 0 , Lemmas 3 and 1 tell us that xRx, so x ∈ A , 
and Ew(A) > 0 . Since C defers locally to E , C(A ∣ ⟨E(A) = Ew(A)⟩) = Ew(A) > 0 . So 
A ∩ ⟨E(A) = Ew(A)⟩ must be non-empty. But this is only possible if there are some 
worlds y ∈ A such that Ey(A) = Ew(A) < 1 . But the only way a world y ∈ A could 
have Ey(A) < 1 is if Ey(w) > 0—by the definition of A, any world other than w that y 
sees would itself be in A. So there’s some world y ∈ A such that yRw. But if y ∈ A 
then xR+y . And if xR+y and yRw, then xR+w .   ◻

Lemma 5 If C defers to E locally, wRx and ¬xRw , then either every world which 
sees w also sees x, or else Ew(w) = Ex(x).

Proof Suppose that for some world, u, uRw and ¬uRx . Then, 
C(w ∨ x ∣ ⟨E(w ∨ x) = Eu(w ∨ x)⟩) = Eu(w ∨ x) = Eu(w) . By Lemma 2, 
Eu(w) = Ew(w) . But Ew(w ∨ x) ≠ Ew(w) , so w ∉ ⟨E(w ∨ x) = Eu(w ∨ x)⟩ . So 
in order for C(w ∨ x ∣ ⟨E(w ∨ x) = Eu(w ∨ x)⟩) to not be 0, it must be that 
x ∈ ⟨E(w ∨ x) = Eu(w ∨ x)⟩ . So Ex(w ∨ x) = Ex(x) = Eu(w ∨ x) = Ew(w) . So 
Ex(x) = Ew(w) .   ◻

Lemma 6 Suppose that C defers locally to E . Then, for any world w such that 
C(w) > 0 and any world x ∈ W : if wRx and ¬xRw , then Ex(x) = Ew(w).

Proof Suppose that C(w) > 0 . If there’s no world x such that wRx and ¬xRw , then 
the lemma is trivially satisfied. So suppose there’s some x ∈ W such that wRx and 
¬xRw . Suppose further (for reductio) that every world which sees w also sees x. Let 
Rw ≡ {z ≠ w ∣ zRw} . By Lemma 2, for every z ∈ Rw , Ez(w) = Ew(w) . Then,

(The second equality follows because every world which sees w also sees x and so, 
by Lemma 2, for every y ∈ Rw , Ey(w ∨ x) = Ew(w) + Ex(x) = Ew(w ∨ x) . And any 
world which sees only x must give a probability of only Ex(x) to w ∨ x .) Because 
C defers to E locally, it then must be that Ew(w) = Ew(w ∨ x) , which contradicts our 
assumption that wRx. So our assumption that every world which sees w also sees x 
has led to a contradiction. So Lemma 5 tells us that Ew(w) = Ex(x) .   ◻

C(w ∣ ⟨E(w) = Ew(w)⟩) =
C(w)

C(w) + C(Rw)

and C(w ∨ x ∣ ⟨E(w ∨ x) = Ew(w ∨ x)⟩) = C(w)

C(w) + C(Rw)
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Lemma 7 If C defers to E locally and for some pair of distinct worlds w, x such that 
C(w) > 0 , wRx and xRw, then, for any world y such that C(y) > 0 , yRw ↔ yRx.

Proof Suppose (for reductio) that C defers locally to E , C(w) > 0 , wRx, and xRw, 
yet there’s some world y with positive credence such that y sees one of w or x 
without seeing the other. (By Lemma 3, C(x) > 0 too.) Without loss of generality, 
suppose that yRw and ¬yRx . By Lemma 2, Ey(w) = Ew(w) . And since Ey(x) = 0 , 
Ey(w ∨ x) = Ew(w) . But Ew(w ∨ x) ≠ Ew(w) and Ex(w ∨ x) ≠ Ew(w) (by Lemma 2). So 
y ∈ ⟨E(w ∨ x) = Ew(w)⟩ but w, x ∉ ⟨E(w ∨ x) = Ew(w)⟩ . So

and C doesn’t defer to E locally. Contradiction.   ◻

Lemma 8 If C defers to E locally and for some pair of distinct worlds w, x such that 
C(w) > 0 , wRx and xRw, then for any world y, wRy ↔ xRy.

Proof Suppose (for reductio) that C defers to E locally, C(w) > 0 , wRx and xRw, 
yet there’s some world y such that exactly one of w or x sees y. Without loss of 
generality, suppose that xRy and ¬wRy . Then, by Lemma 3, C(x) > 0 and C(y) > 0 . 
By Lemma 2, Ex(y) = Ey(y) and Ex(w) = Ew(w) . So Ex(w ∨ y) = Ew(w) + Ey(y) . Since 
¬wRy , Ew(w ∨ y) = Ew(w) . Now suppose (for reductio again) that ¬yRw . Then, 
Ey(w ∨ y) = Ey(y) . So ⟨E(w ∨ y) = Ex(w ∨ y)⟩ contains x but not w or y. So

and C doesn’t defer to E locally. Contradiction. So we must have yRw. But then, 
by Lemma 7, yRx, too. So xRy and yRx. By Lemma 7 again, wRx ↔ wRy . But by 
assumption wRx and ¬wRy . Contradiction.   ◻

Lemma 9 If C defers to E locally, C(w) > 0 , wRx, xRw, and xRy, then wRy,  yRw,   
and yRx, too (i.e., if w and x see each other and x sees y, then each of w, x,  and y see 
all of w, x,  and y).

Proof Assume C defers to E locally, C(w) > 0 , wRx, xRw,  and xRy. By Lemma 3, 
C(x) > 0 and C(y) > 0 . And by Lemma 8, wRy. Then, wRx, xRw, xRy,   and wRy. 
Suppose for reductio that ¬yRw and ¬yRx . And let Rw ≡ {z ≠ w, x, y ∣ zRw ∧ ¬zRy} . 
Let Rwy ≡ {z ≠ w, x, y ∣ zRw ∧ zRy} . And let Ry ≡ {z ≠ w, x, y ∣ ¬zRw ∧ zRy} . By 
Lemma 7, every world in Rw and Rwy sees x, and no world in Ry sees x (if it did, 
it would also see w by Lemma 7, and so it would be in Rwy, not Ry). Similarly, 
Lemma 7 tells us that any world which sees x is either in Rw or Rwy.

By Lemma 6, Ew(w) = Ey(y) = Ex(x) ≡ Δ . So C(⟨E(w ∨ x ∨ y) = Δ⟩)
= C(Ry) + C(y) . Neither w nor x nor any world in Rwy is in ⟨E(w ∨ x ∨ y) = Δ⟩ , 
since all of them give a credence of 3Δ to w ∨ x ∨ y (by Lemma 2). And no world in 
Rw is in ⟨E(w ∨ x ∨ y) = Δ⟩ , since all of them give a credence of 2Δ to w ∨ x ∨ y . So

C(w ∨ x ∣ ⟨E(w ∨ x) = Ew(w)⟩) = 0

C(w ∨ y ∣ ⟨E(w ∨ y) = Ex(w ∨ y)⟩) = 0



2765

1 3

Local and global deference  

And, by Lemma 2, ⟨E(y) = Δ⟩ = Ry ∪ Rwy ∪ {w, x, y} . So

But, since C defers to E locally, (2) and (3) together imply that either C(y) = 0 or 
else C(Rwy) = C(w) = C(x) = 0 . Either possibility contradicts our assumption that 
C(w) > 0 and wRy (since Lemma 3 then implies that C(y) > 0).

So our assumption that ¬yRw and ¬yRx has led to a contradiction. So it must be 
that either yRw or yRx. If yRw, then, by Lemma 7, yRx, too. And if yRx, then, by 
Lemma 7, yRw, too. So either way, wRx, wRy, xRw, xRy, yRw,  and yRx. So we have 
that each of w, x,  and y sees all of w, x,  and y.   ◻

Lemma 10 If C defers to E locally, C(y) > 0 , wRx, xRw, and yRx, then xRy, wRy, 
and yRw, too (i.e., if w and x see each other and y sees x, then each of w, x,  and y 
see all of w, x,  and y).

Proof Suppose C defers to E locally, C(y) > 0 , wRx, xRw, and yRx. Then, by Lemma 7, 
yRw, too. Now, let Ry ≡ {z ≠ w, x, y ∣ zRy ∧ ¬zRw} , let Rw ≡ {z ≠ w, x, y ∣ ¬zRy ∧ zRw} , 
and let Rwy ≡ {z ≠ w, x, y ∣ zRy ∧ zRw} . By Lemma 7, every world in Rwy and Rw sees 
x, and no world in Ry sees x (if it did, it would also see w by Lemma 7, and it would be in 
Rwy, not Ry). Similarly, Lemma 7 tells us that any world which sees x is either in Rwy or 
Rw.

Now, suppose for reductio that ¬wRy and ¬xRy . Then, by Lemma 6, 
Ew(w) = Ey(y) = Ex(x) ≡ Δ . Then, by Lemma 2, Ey(y ∨ w ∨ x) = Ey(y) + Ew(w) + Ex(x) = 3Δ , 
whereas Ew(y ∨ w ∨ x) = Ex(y ∨ w ∨ x)= Ew(w) + Ex(x) = 2Δ . So y ∉ ⟨E(y ∨ w ∨ x)

= 2Δ⟩ . For any z ∈ Ry , Ez(y ∨ w ∨ x) = Δ . And for any z ∈ Rwy , 
Ez(y ∨ w ∨ x) = Ey(y) + Ew(w) + Ez(z) = 3Δ . So ⟨E(y ∨ w ∨ x) = 2Δ⟩ = Rw ∪ {w, x} . 
So

Since any world which sees either w or x sees the other (by Lemma 7), for any world 
z ∈ Rwy ∪ Rw ∪ {y,w, x} , Ez(w ∨ x) = Ew(w) + Ex(x) = 2Δ , by Lemma 2. No other 
worlds see either w or x. So ⟨E(w ∨ x) = 2Δ⟩ = Rwy ∪ Rw ∪ {y,w, x} . So

But, since C defers locally to E , equations (4) and (5) together imply that either 
C(w) = C(x) = 0 or else C(y) = C(Rwy) = 0 . But either possibility contradicts our 
assumption that C(y) > 0 and yRx (since Lemma 3 then implies that C(x) > 0 ). So 
our assumption has led to a contradiction.

(2)C(w ∨ x ∨ y ∣ ⟨E(w ∨ x ∨ y) = Δ⟩) = C(y)

C(Ry) + C(y)

(3)C(y ∣ ⟨E(y) = Δ⟩) = C(y)

C(Ry) + C(y) + C(Rwy) + C(w) + C(x)

(4)C(y ∨ w ∨ x ∣ ⟨E(y ∨ w ∨ x) = 2Δ⟩) = C(w) + C(x)

C(w) + C(x) + C(Rw)

(5)C(w ∨ x ∣ ⟨E(w ∨ x) = 2Δ⟩) = C(w) + C(x)

C(w) + C(x) + C(y) + C(Rwy) + C(Rw)
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So either wRy or xRy. But then each of w, x,   and y sees all of w, x,   and y by 
Lemma 9.   ◻

Definition 1 An S5 cluster is a non-empty set S ⊆ W such that, for every w ∈ S  , 
{x ∣ wRx} = S  . An S5 cluster S  is immodest iff Ew = Ex for every w, x ∈ S  . Else, 
S  is modest.

Lemma 11 If C defers to E locally, then, for any world w such that C(w) > 0 , if there 
are two distinct worlds x, y ∈ wR+ ≡ {z ∣ wR+z} such that xRy and yRx, then wR+ is 
an S5 cluster.

Proof Suppose C defers locally to E , C(w) > 0 , and for two distinct worlds 
x, y ∈ {z ∣ wR+z} , xRy and yRx. Let wR+ ≡ {z ∣ wR+z} . Fix an enumeration of the 
worlds in wR+ ⧵ {x, y} such that, if zi comes before zj in the enumeration, then the 
shortest R-chain5 from x to zi is not longer than than the shortest R-chain from x to 
zj . (We will eventually show that xRz and zRx, for every z ∈ wR+ , but for now we 
only assume that there is some finite R-chain from x to each z ∈ wR+.)

Base Case: take z1 . Since z1 begins the enumeration, either xRz1 or else z1Rx . By 
Lemmas 9 and 10, every world in {x, y, z1} sees every other world in {x, y, z1} . Induc-
tive Step: Assume that every world in wRk ≡ {x, y, z1, z2,… , zk} sees every other 
world in wRk . Take zk+1 . Given our choice of enumeration, there is some u ∈ wRk 
such that either uRzk+1 or zk+1Ru . Take any other world v ∈ wRk ( v ≠ u ). By the 
inductive hypothesis, uRv and vRu. So, by Lemmas 9 and 10, zk+1Rv , zk+1Ru , uRzk+1 , 
and vRzk+1 . v was arbitrary, so zk+1 sees and is seen by every world in wRk . So every 
world in wRk+1 ≡ wRk ∪ {zk+1} sees every other world in wRk+1.

So every world in wR+ sees every other world in wR+ . They cannot see any other 
worlds, else those worlds would also be in wR+ . So wR+ is an S5 cluster.   ◻

Lemma 12 If C defers to E locally, then, for every w such that C(w) > 0 which is not 
in an S5 cluster, any every world x, if wRx, then Ex(x) = Ew(w) = Ew(x).

Proof Suppose C defers to E locally, and take a world w not in an S5 cluster. 
Take any world x such that wRx. Since w is not in an S5 cluster, Lemma 11 tells 
us that ¬xRw . So Lemma 6 tells us that Ex(x) = Ew(w) . And Lemma 2 tells us that 
Ew(x) = Ex(x) .   ◻

Lemma 13 If S  is an S5 cluster, C(w) > 0 for some w ∈ S  , and C defers to E 
locally, then S  is an immodest S5 cluster.

Proof Suppose for reductio that S  is modest, that C(w) > 0 for some w ∈ S  , and 
that C defers locally to E . By Lemma 3, C gives positive credence to every world 
in S  . Since S  is modest, there are x, y, z ∈ S  such that Ex(z) ≠ Ey(z) . Now, 
either Ez(z) ≠ Ex(z) or Ez(z) ≠ Ey(z) . Either way, there are two worlds u, z ∈ S  

5 An R-chain is any sequence of worlds such that, for any two adjacent worlds in the sequence, wi and 
wi+1 , either wiRwi+1 or else wi+1Rw.
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such that Eu(z) ≠ Ez(z) . However, since u and z are both in S  , Eu(z) ≠ 0 . But since 
z ∉ ⟨E(z) = Eu(z)⟩ , C(z ∣ ⟨E(z) = Eu(z)⟩) must be zero, if defined. So it must not be 
defined. So C(u) must be zero. Contradiction.   ◻

Lemma 14 If C defers to E locally and C invests all its credence in S5 clusters, then 
C defers to E globally.

Proof Suppose that C defers to E locally and invests all of its credence in S5 clus-
ters. Take any S5 cluster S  . By Lemma 13, S  is immodest. So, for any w ∈ S  , 
S ⊆ ⟨E = Ew⟩ . Moreover, for any world z ∉ S  , either Ez ≠ Ew or else C(z) = 0 . For, if 
Ez = Ew , then Ez(z) = 0 , so ¬zRz , so C(z) = 0 by Lemma 1. So C(⟨E = Ew⟩) = C(S).

Take any A ⊆ S  . Then, Ew(A) > 0 ; whereas, for any z ∉ S  , either 
Ez(A) = 0 or else C(z) = 0 . (For suppose that Ez(A) > 0 . Then, z sees some 
world in S  , but since z ∉ S  , no world in S  sees z. So z is not in an S5 clus-
ter. So C(z) = 0 .) So C(⟨E(A) = Ew(A)⟩) = C(S) . So, for any w ∈ S  , and 
any A ⊆ S  , C(S) = C(⟨E = Ew⟩) and C(⟨E(A) = Ew(A)⟩) = C(S) . So 
C(⟨E = Ew⟩) = C(⟨E(A) = Ew(A)⟩) . So

where the final equality follows because C defers to E locally.
Finally, take any B ⊆ W , and any proposition of the form 

⟨E = Ew⟩ with positive credence. Since ⟨E = Ew⟩ has positive cre-
dence, w belongs to some S5 cluster S  , and C(⟨E = Ew⟩) = C(S) . Then, 
C(B ∣ ⟨E = Ew⟩) = C(B ∣ S) = C(B ∩S ∣ S) = C(B ∩S ∣ ⟨E = Ew⟩) = Ew(B ∩S) = Ew(B) . (The 
penultimate equality follows from the preceeding paragraph.) So C defers to E glob-
ally.   ◻

Theorem 3 If E is not half-cyclic, then C defers to E locally iff C defers to E globally.

Proof Because global deference implies local deference, it is enough to show that, if 
E is not half-cyclic and C defers to E locally, then C defers to E globally. So suppose, 
for reductio, that E is not half-cyclic and that C defers to E locally without deferring 
to E globally.

We will first show that, for any w with positive credence which is not in an S5 
cluster, Ew(w) ≠ 1∕2 . Suppose the negation: for some w such that C(w) > 0 and w 
is not in an S5 cluster, Ew(w) = 1∕2 . Since Ew(w) = 1∕2 , there’s some x1 such that 
wRx1 . By Lemma 12, Ex1 (x1) = 1∕2 and Ew(x1) = 1∕2 . So w sees just itself and one 
other world, and Ew(w) = 1∕2 . This is the base case. Inductive Step: suppose that, 
for some xi ∈ wR+ , xi sees only itself and xi+1 , and Exi (xi) = Exi

(xi+1) = 1∕2 . Then, 
Lemma 12 tells us that Exi+1(xi+1) = 1∕2 . So there’s some xi+2 such that xi+1Rxi+2 . 
So Lemma 12 tells us that Exi+2(xi+2) = 1∕2 and Exi+1(xi+2) = 1∕2 . So xi+1 sees only 
itself and xi+2 , and Exi+1(xi+1) = Exi+1

(xi+2) = 1∕2 . Completing the induction: every 
x ∈ wR+ sees itself and one other world, and Ex(x) = 1∕2 . Since wRx1 , Lemma 4 
assures us that x1R+w , so this sequence of worlds must loop back on itself, and we 
have a half-cycle. Contradiction.

C(A ∣ ⟨E = Ew⟩) = C(A ∣ ⟨E(A) = Ew(A)⟩) = Ew(A)
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If every w with positive credence were in an S5 cluster, then Lemma 14 tells us 
that C would defer to E globally, contradicting our assumption. So it must be that 
there is some world u with positive credence which is not in an S5 cluster. We’ve 
just learnt that every w ∈ uR+ is such that Ew(w) ≠ 1∕2 . Moreover, it must be that 
Ew(w) < 1∕2 . For if Ew(w) were greater than 1/2, it would either be 1 or between 
1/2 and 1. If Ew(w) = 1 , then w sees only itself, and is an S5 cluster. Contradic-
tion. If Ew(w) > 1∕2 but Ew(w) ≠ 1 , then there would be some x such that wRx and 
Ew(x) ≠ Ew(w) , contradicting Lemma 12.

So, for every w ∈ uR+ , Ew(w) < 1∕2 . So, for every w ∈ uR+ , there’s some world 
x ≠ w such that wRx and Ew(x) = Ex(x) < 1∕2 , by Lemma 12. So there must be at 
least three worlds in wR ≡ {x ∣ wRx}—w itself and at least two other worlds. And 
since no world in wR sees w besides w itself (otherwise, Lemma 11 tells us that uR+ 
would be an S5 cluster), Lemma 12 tells us that every world in wR gives itself pre-
cisely the same credence, so Ew(w) must be 1/N, where N is the number of worlds in 
wR. Moreover, by Lemma 2, every world in wR gives every world in wR that it sees 
a credence of 1/N.

There now must be a unique world in wR—call it ‘ x1’—such that x1 ≠ w and 
x1 sees every world in A1 ≡ wR⧵{w} . There must be one such world, other-
wise no world in A1 would give a credence of Ew(A1) = (N − 1)∕N to A1 , and 
C(A1 ∣ ⟨E(A1) = (N − 1)∕N⟩) would be defined but equal to 0, not (N − 1)∕N , so C 
wouldn’t defer to E locally. Moreover, this world must be unique. For if there were 
two worlds in A1 which saw every world in A1 , then they would see each other, and 
uR+ would be an S5 cluster by Lemma 11. So x1 is the unique world in A1 which sees 
every world in A1.

Now, let RA1 ≡ {z ∉ wR ∣ ∀x ∈ A1 zRx} be the set of all worlds besides w and x1 
which see every world in A1 . Then, every z ∈ RA1 gives a credence of 1/N to each 
world in A1 , by Lemma 2. So, for every z ∈ RA1 , Ez(A1) = (N − 1)∕N . w and x1 both 
give a credence of (N − 1)∕N to A1 . And no other worlds not in A1 give a credence 
of (N − 1)∕N to A1 , since all of those worlds see strictly fewer than N − 1 of the 
worlds in A1 , and so by Lemma 2 give a credence of less than (N − 1)∕N to A1 . So 
⟨E(A1) = (N − 1)∕N⟩ = RA1 ∪ {w, x1} . Since C defers to E locally,

So

Since N > 2 , C(x1) > C(w).
All of the above reasoning iterates. Turn to x1 , and let x1R ≡ {z ∣ x1Rz} be the set 

of worlds which x1 sees. No world in x1R can see x1 besides x1 itself (else, Lemma 
11 tells us that we’d have an S5 cluster). Since Ex1 (x1) = 1∕N , Lemma 6 tells us that 
every other world in x1R gives itself the credence 1/N, and so Lemma 2 tells us that 
every world in x1R gives every world in x1R that it sees a credence of 1/N.

Now, there must be a unique world—call it ‘ x2’—such that x2 ≠ x1 , x2 ∈ x1R , 
and x2 sees every world in A2 ≡ x1R⧵{x1} . There must be one such world, 

C(A1 ∣ ⟨E(A1) = (N − 1)∕N⟩) =
C(x1)

C(w) + C(x1) + C(RA1)
=

N − 1

N

C(x1) = (N − 1) ⋅ C(w) + (N − 1) ⋅ C(RA1)
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else no world in A2 would give a credence of Ex1 (A2) = (N − 1)∕N to A2 , and 
C(A2 ∣ ⟨E(A2) = (N − 1)∕N⟩) would be defined but equal to 0, not (N − 1)∕N , and C 
wouldn’t defer to E locally. Moreover, this world must be unique, else there would be 
two worlds in A2 which saw every world in A2 , so they would see each other, and by 
Lemma 11, uR+ would be an S5 cluster. So x2 is the unique world in A2 which sees 
every world in A2.

As before, ⟨E(A2) = (N − 1)∕N⟩ = RA2 ∪ {x1, x2} , where RA2 ≡ {z ∉ x1R

∣ ∀x ∈ A2 zRx} . And, since C defers to E locally,

So

Since N > 2 , C(x2) > C(x1).
Proceeding in this way generates an infinite sequence of worlds, w, x1, x2,… such 

that

Since C(w) > 0 , C(w) > 1∕M for some M. Then, C(w ∨ x1 ∨⋯ ∨ xM−1) = C(w)+

C(x1) +⋯ + C(xM−1) > M ⋅ C(w) > 1 . So C isn’t a probability. Contradiction.
So our assumption that E is not half-cyclic and C defers to E locally without 

deferring to E globally has led to a contradiction. So, if E is not half-cyclic, C defers 
to E locally iff C defers to E globally.   ◻
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