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Abstract
Although logical settings are typically concerned with tracking alethic considerations,
frameworks exist in which topic-theoretic considerations—e.g., tracking subject-
matter or topic—are given equal importance. Intuitions about extending topic through
a propositional language are generally straightforward for extensional cases. For a
number of reasons, arriving at a compelling account of the subject-matter of intensional
operators—such as intensional conditionals—is amore difficult task. In particular, the
framework of topic-sensitive intentional modals (TSIMs) championed by Francesco
Berto and his collaborators leave the topics of intensional formulae undefined, which
artificially constricts the expressivity of the theory. This paper proposes an approach
to fill in this lacuna, emphasizing an analogous problem in Parry-style containment
logics. In this setting, the approach receives a proof-of-concept through the intro-
duction of a natural and general family of subsystems of Parry’s PAI—with sound
and complete axiomatizations—that allow a fine degree of control over the topics of
intensional conditionals.

Keywords Subject-matter · Topic-sensitive intentional modals · Analytic implication

1 Introduction

Despite the traditional slogan that logic is “topic-neutral,” treating the semantic fea-
ture of subject-matter as a logically significant feature has a long history. For example,
the eponymous feature of relevance central to relevant logic (Anderson et al. 1975 or
Routley et al. 1982) can be understood as a requirement that the topics of antecedents
and consequents of valid conditionals overlap. A refinement of this intuition of rel-
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evance that has intermittently appeared is that validity requires not only overlap but
inclusion of the topic of the consequent within that of the antecedent.

The first full-throated development of this intuition is due to William Parry, who
introduced a logic of analytic implication in Parry (1933), inspired by a thesis that if
validity is to be analytic the subject-matter of the consequent cannot exceed that of
the antecedent. A good illustration of Parry’s motivations is the following:

If a system contains the assertion that two points determine a straight line, does
the theorem necessarily follow that either two points determine a straight line
or the moon is made of green cheese? No, for the system may contain no terms
from which ‘moon,’ etc., can be defined. (Parry, 1968, p. 151)

Although this paper largely works within the setting of Parry’s analytic implication,
the ultimate target is amore recent logical framework inwhich the inclusion of subject-
matter is taken seriously: The theory of topic-sensitive intentional modals (TSIMs)
developed and championed by Francesco Berto and his collaborators in e.g. Berto
(2019b, 2022).

The eponymous TSIMs are two argument operators X producing formulae of the
form Xϕψ . Where X is interpreted as some type of intentional mental state, the
intended interpretation of the formula is “Given ϕ, an agent Xs that ψ .” Particular
applications are abundant and wide-ranging; X can be understood as knowability
relative to information (see e.g. Berto & Hawke, 2021), as static belief revision (see
Berto, 2019a), or mental simulation (see Berto, 2018). Formally, TSIMs are a pairing
of variably strict conditionals (in the style of e.g. Lewis, 1973) with a topic inclusion
filter. The latter condition imposes a requirement on the truth of Xϕψ that the topic
of ψ is included in the topic of ϕ.

A topic filter presupposes that topic has been defined for all formulae, including
those including an intensional operator. However, in presentations like Berto’s—or
related formalisms like those employed in containment logics—the topic for such
intensional formulae is either undefined or recognizably inadequate. This paper is
the first in a sequence of investigations into the formal representation of the topic
or subject-matter of intensional operators or connectives in a formal language. The
starting point is the sketch outlined in Ferguson (2021).

1.1 The problem

The current state of the art of TSIMs faces limitations concerning the assignment
of topics to an intensional sentence ϕ: presentations invariably either suffer from
inadequate refinement for coarsely assuming ϕ to be topic-transparent or suffer from
inadequate expressivity for declining to assign a topic to ϕ.

Now, to consider the former case of inadequate refinement, let us consider some
of the formalism in more detail. The model theory of TSIMs incorporates a join
semilattice 〈T,⊕〉 understood as a domain of topics; a function t is responsible for
assigning topics to formulae. Two important features are reflected in the recursive
clauses for t relating the topic of complexes to the topics of their parts; Berto describes
these assumptions in Berto (2022):
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• Negation Transparency: t(¬ϕ) = t(ϕ)

• Junctive Transparency: t(ϕ ∧ ψ) = t(ϕ ∨ ψ) = t(ϕ) ⊕ t(ψ).

In many cases, the conditions seem fine; the interchangeability between e.g. conjunc-
tions and commas inmany sequent calculi does suggest a reading inwhich conjunction
(and thus disjunction) is nothing more than punctuation. To make the additional
assumption of synonymy of ϕ ⊃ ψ and ¬ϕ ∨ ψ will commit oneself to Junctive
Transparency holding of the material implication ⊃ as well. But not all syncategore-
matic terms are as topic-theoretically inert.1

In the particular presentation of knowability relative to information (KRI) described
in Berto and Hawke (2021), however, topics for not only TSIMs but also the strict
implication � are transparent. This directly leads to some internal tension, as we can
observe. Read “Kϕψ” as “relative to information ϕ, it is knowable that ψ .” Then:

Observation 1 In KRI, the inference

Kϕψ � Kϕ(ϕ � ψ)

is valid.

In other words, if ψ is knowable given information ϕ, then ϕ supports the strict
implication ϕ � ψ as well.

But this result is thematically at odds with the central property of nonmonotonicity
championed in Berto and Hawke (2021). To borrow an example, suppose that it holds
that:

1 Given that The Times reported that Manchester United won the match, one is in a
position to know that Manchester United won the match.

By the lights of Observation 1, the inference from [1] to the below [2] must hold:

2 Given that The Times reported that Manchester United won the match, one is in a
position to know that that The Times’ reporting of Manchester United’s winning
necessarily entails that Manchester United wins.

The only case in which an inference from [1] to [2] would be plausible were if The
Times’ accuracy were sufficient to act as a metaphysical guarantor. But this would
place us at odds with the very grounds for desiring nonmonotonicity, namely, that
information is not always reliable.

In presentations of the latter type of inadequate inexpressivity (like Berto 2022),
the function t assigning topics to formulae is partial; while the topics of all exten-
sional formulae are defined, for intensional formulae—i.e., those in which a strict
implication or TSIM appears—the topic is undefined. Unlike extensional connectives,
which contribute to topic no more than punctuation marks, intensional operators seem
to exert a transformational influence on the subject-matter of complexes, ruling out
naive alternatives in which intensional operators are topic-transparent.

1 Indeed, some of the concluding remarks in Fine (1986) bring up the question of whether any logical
connectives are transparent in this sense.
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This greatly curtails the scope and ultimately limits the utility of the framework.
Consider the setting of acts of imagination developed in Berto (2018) and its repre-
sentation in the context of TSIMs in Berto (2019b). In practice, agents’ imaginative
activity frequently includes intensional notions (e.g, one can imagine that one knows
some proposition). Without an account of the topic of the intensional counterfactual,
a relatively simple truth

3 In an act of imagination in which ‘had Sam gone home, she would have eaten
dinner and gone to bed’ is true, one also imagines that ‘had Sam gone home, she
would have eaten dinner’.

Cannot be evaluated.
Similarly, return to the context of knowability relative to information described in

Berto and Hawke (2021); not only is extensional information knowledge-constitutive,
but intensional information—e.g. information expressing the metaphysical necessity
of such-and-such a proposition—can serve to ground knowability. In other words, to
capture the full breadth of knowability relative to information, a means should exist
to evaluate sentences such as:

4 Given the information that it is necessary that water is H2O , one is in a position
to know water is H2O .

If the framework is to reach its full realization, it must be faithful to linguistic practice.
If the framework is to be faithful to linguistic practice, the assignment of formulae
to topics must not only be total but be extensible to a wide variety of intensional
operators. Thus, we have a need to introduce a framework for the assignment of topics
to intensional formulae.

1.2 The general proposal

Our proposal is amodest one. Even if the topic of an intensional conditional is composi-
tional, one can imagine numerousways inwhich the topic of any particular intensional
conditional may differ from the mere fusion of the topics of its subformulae. Likewise,
one can imagine that distinct types of intensional conditionals determine their topics
in different ways.E.g., while an S5 strict conditional is arguably about the constituents
of the actual world, the nature of a counterfactual conditional seems to require that
its topic omits these inhabitants from its subject-matter. Given the justified true belief
account, the topic of a TSIMmodeling knowledgemay include that of the correspond-
ing TSIMmodeling belief. Given the variety of intensional operators—and number of
distinct topic-theoretic relationships holding between them—an appropriate general
machinery should be weak enough to cover a maximal number of cases.

Ways in which we might characterize the topic-theoretic behavior of an intensional
conditional → include:

• cases in which t(ϕ → ψ) arguably properly extends the fusion of t(ϕ) and t(ψ)

(considered in Sect. 2.1)
• cases in which t(ϕ → ψ) is arguably incommensurable with the fusion of t(ϕ)

and t(ψ) (considered in Sect. 2.2)
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• cases in which the topics t(ϕ → ψ) and t(ψ → ϕ) may differ from one another
(considered in Sect. 2.3).

While compositional, different types of intensional conditionals may determine dif-
ferent accounts of topic; e.g., the topics of ϕ and ψ may bear one relationship to that
of a counterfactual ϕ� ψ and another to a strict conditional ϕ � ψ . In other words,
one size need not fit all. The proposal is therefore guided by a simple agnosticism.
We wish to provide a framework that is sufficiently permissive to not force a theory of
topic upon a conditional when unwarranted; but also demand of the framework that it
be sufficiently modular to allow the representation of stronger, more detailed theories
of topic corresponding to individual types of intensional conditionals.

To capture this intuition, we equip the topic semilattice with a binary function �
and interpret the topic t(ϕ → ψ) as t(ϕ) � t(ψ). Beyond its being a function,
nothing else is assumed; however, various theses about the topic of a given intensional
conditional can be captured by imposing new constraints on the properties of �.

This agnosticism is thus recognizably a feature rather than a bug. Just as Kripke
models are agnosticwith respect to themodel-theoretic characterization of necessity—
K assumes little about its accessibility relation R—so, too, shall we remain agnostic
about the topic-theoretic characterization of intensional sentences. But the proposal
is not vacuous; as we will discover, there is enough subtlety to allow a fine degree of
control over allowing the representation of various intuitions about the behavior of the
topics of such sentences.

2 Topic and intensional conditionals

In the foregoing section, we briefly considered several dimensions along which the
topic of an intensional conditional could differ from the fusion of the topics of its
parts. In this section, we will examine each of these cases more closely.

2.1 Ampliativity

Many types of intensional conditionals may be considered to be topic-theoretically
ampliative, i.e., the implication operator plays a role in determining the overall subject-
matter of the complex, whether the influence is additive or transformative. The most
direct route to intensional conditionals’ ampliativity begins by taking note of a familiar
characterization: it is common to describe intensional conditionals as expressing a
relation between antecedent and consequent. The interpretation of conditionals as
expressing a relation—of some kind—between statements is a well-established and
frequently encountered idiom, pronounced not only in revisionary, intensional projects
like Lewis and Langford (1959) or Routley et al. (1982) but also in mainstream,
classical settings like Quine (1981).

It is generally acknowledged (e.g., Yablo, 2014, Berto, 2022, Fine 2020) that a
predicate makes a prominent contribution to the subject-matter of a sentence. Suppose
one is told the following:

5 A logically entails B.
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6 A increases the likelihood of B.

It is unobjectionable to say that [5] is about something different than [6]. The item
about which their subject-matter most clearly diverges is arguably the central relation.

Conventionally, an atom Rab is about the individuals a and b and the relation R
that holds between them. If intensional connectives likewise express relations between
statements then to say that the relation ϕ → ψ is about the propositions ϕ and ψ and
the entailment relation that holds between them is structurally analogous. If this is
insufficient, one can make it ontologically or notationally analogous as well.

So I am suggesting that in some cases intensional conditionals contribute something
to the overall subject-matter in virtue of their expressing a relation. But there is a
potential trap here. That the material implication, too, expresses a relation is very
nearly as common a theme as intensional implication. Even those—like Routley et al.
(1982)—who are overtly hostile to the material conditional, nevertheless concede its
status as a relation, albeit a useless relation.

If the material conditional is a relation, we may have a commitment to its subject-
matter’s reflection in the subject-matter of the complex. Nevertheless, the material
conditional depends exclusively on the truth values of its subformulae.Onemight argue
that its topic is exhausted by the corresponding truth-function, leaving the subject-
matter of the material conditional as no more topic-laden than a conjunction. Thus,
one can maintain that the material conditional contributes to the subject-matter of
the complex, while thinking that it respects Junctive Transparency: Like intensional
conditionals, the corresponding relation is reflected in the overall subjectmatter; unlike
intensional conditionals, its contribution is vacuous. So if Junctive Transparency fails
to reflect the true structure of an indicative conditional, the subject-matter that it
ultimately assigns will always be correct.

2.2 Incommensurability

If the discussion in Sect. 2.1 establishes cases in which the topic of an intensional
conditional can exceed that of the fusion of the topics its parts, there are also cases
in which the conditional’s topic may be exceeded by the fusion. Although tentative,
there is some evidence that this may occur in the case of counterfactual conditionals.

To provide an informal example of when this incommensurability may appear,
recall two facts: First, the invention of bifocal lenses is commonly attributed to the
American Benjamin Franklin. Second, the French physicist Augustin-Jean Fresnel—
who worked in optics contemporaneously with Franklin—was the child of Jacques
Fresnel. With these names introduced, consider the following sentence:

7 The inventor of bifocals was the child of Jacques Fresnel.

Although [7] is a false statement, there is a straightforward—if informal—sense in
which it is a falsehood about Benjamin Franklin. Arguably, this is because at the
context of evaluation—namely, the actualworld—the definite description “the inventor
of bifocals” refers to Franklin. But consider the conditional:

8 Had the inventor of bifocals been the child of Jacques Fresnel, then their invention
would be hailed as a feat of French ingenuity.
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As [8] is a counterfactual, its evaluation ranges over only worlds in which the
antecedent is true, and thus omits the actual world from contexts in which it is evalu-
ated.Moreover, insofar as it ismetaphysically impossible that Benjamin Franklin could
have been the child of Jacques Fresnel, at no context of evaluation could Franklin sat-
isfy the definite description “the inventor of bifocals.” Consequently, [8] is not about
Benjamin Franklin at all. If [7] is about Franklin—whether in whole or in part—then
some element of subject-matter that present in the subformula would be omitted from
the subject-matter of [8].

As a referee has generously pointed out, this example may rely on an equivocation
between senses of “about.” Recalling Yablo’s Wildean insight that “the Queen is not
a subject” (Yablo, 2014, p. 26), the topics Franklin and inventor of bifocals—the
subject-matters of the referring terms “Benjamin Franklin” and “inventor of bifocals,”
respectively—may be distinct in spite of their being codenotational. I acknowledge
that this is a real problem for the example.

Nevertheless, there is reason to think that in spite of this distinctness there is some
common part of the subject-matters Franklin and inventor of bifocals. Two individ-
uals can, after all, coordinate the topics of discourses in cases in which each uses a
different referring term. This is explicitly sketched in the concluding pages of Hawke
(2018), whose issue-based theory would treat Franklin as a common constituent of the
terms’ subject-matter, albeit under distinct Salmon-style guises. Whatever this shared
topic part might be, it would certainly be lacking in the subject-matter of [8].

The state of research into the topics of definite descriptions may yet be too young
to lend itself to a knock-down argument either way. But pressing the issue requires
only showing cause to exercise caution before endorsing commensurability. After all,
there are numerous contexts in which the transformative qualities of intensional or
intentional operators challenge this thesis of subtopic preservation in all contexts,
i.e., that topics of the parts are by necessity preserved as subtopics of a complex.
Following Berto’s example of attitude ascriptions in Berto (2022, p. 65), the subject-
matter of “Mary believes that Scotland is lovely” is not necessarily about Scotland, but
rather about a proposition. Yablo’s remarks on Hempel-style “all nonblack things are
nonravens” suggest that the complex is not about ravens despite a subsentence thereof
being about ravens. Such cases strike me as sufficiently hazy to give one pause, at
least.

This should suffice insofar as my aims are ecumenical. The framework described in
the next section ismodular enough to allow cases of incommensurability. If one accepts
that there is reason to be cautious, one can model situations in which subtopic preser-
vation fails. If one accepts instead the thesis of subtopic preservation, then one may
elect to employ a modest extension of the following system in which commensurabil-
ity is guaranteed, an extension which conveniently corresponds to the reintroduction
of one of Parry’s original axioms. We will return to this extension and its metatheory
in Sect. 4.4.
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2.3 Order-sensitivity

When considering the subject-matter of first-order predicates—i.e., relations holding
between individuals—it is relatively uncontroversial to suppose the order in which
arguments appear is a determinant in the assignment of the subject-matter of a literal.
One finds this codified in e.g. Berto (2022) in the explicit rejection of the following
thesis:

Constituent Equivalence: t(Rab) = t(Rba)

Yablo’s remark in Yablo (2014) makes a compelling, if informal, argument against
Constituent Equivalence, asking:

Why is man bites dog a better headline than dog bites man? One thing we
can certainly say is that it is on a more interesting topic. A more interesting topic
is a different topic. Yablo (2014)

Although the remark invokes first-order relations to drive the example, Yablo’s under-
lying intuitions are equally sound with respect to relations in general.

As we’ve mentioned, intensional conditionals are frequently acknowledged to
express a relation—e.g., an entailment relation—between antecedent and consequent.
(In contrast, truth-functional material conditionals either fail to express a relation or,
if they do, express only a vacuous relation impoverished of subject-matter.) Such
relations between propositions are as authentically relational as first-order relations
between individuals. The implausibility of Constituent Equivalence in the case of
intensional conditionals is illustrated by the severity of the incongruity between the
topics of the following two conditionals:

9 Were John to win the lottery, he would retire tomorrow.
10 Were John to retire tomorrow, he would win the lottery.

Intuitively, [9] and [10] paint radically different pictures. The former is an unsurprising
statement about the actions the subject John would take in case of a sudden windfall.
In contrast, the latter sentence expresses an unusual claim about John—retirement is
an event that most people reachwithout a windfall, so Johnmust have some surprising
quality that ensures a lotterywin upon his retirement. LikeYablo’s first-order example,
[10] is clearly about a more interesting topic than [9] and, consequently, a different
topic.

We can strengthen this. If one adopts a view like that of Kratzer in (1991) in which
the role of the antecedent (the “if-clause”) is that of a restrictor, i.e., the antecedent
serves to restrict the set of worlds or states against which the consequent is to be
evaluated, then this can be taken a step further. In [9], there is a sense in which a class
of scenarios in which John wins the lottery is not only part of how to determine the
truth of [9]; these states are part of what the sentence is about.

To illustrate, consider a conversation in which one participant asks, “What do you
think would happen if John were to retire tomorrow?” Despite an a priori intersec-
tion between topics, an interlocutor who utters [9] has nevertheless veered off-topic
in a way that an utterer of [10] does not. [10] addresses the question—if perhaps
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unrealistically—in virtue of its being about those situations in which John retires. [9],
on the other hand, fails to reflect the restriction implicit in the question; it is primarily
about lottery-winnings and only subordinately about retirements.

This only makes sense in case the intensional conditionals in [9] and [10] nontriv-
ially influence their respective topics.

3 The content of intensional conditionals in analytic implication

The prototypical formal treatment of a deductive system in which subject-matter is
taken seriously is doubtlessly William Parry’s logic of analytic implication PAI, first
introduced in Parry (1933). Parry’s logic is motivated by a desire to give a formal
account of entailment as drawing the consequent from the antecedent through a process
of analysis. As discussed in Ferguson (2017), a guiding intuition is that a necessary
condition for the analyticity of an entailment relation is that the consequent of a
valid entailment should not include subject-matter (or concepts) not present in the
antecedent. The definitive statement of this condition is the Proscriptive Principle
that

No formula with analytic implication as main relation holds universally if it has
a free variable occurring in the consequent but not the antecedent. (Parry, 1968,
p. 151)

Parry’s approach has had its share of criticism (Kielkopf, 1975; Anderson et al.,
1975; Routley et al., 1982) which have been taken up elsewhere (Ferguson, 2015) .
Regardless of such criticism, Parry’s PAI enjoys some intuitive appeal.

Additionally, the topic-theoretic device employed in Kit Fine’s model theory for
Parry’s analytic implication is virtually identical to that employed in the TSIM frame-
work. Results from one setting may transfer nearly immediately to the other. Thus,
we will first consider the proposal in the context of PAI. The environment of Fine’s
model theory is very natural and provides a suitable test-bed to explore different ways
to assign subject-matter to intensional conditionals, but this is merely a convenience.
As I will point out at many points in the sequel, nothing essentially hinges on this
interpretation. Modifying the models slightly will allow the representation of other
intensional conditionals in its stead.

3.1 The Parry analysis

LetL be a propositional language including negation (¬), conjunction (∧), disjunction
(∨), and an intensional conditional (→). I informally refer as well to the material
conditional ⊃ defined from ¬ and ∨ in the standard way. The starting point for the
structures described in this paper is Fine’s semantics for Parry’s logic and the default
interpretation of → will be the analytic implication connective.

The initial semantic analyses of Parry’s logic began by examinations of related
systems by Dunn (1972) and Urquhart (1973). The first full model theory for Parry’s
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logic itself was provided by Fine (1986).2 Fine’s semantics for Parry’s system equips
each world w of an S4 Kripke model with join semilattices of topics 〈T,⊕〉.3
Definition 1 A PAI Fine model is a tuple 〈W , R, T,⊕, v, t〉 with:
• 〈W , R〉 is an S4 Kripke frame
• For each w ∈ W , 〈Tw,⊕w〉 is a join semilattice
• v is a valuation from atomic formulae to W
• For each w ∈ W , tw is a function mapping atomic formulae to Tw

• If wRw′ and tw(p) ≤w tw(q) for atoms p, q then tw′(p) ≤w′ tw′(q).

As a join semilattice, each 〈Tw,⊕w〉 defines a partial order ≤w so that a ≤w b if
a⊕w b = b. Moreover, the constraint guaranteeing that topic inclusion between atoms
across accessible worlds ensures the persistence of topic inclusion for any sentences.

These join semilattices reflect an intuition that topics can be fused together. The
functions tw are responsible for assigning topics to formulae; for PAI, the assignment
is determined as follows:

Definition 2 The topic assignment function tw is extended through the language:

• tw(¬ϕ) = tw(ϕ)

• tw(ϕ�ψ) = tw(ϕ) ⊕w tw(ψ) for binary connectives �.

Truth at a world is defined:

Definition 3 Truth conditions are defined recursively:

• w � p if w ∈ v(p)
• w � ¬ϕ if w � ϕ

• w � ϕ ∧ ψ if w � ϕ and w � ψ

• w � ϕ → ψ if

{
for all w′ such that wRw′, if w′ � ϕ then w′ � ψ

tw(ψ) ≤w tw(ϕ)
.

Given truth conditions for negation and conjunction, those for disjunction (∨) and
material implication (⊃) can be inferred from the above.

Note that the “double-barreled” nature of the truth conditions for analytic implica-
tion reveals it to presuppose a “two-component” approach to semantic content in the
sense of Berto et al. (2019). The valuation function v and topic-assignment function
t each serve as an independent component that mutually determine content.

Its topic assignment function encapsulates what might be considered a property
of topic vacuity of the intensional conditional, i.e., that the intensional conditional
connective itself contributes nothing to—and exerts no influence over—the overall
subject-matter of a sentence.

2 Technically, Fine (1986), too, provides model theory for an extension of Parry’s logic, carrying over an
axiom introduced by Dunn (1972). But the addition is very modest and natural and the resulting system is
frequently treated as a sort of “completion” of the axioms in Parry (1933); indeed, the Dunn–Fine axiom is
ultimately endorsed by Parry (1989).
3 Fine’s model theory from Fine (1986) uses the notation “〈I, ◦〉” and the topic assignment function is
denoted by “γ ”; our choice of notation maintains continuity with Berto’s model-theoretic presentation of
TSIMs.
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In Sect. 2.1, I identified cases inwhich the influence of some intensional conditionals
on the overall subject-matter of a complex is ampliative, which suggests that subject-
matters of intensional conditionals may, in general, be distinct from the fusion of the
subject-matters of their components. In the case of such topic-ampliative conditionals,
the topic vacuity of t in Definition 1 is recognizably deficient. Something more subtle
is required.

But there is a further step in the development of the topic-theoretic apparatus of PAI
that is worth mentioning refined enough to handle this ampliativity. Thus, we examine
a refinement of PAI in which a slightly more nuanced picture is described.

3.2 Fine’s revisions

In the concluding pages of Fine (1986), Fine pauses to consider some potential elabora-
tions on his model theory for Parry’s system, identifying in particular some discomfort
with applying Junctive Transparency to Parry’s intensional conditional →.

Fine observes that Parry offers the Proscriptive Principle as a thesis about the
inclusion of concepts (Begriffe) while simultaneously describing analytic implication
itself as a concept (Begriff ):

Another change, suggested by Parry [in Parry (1933)], arises from treating ana-
lytic implication as a concept. No proposition not containing this concept could
then analytically imply a proposition containing that concept. (Fine, 1986, p. 177)

Apparently, this suggestion is not explicitly posed by Parry; rather, the modification
sketched by Fine has its origins in Parry’s choice of terminology:

[T]he concept (Begriff ) of logical consequence should have the specified prop-
erty, since the conclusion cannot contain any concepts (Begriffe) other than the
premises.4 (Parry, 1933, p. 5)

In otherwords, if the Proscriptive Principle proscribes the introduction of newconcepts
(Begriffe) and analytic implication is itself a concept (Begriff ), then the proscription
ought to extend to preclude the introduction of this concept as well.

Having acknowledged that relations expressed by intensional conditionalsmayhave
an ampliative or transformational effect on component subject-matter, Fine’s sugges-
tion is clearly a step in the right direction. Conditionals—most importantly, intensional
conditionals—are often described as asserting that an entailment relationship holds
between two propositions, however. Consequently, there seem to be cases in which the
appearance of → in ϕ → ψ makes a similar contribution to the complex sentence’s
subject matter as the predicate “is married to” contributes to the subject-matter of “Jill
is married to Pat.”

The recipe to revise to the model theory that follows from Fine’s observation is
straightforward; for each semilattice 〈Tw,⊕w〉, we must ensure that there is a concept
iw (for “implication”) that stands in for the contribution made by analytic implication

4 [D]er Begriff des logischen Folgens die angegebene Eigenschaft haben, da die Konklusion keine anderen
Begriffe enthalten kann als die Prämissen.
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itself. Described in Ferguson (2021) as the coarse proposal, let us follow Fine in Fine
(1986) in defining a revised PAI model:

Definition 4 An R/PAI Fine model is a tuple 〈W , R, T,⊕, v, t〉 differing from Defi-
nition 1 by including for each w ∈ W a privileged element iw ∈ Tw such that tw is
extended as follows:

• tw(¬ϕ) = tw(ϕ)

• tw(ϕ�ψ) = tw(ϕ) ⊕w tw(ψ) for extensional connectives �

• tw(ϕ → ψ) = tw(ϕ) ⊕w iw ⊕w tw(ψ).

Continuity with PAI models is reinforced by retaining the truth conditions outlined in
Definition 3.

Fine does not provide an axiomatization of the suggested modification to the model
theory. It may be of historical interest to do so, but the matter is not taken up here.5

Our interest in describing Definition 4 is in its role as an intermediate waypoint during
the maturation of Parry’s analytic implication into the more refined alternative we will
consider in the sequel. Insofar as Definition 4 makes space for the phenomenon of
ampliativity considered in Sect. 2.1, it undoubtedly improves on Definition 1.

But identifying the models as an intermediate position indicates that there are
drawbacks. These rest on the coarseness of the proposal and what may be thought of as
perfunctory contributionmade by the intensional conditional. A notable consequence
of the coarse proposal is clear. According to Definition 4, an intensional conditional’s
contribution to the subject-matter of a complex is determined entirely by the binary
dimension of its appearance—or not—in the complex. Its contribution is ignorant
of other prima facie important features of a conditional statement, e.g., the depth or
nesting of a conditional within other conditionals. Sections2.2 and 2.3 discussed two
of the most obvious dimensions that are not respected by Definition 4: considerations
of incommensurability and order, respectively.

Examination of Definition 4 reveals commitments to the following:

• tw(ϕ) ⊕w tw(ψ) ≤w tw(ϕ → ψ)

• tw(ϕ → ψ) = tw(ψ → ϕ).

The first condition shows the revised account to be inappropriate for modeling condi-
tionals exhibiting the type of incommensurability we’d considered; the second shows
the t ofDefinition 4 to be incapable of respecting intensional conditionals whose topics
are sensitive to order.

Thus, although an improvement on the original topic-theoretic apparatus of PAI,
tools to cover the full spectrum of potential topic-theoretic properties of intensional
conditionals requires a deeper revision.

4 Conditional-agnostic analytic implication

Now, let us consider a positive formalization of the core intuition. In this section, I
will introduce a modification of Definition 1 that will induce a logic of conditional-

5 This system is clearly intermediate between Parry’s PAI and the weak system CA/PAI to be introduced.
One roadblock to quickly axiomatizing R/PAI is the difficulty of representing these elements iw in the
canonical model as there is no particular element of syntax that naturally corresponds to iw .
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agnostic PAI (or CA/PAI) that is sufficiently flexible to not only allow agnosticism
about properties considered in the foregoing but to allow the positive representation
of strengthened conditions in case elements of that agnosticism should be resolved.

4.1 Model theory of CA/PAI

First, I will introduce the structure of our model theory:

Definition 5 A CA/PAI Fine model is a tuple 〈W , R, T,⊕,�, v, t, h〉 differing from
Definition 1 by the addition of:

• For each w ∈ W , �w is a binary function from Tw × Tw → Tw

• For all w,w′ such that wRw′, hw,w′ : Tw → Tw′ is a homomorphism such that:

– for atoms p, hw,w′(tw(p)) = tw′(p)
– hw,w′(a ⊕w b) = hw,w′(a) ⊕w′ hw,w′(b)
– hw,w′(a �w b) = hw,w′(a) �w′ hw,w′(b).

The introduction of homomorphisms hw,w′ acts as a generalization of the constraint in
Definition 1 that topic inclusion between atoms is preserved across accessible worlds.
Although in PAI this condition ensures preservation of topic inclusion in general,
general topic preservation in CA/PAI requires these homomorphisms.

Lemma 1 If wRw′ then hw,w′(tw(ϕ)) = tw′(ϕ).

Proof The basis step is established by definition, so suppose that the property holds
of subformula of ϕ. In case ϕ is a conjunction, we have:

hw,w′(tw(ψ ∧ ξ)) = hw,w′(tw(ψ) ⊕w tw(ξ))

= hw,w′(tw(ψ)) ⊕w′ hw,w′(tw(ξ))

= tw′(ψ) ⊕w′ tw′(ξ)

= tw′(ψ ∧ ξ)

Simple modifications yield arguments establishing the remaining connectives. �

Lemma 1 leads to the persistence of topic inclusion in general.

Lemma 2 If tw(ϕ) ≤w tw(ψ) and wRw′ then tw′(ϕ) ≤w′ tw′(ψ).

Proof Suppose that tw(ϕ) ≤w tw(ψ). This can be expanded to the identity tw(ϕ) ⊕w

tw(ψ) = tw(ψ). By applying hw,w′ to both sides, we infer that hw,w′(tw(ϕ) ⊕w

tw(ψ)) = hw,w′(tw(ψ)) and, in turn, that hw,w′(tw(ϕ)) ⊕w′ hw,w′(tw(ψ)) =
hw,w′(tw(ψ)). By Lemma 1, this can be rewritten as tw′(ϕ) ⊕w′ tw′(ψ) = tw′(ψ),
which can be shortened to tw′(ϕ) ≤w′ tw′(ψ) as needed. �

I will retain the truth conditions from stock PAI models, but update the clauses by
which each tw assigns topics to formulae:

Definition 6 The topic assignment function tw is extended through the language:

123

1861



T. M. Ferguson

• tw(¬ϕ) = tw(ϕ)

• tw(ϕ�ψ) = tw(ϕ) ⊕w tw(ψ) for � extensional
• tw(ϕ → ψ) = tw(ϕ) �w tw(ψ).

Let us make a few comments about our � function.
First, as desired, there are virtually no assumptions about a �w b besides its

domain and range, which faithfully captures our agnosticism concerning tw(ϕ → ψ).
An immediate consequence is that the properties of Definition 4 that were criticized in
the last section are resolved by Definition 5. E.g., that tw(ϕ → ψ) = tw(ψ → ϕ) fails
in virtue of the absence of a guarantor that a �w b = b �w a. The consequences
are similarly clear in considering Parry’s axioms of Parry (1933). For example, the
axiom [A11], i.e.,

[A11] (ϕ → ψ) → (ϕ ⊃ ψ)

will fail because nothing is assumed concerning the relationship between a �w b
and a ⊕w b.6

This is not to say that �w is hollow and inert. Through its functionality, many
validities are obtained for free. Noting that tw(ϕ ∧ ϕ) = tw(ϕ), that tw(¬ϕ ∧ ¬ψ) =
tw(¬(ϕ ∨ ψ)), or that tw(ϕ ∧ (ψ ∧ ξ)) = tw((ϕ ∧ ψ) ∧ ξ) suffices to establish that
the following validities:

• � (ϕ ∧ ϕ) → ϕ

• � (¬ϕ ∧ ¬ψ) → ¬(ϕ ∨ ψ)

• � (ϕ ∧ (ψ ∧ ξ)) → ((ϕ ∧ ψ) ∧ ξ)

hold, respectively.
Finally, it is clear that stronger consequence relations can be defined by imposing

additional semantic constraints on�w. One extreme witnesses this: By setting�w=
⊕w, the model theory collapses to that of Definition 1.7 But, as we will see at the end
of this section, myriad subtle extensions intermediate between CA/PAI and PAI can be
defined by tightening the definition of �w.

4.2 An axiom system for CA/PAI

Having introduced its model theory, we now turn to a modification of Parry’s axioms
for PAI to provide a Hilbert-style calculus for CA/PAI. I follow the following intuition
in its formulation: Axioms of the form ϕ → ψ in which ϕ orψ have→ as the primary
connective represent a thesis about inclusion of the topic of a conditional; a thesis about
inclusion is only meaningful in the presence of the type of thesis about intensional
conditionals’ topics that our agnosticism rules out. In such cases, we generally replace
the main → operator of an axiom [An] with a ⊃ to yield an axiom [An†]. In other
cases, I try to carry over as much of PAI as possible.

6 As suggested in Sect. 2.2, the axiom [A11] corresponds to the property of subtopic preservation, which
will be demonstrated in Sect. 4.4.
7 This also demonstrates that CA/PAI is in fact a subsystem of PAI.
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Consequently, I follow Parry’s notation with f (ϕ) is any formula in which ϕ

appears; treat f (ψ) as the result of replacing one or more instances of ϕ with ψ in
f (ϕ). We have two further notational devices to consider. First, consider the following
definition:

Definition 7 • L→(p) = {p}
• L→(¬ϕ) = L→(ϕ)

• L→(ϕ � ψ) = L→(ϕ) ∪ L→(ψ) for � extensional
• L→(ϕ → ψ) = {〈L→(ϕ),L→(ψ)〉}.

Then the formula g(ϕ) is any formula such that L →(g(ϕ)) ⊇ L →(ϕ). Finally, I
use the notation tϕ to represent the formula ϕ ⊃ ϕ. This equips us to describe an
axiomatization of CA/PAI:

Definition 8 The logic of conditional agnostic analytic implication CA/PAI is deter-
mined by the following axioms:

[A1] (ϕ ∧ ψ) → (ψ ∧ ϕ)

[A2] ϕ → (ϕ ∧ ϕ)

[A3] ϕ → ¬¬ϕ

[A4] ¬¬ϕ → ϕ

[A5] (ϕ ∧ (ψ ∨ ξ)) → ((ϕ ∧ ψ) ∨ (ϕ ∧ ξ))

[A6] (ϕ ∨ (ψ ∧ ¬ψ)) → ϕ

[A7†] ((ϕ → ψ) ∧ (ψ → ξ)) ⊃ (ϕ → ξ)

[A8†] (ϕ → (ψ ∧ ξ)) ⊃ (ϕ → ψ)

[A9†] ((ϕ → ξ) ∧ (ψ → ζ )) ⊃ ((ϕ ∧ ψ) → (ξ ∧ ζ ))

[A10†] ((ϕ → ξ) ∧ (ψ → ζ )) ⊃ ((ϕ ∨ ψ) → (ξ ∨ ζ ))

[A11†] (ϕ → ψ) ⊃ (ϕ ⊃ ψ)

[A12†] ((ϕ ↔ ψ) ∧ f (ϕ)) ⊃ f (ψ)

[A13†] g(ϕ) → (ϕ ⊃ ϕ)

[A14†] ((¬ϕ → ϕ) ∧ (ϕ → ψ)) ⊃ (¬ψ → ψ)

[D1] (tϕ ↔ tψ) ⊃ (t f (ϕ) → t f (ψ))

[D2] (ϕ → ψ) ⊃ (¬(ϕ → ψ) → (ϕ → ψ))

and rules:

[MP1] ϕ, ϕ ⊃ ψ ⇒ ψ

[MP2] ϕ, ϕ → ψ ⇒ ψ

[ADJ ] ϕ,ψ ⇒ ϕ ∧ ψ

[MOD] ∅ ⇒ ¬ϕ → ϕ if ϕ is an axiom

Note that this [MOD] rule is required to grant modal strength to axioms like [A13†]. In
stripping such axioms of their topic-theoretic inclusion, we had to remove their strict
implication-like properties as well. [MOD] serves to grant axioms this force.

Despite its defensibility, the reflection of our agnosticism in the axioms undoubtedly
impedes attempts to hew too closely to prior work on the topic, i.e., Dunn’s (1972),
Urquhart’s (1973), Fine’s (1986), or Deutsch (1979). Many of the lemmas playing
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critical roles in these papers’ proofs rest on assumptions concerning the subject-matter
of a conditional precluded by our agnosticism. E.g., encoding necessity of ϕ as (ϕ →
ϕ) → ϕ works in the case of PAI orDAI because a guarantee that t(ϕ → ϕ) = t(ϕ); we
not only have no such guarantee, but suspicion of its validity serves as a cornerstone
of this effort.

It is worth noting that, just as Dunn shows for a related system in Dunn (1972), the
following useful “normal form theorems” are demonstrable in our system. By taking
instances of axioms or appealing to definitions, the following “normal forms” can be
derived:

Lemma 3 The following are provable:

[T 7] ϕ ↔ ¬¬ϕ

[T 8] ϕ ∧ ϕ ↔ ϕ [T 9] ϕ ∨ ϕ ↔ ϕ

[T 10] ϕ ∧ ψ ↔ ψ ∧ ϕ [T 11] ϕ ∨ ψ ↔ ψ ∨ ϕ

[T 12] ϕ ∧ (ψ ∧ ξ) ↔ (ϕ ∧ ψ) ∧ ξ [T 13] ϕ ∨ (ψ ∨ ξ) ↔ (ϕ ∨ ψ) ∨ ξ

[T 14] ϕ ∧ (ψ ∨ ξ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ ξ) [T 15] ϕ ∨ (ψ ∧ ξ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ ξ)

[T 16] ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ) [T 17] ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ)

The formulae in Lemma 3 bear a striking resemblance to presentations of first-degree
systems as equivalences such as Angell’s presentation of his AC in Angell (1977). It is
worth noting that for first-degree formulae ϕ, ψ (i.e., those including no instances of
analytic implication), ϕ ↔ ψ will be provable precisely when ϕ and ψ are classically
equivalent and share exactly the same variables.8

Soundness is easy to confirm by checking the axioms and rules against Definition
5. As [D2] is the lone axiom whose proof of validity is not entirely self-contained, we
prove this:

Observation 2 Axiom [D2] is valid.
Proof Suppose that w � ϕ → ψ and fix an arbitrary w′ ∈ w↑. The hypothesis
ensures that ifw′ � ϕ thenw′ � ψ while Lemma 2 guarantees that tw′(ψ) ≤w′ tw′(ϕ)

holds as well. Thus, w′ � ϕ → ψ . Thus, it vacuously holds that all accessible points
w′ making true ¬(ϕ → ψ) also make true ϕ → ψ . By definition of tw, it also
follows that tw(¬(ϕ → ψ)) = tw(ϕ → ψ). Having met the truth-theoretic and topic-
theoretic conditions, we conclude that that w � ¬(ϕ → ψ) → (ϕ → ψ), whence
w � (ϕ → ψ) ⊃ (¬(ϕ → ψ) → (ϕ → ψ)). �

The validity of the remaining axioms is trivial, whence:

Theorem 1 The axioms and rules are sound with respect to the model theory.

Completeness, of course, is more tricky. We show completeness by appeal to the
canonical model technique.

4.3 The canonical model

We now consider the canonical model for CA/PAI. Several lemmas are saved for an
appendix, but primary among them is the observation that the conditional of CA/PAI

8 Thanks to Francesco Berto for suggesting an acknowledgment of this feature.
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satisfies a syntactic version of Routley’s “double-barreled analysis” described in Rout-
ley et al. (1982). Consider translations by which the necessity of ϕ is captured by the
formula tϕ → ϕ and inclusion of the subject-matter of ψ in that of ϕ is captured by
tϕ → tψ .

Then the syntactic reflection “double-barreled analysis” within a theory amounts
to an equivalence between � � ϕ → ψ and the joint conditions that � � tϕ⊃ψ →
(ϕ ⊃ ψ) (i.e., → is an S4 strict conditional) and � � tϕ → tψ (i.e., → requires
subject-matter inclusion).

Lemmas 10, 12, and 15 (proven in the appendix) in concert permit us to provide
the fundamental characterization of the → connective:

Theorem 2 � � ϕ → ψ iff

{
� � tϕ⊃ψ → (ϕ ⊃ ψ), and

� � tϕ → tψ
.

With Theorem 2 in hand, we can now begin to prove completeness by describing
a canonical model. First, we consider several definitions. To introduce the canonical
model’s accessibility relation, we provide the following definition:

Definition 9 Let � be a theory. Then �� = {ϕ | tϕ → ϕ ∈ �}.
As for the concept semilattice, we introduce several additional definitions:

Definition 10 For a maximally consistent theory �, define an equivalence relation∼�

such that ϕ ∼� ψ if tϕ ↔ tψ ∈ �.

Definition 11 Let �ϕ�� be the equivalence class of formulae induced by ∼� . Define
two functions ⊕� and ��

• �ϕ�� ⊕� �ψ�� = �ϕ ∧ ψ��

• �ϕ�� �� �ψ�� = �ϕ → ψ��

We will soon demonstrate that the above definitions satisfy appropriate properties.
First, however, Iwill properly introduce the canonicalmodel for amaximally consistent
theory:

Definition 12 The CA/PAI canonical model isM = 〈W , R, T,⊕,�, v, t, h〉 where
• W = {	 | 	 a maximally consistent theory}
• R = {〈�,
〉 | �� ⊆ 
}
• � ∈ v(p) iff p ∈ �

• t� : ϕ �→ �ϕ�� for each � ∈ W
• h�,�′(�ϕ��) = �ϕ��′ .

Definition 13 For � a maximally consistent CA/PAI theory, its canonical model M�

is the submodel ofM where W� = {	 | �R	}.
Lemmas establishing that the above structures enjoy the appropriate properties to
qualify as models are saved for the appendix, but I will state the penultimate step of
the following fundamental lemma concerning the canonical model:
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Lemma 4 ϕ ∈ � iff � � ϕ.

Lemma 4, of course, immediately captures completeness of the axioms.

Theorem 3 The theorems of CA/PAI are complete with respect to the model theory.

This definition guarantees that for every nontheorem of CA/PAI a countermodel exists.
As a consequence, we can employ the method of filtrations to establish the following
theorem (a proof of which is found in the final appendix):

Theorem 4 The set of theorems of CA/PAI is decidable.

Having benefited from the efficacy of the general definition of canonical model, we can
appeal to smallmodifications in order to explore systems intermediate betweenCA/PAI
and PAI (indeed, intermediate between CA/PAI and Dunn’s DAI). The fine-grained
distinctions that can be made in extensions of CA/PAI provide an ample demonstration
of the power of the proposal.

4.4 Systems intermediate between CA/PAI and PAI

The agnosticism at the heart of the foregoing analysis is not inflexible. In acknowl-
edgment that some thesis or other about the subject-matter of ϕ → ψ may ultimately
be found to be compelling, the framework allows one to impose tighter conditions on
the model theory to generate stronger logics. Just as standard Kripke semantics allow
one to align semantic constraints on R with characteristic axioms, so, too, may one
align conditions on �w with characteristic axioms, including many of those initially
included by Parry.

In this section, we will examine a sampling of extensions of our CA/PAI to illustrate
how such constraints may be employed. Of course, we have observed PAI itself may be
generated by setting�w= ⊕w. But we can examine extensions intermediate between
these cases as well. Initially, we look at Parry’s axiom [A8].

[A8] (ϕ → (ψ ∧ ξ)) → (ϕ → ψ)

N.b. the intuitive difference between [A8] and [A8†]. [A8†] says only that if ϕ →
(ψ ∧ξ) holds, then ϕ → ψ holds. Parry’s [A8] adds to this a topic-theoretic statement
that the topic of ϕ → ψ is included in that of ϕ → (ψ ∧ ξ).

Of all of the PAI axioms concerning topic inclusion between conditional sentences,
[A8] seems to be the most compelling if one emphasizes the analytic component of
analytic implication. Indeed, sentence [3] is essentially a reflection of this intuition.
There is a strong sense in which e.g. the inference from “that Sam is a bachelor
analytically implies that Sam is unmarried and Sam is aman” to “that Sam is a bachelor
analytically implies that Sam is unmarried” is itself a sort of analysis of the meaning
of the premise. The consequent arguably follows by some type of decomposition of
the premise into its parts.

In keeping with Parry’s goal of a logic of analytic implication, there is a sense in
which Axiom 8 communicates a true analytic decomposition of the subject-matter of
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ϕ → ψ ∧ ξ . Taking this seriously, then, let us define a logic CA/PAI8. I use ⊕ to
indicate the inclusion of a new axiom.9 Then

Definition 14 CA/PAI8 = CA/PAI ⊕ (ϕ → (ψ ∧ ξ)) → (ϕ → ψ).

Note that CA/PAI8 is both an extension of CA/PAI and a subsystem of PAI. We can
ensure its validity against a particular class of CA/PAImodels by identifying an appro-
priate semantic condition on �:

Definition 15 Call �w right decomposable if the following condition holds:

• a �w b ≤w a �w (b ⊕w c).

This allows us to state a theorem (proven in the appendix):

Theorem 5 CA/PAI8 is characterized by models in which each �w is right decom-
posable.

A similarly plausible strengthening might be to embrace Parry’s axiom [A7], that is:

[A7] ((ϕ → ψ) ∧ (ψ → ξ)) → (ϕ → ξ)

While less obviously correct than [A8], there is nevertheless some clear intuitive appeal
to [A7]. It admits an intuitive reading attesting to the analyticity of the hypothetical
syllogism, according to which the inference introduces no subject-matter beyond that
of its premises.

Definition 16 CA/PAI7 = CA/PAI ⊕ ((ϕ → ψ) ∧ (ψ → ξ)) → (ϕ → ξ).

We can provide a clear and elegant semantic constraint on �w that will prove char-
acteristic of this extension.

Definition 17 Call �w middle term eliminable if the following condition holds:

• a �w c ≤w ((a �w b) ⊕w (b �w c)).

Again, we can state the following (the proof of which is in the appendix):

Theorem 6 CA/PAI7 is characterized by models in which each �w is middle term
eliminable.

The flexibility of the framework is reinforced by the ability to characterize myriad
intermediate logics. Just as, e.g., S4 corresponds to the joint frame conditions of
reflexivity and transitivity,we can jointly impart the above conditions to yield a stronger
logic. Consider the following corollary:

Corollary 1 Let CA/PAI7,8 = CA/PAI⊕ ((ϕ → ψ) ∧ (ψ → ξ)) → (ϕ → ξ) ⊕ (ϕ →
(ψ ∧ ξ)) → (ϕ → ψ). Then CA/PAI7,8 is characterized by models in which each �w

is both middle term eliminable and right decomposable.

9 Context should avoid confusion between this use and the use of the symbol for semilattice join.
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This presents an opportunity to make good on a promissory note issued in Sect. 2.2
concerning the appropriate framework in case one rejects the possibility of incom-
mensurability, i.e., insists on the preservation of subtopics in intensional cases. This
preservation can be described as a semantic condition:

Definition 18 Call an CA/PAI model subtopic-preserving if for all w and topics a, b,
a ⊕w b ≤w a �w b.

Interestingly, one of Parry’s axioms that had been used to illustrate the features of �
in Sect. 4.1—[A11]—corresponds to this property. Following the foregoing idioms,
we can define the following:

Definition 19 CA/PAI11 = CA/PAI ⊕ (ϕ → ψ) → (ϕ ⊃ ψ).

Then this extension axiomatizes the class of models in which this type of preservation
is respected. We show this with the following characterization result (which will be
proven in the appendices):

Theorem 7 CA/PAI11 is characteristic of subtopic-preserving models.

Again, this speaks to the flexibility of the proposal as the framework is extensi-
ble enough to model differing positions about topic. This—and the other above
examples—shows that we can in practice exercise a fine degree of control over the
topic-theoretic features of models to determine systems intermediate between CA/PAI
and PAI in the same way that imparting conditions to R yields stronger modal logics
than K.

But the assignment of subject-matter is not the only dimension along which one
might want to strengthen a logic. Recall, for example, Dunn’s demodalized DAI that
results from adding to PAI the demodalizer axiom ϕ → (¬ϕ → ϕ). Traditionally, the
demodalizer axiom—which e.g. collapses S4 into classical logic—is considered to
“collapse modal distinctions.” Such a collapse is reflected in DAI, which is essentially
a “classical” logic of analytic implication (an assertion clear from the presentation by
Epstein—who independently discovered DAI—cataloged in Epstein 1987).

In the present context, though, the stock demodalizer axiom collapses not only
modal distinctions but collapses many topic-theoretic distinctions one may wish to
preserve. The validity of ϕ → (¬ϕ → ϕ) would require the imposition of new
conditions on 〈Tw,⊕w〉, e.g., that a �w a ≤w a; this condition, of course, in in
conflict with an intuition that intensional conditionals play a “transformative” role in
the determination of their subject-matters.

So to provide a strictly demodalized CA/PAI—one lacking side-effects on the prop-
erties of the topic semilattices—requires a different axiom. We provide an alternative
axiom by the following:

Definition 20 CA/DAI = CA/PAI ⊕ (ϕ ⊃ (tϕ → ϕ)).

This suffices to characterize the logic (a proof can be found in the appendix):

Theorem 8 CA/DAI is characterized by models in which R is the diagonal relation on
W, i.e., R = {〈w,w〉 | w ∈ W }.
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Fig. 1 Logics Intermediate Between CA/PAI and DAI

I also note thatM� in the above case canbe seen to behave a singletondomainW . Thus,
soundness and completeness with respect to single-pointed frames is also established.
Reading such models as ones in which the actual world is the only possible world,
the necessity of a proposition is equivalent to its truth. Nevertheless, no additional
conditions on �w are induced. This further reinforces the notion that ϕ ⊃ (tϕ → ϕ)

effectively demodalizes the system without side-effects on its topic-theoretic machin-
ery. Moreover, as the scheme tϕ → ϕ essentially provides a definition of necessity,
it is worth pointing out that characteristic axioms for frame conditions for systems
intermediate between S4 and Triv can be emulated in the language of CA/PAI.

Consider extending the above naming conventions in the obvious ways (so that e.g.
CA/DAI7 extends CA/DAI with axiom [A7]). Then between Theorems 5, 6, 7 and 8, a
picture of logics intermediate between CA/PAI and DAI emerges, pictured in Fig. 1.

Given that one can express necessity, further intermediate logics can be determined
by including axioms cognatewith the standard axiomsor imposing characteristic frame
conditions on R. Fine’s remarks e.g. on axiomatizing S5-like extensions of Parry’s
PAI in Fine (1986) can be easily carried over to the case of CA/PAI. Given appropriate
translations of boxes and diamonds, canonical model proofs for extensions of S4 will
apply immediately to extensions of CA/PAI.

5 Concluding remarks

In this paper, I have introduced machinery to allow fine-grained control over
the subject-matter of an intensional conditional and have provided an initial
implementation—a proof of concept, so to speak—by enriching Kit Fine’s model
theory for PAI and providing sound and complete axiomatizations of several logics in
this neighborhood.

The reader is reminded that Definition 5 can be straightforwardly adapted to apply
to cases beyond those envisioned by Parry. In particular, the model theory could be
modified to allow for other intensional conditionals beyond Parry’s analytic implica-
tion. The reader should be able to intuit how additional accessibility relations added
to the model (e.g., a universal accessibility relation R′ supporting the evaluation of
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an S5 strict implication �) can be harmonized with corresponding functions defined
analogously to �.

E.g., complementing the function � with a function �� would permit the repre-
sentation of precise relationships between the subject-matters of ϕ → ψ and ϕ � ψ .
By further augmentation to the model theory, a plethora of conditionals can receive
their own � function.

Of course, this opens the doors to theories of topic for intensional notions beyond
conditionals. Because one can define e.g. S4 necessity in virtue of a strict conditional,
accounts of the topics for unary modal operators of all sorts are within the scope of the
current proposal. Likewise, as variably strict conditionals themselves, the analysis of
topics of TSIMs themselves is available merely by adding new � functions for each
TSIM.

The present paper is intended as the first in a sequence of several detailed exami-
nations of topic-theoretic properties of intensional connectives and operators. In the
planned sequel, the theory is extended to provide accounts of topic for intensional
conditionals in general and unary modal operators. These accounts will be directly
embedded in the setting of TSIMs, which will provide an account of the topic of
formulae in which TSIMs appear.
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Appendix A: The double-barreled analysis

This section includes proofs of lemmas necessary to prove Theorem 2. Initially, we
observe some straightforward properties.

Lemma 5 � ϕ → ϕ.

Lemma 6 The following are provable:

[S1] ϕ → (ϕ ⊃ ϕ)

[S2] (ϕ ∨ ¬ϕ ∨ ψ) → (ϕ ∨ ¬ϕ)

[S3] (ϕ ∨ ¬ϕ ∨ ψ ∨ ξ) → (ϕ ∨ ¬ϕ ∨ ξ)

.

Proof These are recognizably instances of [A13†] in case g(ϕ) is ϕ itself, ϕ∨¬ϕ∨ψ ,
and ϕ ∨ ¬ϕ ∨ ψ ∨ ξ , respectively. �


We will proceed now to demonstrating that such an equivalence holds.
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Lemma 7 If � � ϕ → ψ then � � tϕ→ψ → (ϕ → ψ).

Proof Suppose that � � ϕ → ψ . By [D2] and [MP], � � ¬(ϕ → ψ) → (ϕ → ψ).
By Lemma 5, also � � (ϕ → ψ) → (ϕ → ψ). So by [A10†] and [T 9], we conclude
that � � (¬(ϕ → ψ) ∨ (ϕ → ψ)) → (ϕ → ψ), i.e., � � tϕ→ψ → (ϕ → ψ). �

Lemma 8 � (tϕ ∧ tψ) ↔ tϕ∧ψ .

Proof For left-to-right, note that by some permutations and definitions, we can estab-
lish that � (tϕ ∧ tψ) ↔ [[(ϕ ∧ψ)] ∨ [(¬ϕ ∧ψ)∨ (ϕ ∧¬ψ)∨ (¬ϕ ∧¬ψ)]]. First, by
Lemma 5, � (ϕ ∧ ψ) → (ϕ ∧ ψ). Second, straightforward appeals to [A10†], [T 9],
and [T 16] show that � [(¬ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ¬ψ)] → ¬(ϕ ∧ ψ). Thus,
� [[(ϕ ∧ ψ)] ∨ [(¬ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ¬ψ)]] → [¬(ϕ ∧ ψ) ∨ (ϕ ∧ ψ)].
Recognizing the consequent of this formula as tϕ∧ψ , appeal to [A7†] establishes that
� (tϕ ∧ tψ) → tϕ∧ψ .

For right-to-left, it is straightforward to show that� tϕ∧ψ → [(ϕ∨¬ϕ∨¬ψ)∧(ψ∨
¬ψ ∨¬ϕ)]. By Lemma 6, both� (ϕ∨¬ϕ∨¬ψ) → tϕ and� (ψ ∨¬ψ ∨¬ϕ) → tψ ,
whence appeals to [A7†] and [A9†] establish that � tϕ∧ψ → (tϕ ∧ tψ). �

Lemma 9 If � � ϕ → ψ then � � ϕ ↔ (ϕ ∧ ψ).

Proof Applying [A8†] to the identity (ϕ∧ψ) → (ϕ∧ψ) yields (ϕ∧ψ) → ϕ. For the
other direction, an application of [A9†] ((ϕ → ϕ)∧(ϕ → ψ)) ⊃ ((ϕ∧ϕ) → (ϕ∧ψ)),
so by [ADJ ] and hypothetical syllogism, we easily infer ϕ → (ϕ ∧ ψ). �

The above lemmas permit us to demonstrate that the→ connective continues to satisfy
the requisite property that provability of ϕ → ψ implies the inclusion of subject-
matter:

Lemma 10 If � � ϕ → ψ then � � tϕ → tψ .

Proof Suppose that � � ϕ → ψ . Then by Lemma 9, we have � � ϕ ↔ (ϕ ∧ ψ)

and by Lemma 5 we have � � (ϕ ⊃ ϕ) → (ϕ ⊃ ϕ). By [ADJ ], we can conjoin
these and use an instance of [A12†] to yield � � (ϕ ⊃ ϕ) → ((ϕ ∧ ψ) ⊃ (ϕ ∧ ψ)).
By definitions, instances of distribution, and applications of [A7†], we can infer that
� � (ϕ ⊃ ϕ) → [(ϕ ∨ ¬ϕ ∨ ¬ψ) ∧ (ψ ∨ ¬ψ ∨ ¬ϕ)]; by [A8†], � � (ϕ ⊃ ϕ) →
(ψ ∨ ¬ψ ∨ ¬ϕ).

But (ψ ∨ ¬ψ ∨ ¬ϕ) → (ψ ∨ ¬ψ) is a theorem by Lemma 6, and by applying
[A7†], we infer that (ϕ ⊃ ϕ) → (ψ ∨ ¬ψ), i.e., tϕ → tψ . �


The second component of the analysis of the conditional can now be demonstrated,
namely, that the conditional → acts as a strict S4 conditional. We require a simple
lemma first:

Lemma 11 � tϕ⊃ψ → tϕ .

Proof By definitions and applications of distribution, we infer theoremhood of ((ϕ ⊃
ψ) ⊃ (ϕ ⊃ ψ)) → ((ϕ ∨ ¬ϕ ∨ ψ) ∧ (ψ ∨ ¬ψ ∨ ϕ)) and, by [A8†], ((ϕ ⊃ ψ) ⊃
(ϕ ⊃ ψ)) → (ϕ ∨ ¬ϕ ∨ ψ). By Lemma 6, we infer that (ϕ ∨ ¬ϕ ∨ ψ) → (ϕ ∨ ¬ϕ),
and by [A7†], ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ψ)) → (ϕ ⊃ ϕ), i.e., tϕ⊃ψ → tϕ . �
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Lemma 11 allows us to show that validity of ϕ → ψ has properties like that of a
strict conditional:

Lemma 12 If � � ϕ → ψ then � � tϕ⊃ψ → (ϕ ⊃ ψ).

Proof By Lemma 5 and hypothesis, [ADJ ] yields � � (ϕ → ψ) ∧ (¬ϕ → ¬ϕ); by
an instance of [A10†], we thereby may infer that � � (ϕ ∨ ¬ϕ) → (¬ϕ ∨ ψ), i.e.,
tϕ → (ϕ ⊃ ψ). By an appropriate instance of [A9†], we appeal to Lemma 11 to infer
that � � tϕ⊃ψ → (ϕ ⊃ ψ). �

Lemma 13 If � � (ϕ → (ϕ ⊃ ψ)) then � � ϕ → ψ .

Proof By Lemma 5, the hypothesis, and [ADJ ], � � (ϕ → ϕ) ∧ (ϕ → (¬ϕ ∨ ψ)).
By appeal to appropriate instances of [A2] and [A9†], we infer that � � ϕ → (ϕ ∧
(¬ϕ ∨ ψ)) and, by [A5], � � ϕ → ((ϕ ∧ ¬ϕ) ∨ (ϕ ∧ ψ)). By an instance of [A6],
we continue to infer that � � ϕ → (ϕ ∧ ψ) and by theoremhood of (ϕ ∧ ψ) → ψ ,
[ADJ ] and [A7†] give us � � ϕ → ψ . �

Lemma 14 If � � tϕ → tψ then � � tϕ → tϕ⊃ψ .

Proof Suppose that � � tϕ → tψ , i.e., � � (ϕ ∨ ¬ϕ) → (ψ ∨ ¬ψ). Then by
Lemma 5, (ϕ ∨ ¬ϕ) → (ϕ ∨ ¬ϕ) is a theorem, and an appeal to [A10†] ensures that
� � (ϕ ∨ ¬ϕ) → (ϕ ∨ ¬ϕ ∨ ψ ∨ ¬ψ).

Now, by Lemma 6, (ϕ ∨ ¬ϕ ∨ ψ ∨ ¬ψ) → (ϕ ∨ ¬ϕ ∨ ψ) and (ϕ ∨ ψ ∨ ¬ψ) →
(ϕ ∨ ¬ϕ ∨ ψ ∨ ¬ψ) are also theorems. Between [A2] and [A9†], then, we can infer
that (ϕ ∨ ¬ϕ) → ((ϕ ∨ ¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ϕ ∨ ψ ∨ ¬ψ)). But because, as we
saw in earlier lemmas, distributions and definitions ensure theoremhood of ((ϕ ∨
¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ϕ ∨ ψ ∨ ¬ψ)) → ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ψ)), [A9†] ensures that
� � (ϕ ∨ ¬ϕ) → ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ ψ)), i.e., � � tϕ → tϕ⊃ψ . �


The foregoing lemmas allow us to show that the conjunction of appropriate senten-
tial representations of topic inclusion and strict conditional behavior are sufficient to
prove the corresponding conditional ϕ → ψ :

Lemma 15 If � � tϕ → tψ and � � tϕ⊃ψ → (ϕ ⊃ ψ) then � � ϕ → ψ .

Proof Suppose that � � tϕ → tψ . Then by Lemma 14, � � tϕ → tϕ⊃ψ . By Lemma
6, ϕ → tϕ , whence [A7†] guarantees that ϕ → tϕ⊃ψ . Applying [A7†] again to the
hypothesis that � � tϕ⊃ψ → (ϕ ⊃ ψ) in turn yields that � � ϕ → (ϕ ⊃ ψ). But by
Lemma 13, this entails that � � ϕ → ψ . �


Appendix B: Properties of the canonical model

This section includes lemmas necessary to establish that the canonical model is well-
defined. First, we show that topic assignments persist along R as required:

Observation 3 If �R	 and ϕ ≤� ψ then ϕ ≤	 ψ .
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Proof The hypothesis that ϕ ≤� ψ means that tψ → tϕ ∈ �. By Lemma 7, � �
ttψ→tϕ → (tψ → tϕ), whence tψ → tϕ ∈ ��. The hypothesis that �R	 means that

�� ⊆ 	, whence tψ → tϕ ∈ 	 and ϕ ≤	 ψ . �

We show that R has the necessary properties so that 〈W , R〉 is an S4 Kripke frame:

Observation 4 R is reflexive and transitive.

Proof First, we examine reflexivity. For any ϕ ∈ ��, tϕ → ϕ ∈ �. But as a tautology,
tϕ ∈ � and by [MP], ϕ ∈ �. Thus, �� ⊆ �, i.e., �R�.

Second, we show transitivity. Suppose that �R
R�. We show �R�. Pick a ϕ ∈
��. Then tϕ → ϕ ∈ �. By Lemma 7, also ttϕ→ϕ → (tϕ → ϕ) ∈ �. Thus, tϕ → ϕ

is an element of ��, and thus an element of 
. But if tϕ → ϕ ∈ 
, ϕ ∈ 
�, whence
ϕ ∈ �. �


We finally need to demonstrate that our definitions for ⊕,�, and homomorphisms
h are well-defined, that is, that these are in fact functions. We start with ⊕�:

Lemma 16 Each ⊕� is a function.

Proof Without loss of generality, that ⊕� is a function means that if tϕ ↔ tψ ∈ �

then tϕ∧ξ ↔ tψ∧ξ ∈ �. Assume that the antecedent condition holds; then by selecting
instances of [A9†] and the theorem tξ → tξ , we may straightforwardly infer that
(tϕ ∧ tξ ) ↔ (tψ ∧ tξ ) ∈ �. By Lemma 8, we have as theorems tϕ∧ξ ↔ (tϕ ∧ tξ ) and
tψ∧ξ ↔ (tψ ∧ tξ ). Thus, by several applications of rules to appropriate instances of
[A7†], we can infer that tϕ∧ξ ↔ tψ∧ξ ∈ �. So in case �ϕ�� = �ϕ′�� and �ψ�� =
�ψ ′�� , we are guaranteed that �ϕ�� ⊕� �ψ�� = �ϕ′�� ⊕� �ψ ′�� . �


We continue by showing �� is well-defined as well:

Lemma 17 Each �� is a function.

Proof Suppose that tϕ ↔ tψ ∈ �. Then as a consequence of [D1], both tϕ→ξ ↔
tψ→ξ ∈ � and tξ→ϕ ↔ tξ→ψ ∈ �. Thus, if �ϕ�� = �ϕ′�� and �ψ�� = �ψ ′�� ,
�ϕ�� �� �ψ�� = �ϕ′�� �� �ψ ′�� . �


We conclude our survey of the canonical model’s functions by establishing that the
functions h�,�′ are indeed homomorphisms.

Lemma 18 Each h�,�′ is a homomorphism.

Proof Glancing at Definition 12 suffices to establishes the functionality of each h�,�′
as well as the property that h�,�′(t�(p)) = t�′(p) for atoms p. Thus, we turn the
preservation of structure. In the case of fusion, the following equivalences hold:

h�,�′(�ϕ�� ⊕� �ψ��) = h�,�′(�ϕ ∧ ψ��) Lemma 16

= �ϕ ∧ ψ��′ Definition 12

= �ϕ��′ ⊕�′ �ψ��′ Lemma 16
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= h�,�′(�ϕ��) ⊕�′ h�,�′(�ψ��) Definition 12

The case of� follows from amodification of the above chain of identities by exchang-
ing function symbols and connectives and appealing to Lemma 17 as appropriate. �


Having shown that R and the concept lattices have the appropriate properties, we
conclude that M (and each M�) is in fact a CA/PAI model.

For convenience, we provide the following observation:

Observation 5 �ϕ�� ≤� �ψ�� iff tψ → tϕ ∈ �.

Proof Because a ≤� b is shorthand for b = a ⊕� b, the requirement is to prove
that � � tψ∧ϕ ↔ tψ iff � � tψ → tϕ . But because � tψ∧ϕ → tψ can be easily
established, the requirement is simply to show that � � tψ → tψ∧ϕ iff � � tψ → tϕ .

For left-to-right, suppose that � � tψ → tψ∧ϕ . Then appeal to Lemma 8 and [A8†]
assures us that tψ∧ϕ → tϕ ; by [A7†], then � � tψ → tϕ .

For right-to-left, suppose that � � tψ → tϕ . By e.g. Lemma 5 and [A9†], � �
tψ → (tψ ∧ tϕ); but Lemma 8 again establishes equivalence between the consequent
and tψ∧ϕ itself, whence � � tψ → tψ∧ϕ . �


Before proving Lemma 4 we prove important closure properties holding of ��.

Lemma 19 For ϕ a theorem of S/PAI, ϕ ∈ ��.

Proof We prove this by induction on complexity of proofs. As a basis step when ϕ is
an axiom:

• By Lemma 5, ϕ → ϕ ∈ � and by rule [MOD] ¬ϕ → ϕ ∈ �. Between [A10†]
and [T 9], we can infer that tϕ → ϕ ∈ �, whence ϕ ∈ ��.

Otherwise, ϕ has been proven by applying one of the four rules to other sentences for
which the property has been demonstrated. In order:

• For [ADJ ] where ϕ = ψ ∧ ψ , the assumption is that � includes tψ → ξ and
tξ → ξ . Through the use of [A9†], we can infer that � includes (tϕ ∧ tψ) → ϕ∧ψ

and by Lemma 8, ultimately infer that tϕ∧ψ → ϕ ∧ ψ ∈ �, whence ϕ ∧ ψ ∈ ��.
• For [MP1], suppose that ψ ⊃ ϕ ∈ �� and ψ ∈ ��. Then tψ⊃ϕ → (ψ ⊃

ϕ) ∈ � and tψ → ψ ∈ �. By an appeal to [A9†], we can infer that � includes
(tψ⊃ϕ ∧ tψ) → ((ψ ⊃ ϕ) ∧ ψ). By appeal to Lemma 8, we infer the inclusion
of t(ψ⊃ϕ)∧ψ → (tψ⊃ϕ ∧ tψ) and—with a bit of permutation—an appeal to [A6]
will get ((ψ ⊃ ϕ) ∧ ψ) → ϕ. Putting these together, we get

t(ψ⊃ϕ)∧ψ → ϕ

Of course, it is provable that ¬t(ψ⊃ϕ)∧ψ → t(ψ⊃ϕ)∧ψ , whence by an appeal to
an appropriate instance of [A14†], we are able to conclude that ¬ϕ → ϕ ∈ �.
Because ϕ → ϕ ∈ �, it nearly immediately follows that tϕ → ϕ, i.e., that ϕ ∈ ��.
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• For [MP2], suppose that ψ → ϕ ∈ ��. Then by the basis step of the inclusion of
axioms we infer that �� includes an appropriate copy of [A11†] from which an
appeal to the earlier proof of closure under [MP1] establishes that ψ ⊃ ϕ ∈ ��.
Then if ψ ∈ �� then ϕ ∈ �� follows from these same reasons.

• An application of [MOD] entails that ¬ϕ → ϕ ∈ � as it is an axiom. An appeal
to our earlier Lemma 7 ensures that � also includes t¬ϕ→ϕ → (¬ϕ → ϕ), i.e.,
that ¬ϕ → ϕ ∈ ��. �

The foregoing permit us to infer a critical lemma and corollary that illuminate the

workings of elements of �� as regards the theories extending it.

Lemma 20 �� � ϕ iff for all 
 ⊇ ��, ϕ ∈ 
.

Proof Left-to-right holds by definition. Suppose that ϕ is a member of every theory

 ⊇ ��. Then �� � ϕ (for otherwise, simple reasoning would show the existence of
an extension in which¬ϕ holds). By the compactness of S/PAI, there exists a sequence
of formulae ξ0, . . . , ξn−1 ∈ �� such that

∧
i<n ξi � ϕ. Importantly, by closure under

[ADJ ], ∧i<n ξi ∈ ��. By the classical deduction theorem,
∧

i<n ξi ⊃ ϕ is an S/PAI
theorem, whence by closure under [ADJ ], ∧

i<n ξi ⊃ ϕ ∈ ��. As
∧

i<n ξi ∈ ��,
by closure under [MP1] ϕ ∈ ��. �


Importantly, this allows us to show that the syntactic behavior of ⊃ in �� behaves
like an S4 strict conditional:

Corollary 2 �� � ϕ ⊃ ψ iff for all 
 ⊇ �� such that ϕ ∈ 
, also ψ ∈ 
.

This brings us to the proof of Lemma 4:

Proof In the atomic case, this is handled by the valuation function v. Thus, as induction
hypothesis, suppose that the result has been established for all formulae of lesser
complexity than ϕ

• In case ϕ = ¬ψ ,¬ψ ∈ � holds if (bymaximality of�) and only if (by consistency
of �) ψ /∈ �. But by induction hypothesis, this is equivalent to � � ψ , i.e.,
� � ¬ψ .

• In case ϕ = ψ ∧ ξ , ψ ∧ ξ ∈ � if (by [ADJ ]) and only if (by theoremhood of
(ψ ∧ ξ) → ψ and (ψ ∧ ξ) → ξ ) bothψ ∈ � and ξ ∈ �. By induction hypothesis,
this is equivalent to the conjunction of � � ψ and � � ξ , a condition which is
equivalent to � � ψ ∧ ξ .

• Finally, consider the case in which ϕ = ψ → ξ . By Theorem 2, ψ → ξ ∈ �

holds precisely when tψ⊃ξ → (ψ ⊃ ξ) ∈ � and tψ → tξ ∈ �.
• tψ⊃ξ → (ψ ⊃ ξ) ∈ � holds exactly when ψ ⊃ ξ ∈ ��, i.e., when at every 


such that �R
, if ψ ∈ 
 then ξ ∈ 
. By induction hypothesis and Corollary 2,
this is equivalent to saying that at all accessible 
, if 
 � ψ then 
 � ξ

• tψ → tξ ∈ � holds if and only if ψ ∧ ξ ∼� ψ , i.e., if �ψ�� = �ψ�� ⊕� �ξ�� .
But by construction, this is equivalent to t�(ξ) ≤� t�(ψ) by Observation 5.

Jointly, the two above semantic conditions are equivalent to � � ψ → ξ . �
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Appendix C: Extensions of CA/PAI

In this section, we include proofs of various theorems characterizing extensions of
CA/PAI. First is the proof of Theorem 5 characterizing the extension CA/PAI8:

Proof Soundness is easily confirmed, so we consider completeness. Let � be a maxi-
mally consistent CA/PAI ⊕ (ϕ → (ψ ∧ ξ)) → (ϕ → ψ) theory. Then consider three
arbitrary points from T� �ϕ�� , �ψ�� and �ξ�� . By Lemma 10, the hypothesis that
� � (ϕ → (ψ ∧ ξ)) → (ϕ → ψ) entails that � � tϕ→(ψ∧ξ) → tϕ→ψ . So

�ϕ�� �� �ψ�� = �ϕ → ψ�� ≤� �ϕ → (ψ ∧ ξ)�� = �ϕ�� �� (�ψ�� ⊕� �ξ��)

Since the points in T� were chosen arbitrarily, the property holds of any CA/PAI8
canonical model. Thus, if ϕ is not a consequence of � in CA/PAI8, M� provides a
right decomposable countermodel. �


Next is the proof of Theorem 6 characterizing the extension CA/PAI7:

Proof As in Theorem 5, soundness is easy. For completeness, let � be a maximally
consistent CA/PAI7 theory. By Lemma 10, � � t(ϕ→ψ)∧(ψ→ξ) → tϕ→ξ .

�ϕ�� �� �ξ�� = �ϕ → ξ�� ≤� �(ϕ → ψ) ∧ (ψ → ξ)��

= (�ϕ�� �� �ψ��) ⊕� (�ψ�� �� �ξ��)

SoM� is a middle term eliminable model providing a counterexample in case � � ζ .
�


Now, the proof of Theorem 7 can be given:

Proof Let � be a maximally consistent CA/PAI11 theory. We show that M� has the
property. By Lemma 10, we infer that tϕ→ψ → tϕ⊃ψ is in �. It is easy to prove
that tϕ⊃ψ → tϕ∧ψ is a CA/PAI theorem, which ensures that � � tϕ→ψ → tϕ∧ψ .
Consequently, �ϕ ∧ ψ�� ≤� �ϕ → ψ�� must hold, whence:

�ϕ�� ⊕� �ψ�� = �ϕ ∧ ψ�� ≤� �ϕ → ψ�� = �ϕ�� �� �ψ��

As ϕ and ψ were arbitrary, this holds for any pair of elements in T� . �

Finally, we present the proof of Theorem 8 in which the demodalized CA/DAI is

characterized:

Proof Let � be a maximally consistent CA/DAI theory. We show that the accessibility
relation of its canonical model M� is diagonal by demonstrating that �� = � for
arbitrary �.

• For �� ⊆ �, pick a ϕ ∈ ��. Then tϕ → ϕ ∈ � and tϕ ∈ �, whence ϕ ∈ �.
• For � ⊆ ��, pick a ϕ ∈ �. As � � ϕ ⊃ (tϕ → ϕ), � � tϕ → ϕ, whence

ϕ ∈ ��.

So, by maximality of �, if �R	, 	 = �. �
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Appendix D: Decidability of CA/PAI

As Fine’s (1986), Dunn’s (1972), and Deutsch’s (1985) show, the method of filtrations
ports easily to the case of logics in the constellation of PAI. In particular, Deutsch’s
proof of decidability of his S carries over with only minor modifications; to maximize
the utility of the sharedmaterial, wewill retainmuch ofDeutsch’s notation and idioms.
For the first component of a proof through filtrations:

Definition 21 For a CA/PAImodel, formula ϕ, and set �ϕ of subformulae of ϕ, define
a relation ≈ϕ so that

w ≈ϕ w′ if for all ψ ∈ �, (w � ψ iff w′ � ψ)

I.e.≈ϕ identifiesworldswhen they agreewith respect to the subformulae ofϕ. That≈ϕ

is an equivalence relation follows from standard reasoning; let |w|ϕ be the equivalence
class of w on the set of worlds in the model.

Definition 22 For amodel, define Rϕ so that |w|ϕRϕ |w′|ϕ holds if for allψ → ξ ∈ �ϕ ,
if w � ψ → ξ then w′ � ψ → ξ .

The following facts may be justified along similar lines as Deutsch (1985):

Lemma 21 The following hold:

• Rϕ is transitive and reflexive
• if wRw′ then |w|ϕRϕ |w′|ϕ
• if |w|ϕRϕ |w′|ϕ , w ≈ϕ u, and w′ ≈ϕ u′ then |u|ϕRϕ |u′|ϕ .

Definition 23 For a CA/PAImodel, formula ϕ, and set �ϕ of subformulae of ϕ, let≡w

be introduced so that

ψ ≡w ξ if whenever w ≈ϕ w′ then tw′(ψ) = tw′(ξ)

The equivalence class of a formula ψ under ≡w will be denoted by [ψ]w. This
yields a further definition:

Definition 24 [ψ]ϕw =
{

[ψ]w if ψ /∈ �ϕ

[ψ]w ∩ �ϕ otherwise.

Note that as �ϕ is finite, [ψ]ϕw will be finite whenever ψ ∈ �ϕ .

Definition 25 For such a model, we define

• [ψ]ϕw ⊕|w| [ξ ]ϕw = [ψ ∧ ξ ]ϕw
• [ψ]ϕw �|w| [ξ ]ϕw = [ψ → ξ ]ϕw.
Deutsch’s remarks in Deutsch (1985) carry over without modification to establish

that ⊕|w| is idempotent, commutative, and associative; with trivial modifications, his
remarks establish that⊕|w′|ϕ and�|w′|ϕ are functions.We then candefine thefiltration:
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Definition 26 For a CA/PAI model M and formula ϕ, letMϕ be defined so that

• Wϕ = W≈ϕ

• for each |w|ϕ ∈ Wϕ , T|w|ϕ = {[ψ]ϕw | ψ ∈ L}
• for each |w|ϕ ∈ Wϕ , t|w|(p) = [p]ϕw for atoms p
• vϕ(p) = {|w|ϕ | p ∈ �ϕ and M, w � p}

and Rϕ , ⊕|w|ϕ and �|w|ϕ are drawn from the earlier definitions.

The same inductions Deutsch uses in Deutsch (1985) port almost directly to estab-
lish the following:

Lemma 22 The following hold:

• Mϕ is a CA/PAI model
• tϕ|w|ϕ (ψ) = [ψ]ϕw for all ψ .

As the negation in CA/PAI is Boolean, the following lemma is easier in the
present case than for Deutsch’s paraconsistent S. Deutsch’s clauses for verification
(in Deutsch’s notation, that t is assigned to ψ) directly apply, making negation the
only novel element to its proof.

Lemma 23 For all ψ ∈ �ϕ ,Mϕ, |w|ϕ � ψ iffM, w � ψ .

Proof The basis step is by definition and continues by induction on complexity of
ψ . As negation is classical, that Mϕ, |w|ϕ � ¬ξ iff M, w � ¬ξ follows from the
induction hypothesis that Mϕ, |w|ϕ � ξ iff M, w � ξ . All other steps follow by
recasting the clauses for verification as clauses about truth at |w|ϕ and w. �


As in Deutsch (1985), we cannot ensure that the topic semilattices are finite but can
borrow Deutsch’s analogous (and sufficient) property of a model’s being finite for a
sentence ϕ, i.e., thatW is finite while for anyψ, ξ ∈ �ϕ , the sets t|w|ϕ (ψ)⊕|w|ϕ t|w|ϕ (ξ)

and t|w|ϕ (ψ) �|w|ϕ t|w|ϕ (ξ) are finite. It turns out that this is enough.

Lemma 24 Every ϕ not provable in CA/PAI has a countermodel that is finite for ϕ.

Proof By modifying Deutsch’s proof to add a clause inferring finiteness of t|w|ϕ (ψ)

�|w|ϕ t|w|ϕ (ξ) from its identity with the finite set [ψ → ξ ]ϕ|w|ϕ . �

As the set of worlds and the number of points in the topic semilattice to be surveyed

are finite, this means that the nontheorems of CA/PAI are recursively enumerable. As
theorems, too, are recursively enumerable, we are able to infer Theorem 4.
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