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Abstract Individualists claim that collective obligations are reducible to the indi-

vidual obligations of the collective’s members. Collectivists deny this. We set out to

discover who is right by way of a deontic logic of collective action that models

collective actions, abilities, obligations, and their interrelations. On the basis of our

formal analysis, we argue that when assessing the obligations of an individual agent,

we need to distinguish individual obligations from member obligations. If a col-

lective has a collective obligation to bring about a particular state of affairs, then it

might be that no individual in the collective has an individual obligation to bring

about that state of affairs. What follows from a collective obligation is that each

member of the collective has a member obligation to help ensure that the collective

fulfills its collective obligation. In conclusion, we argue that our formal analysis

supports collectivism.
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1 Introduction

Most benefits and harms in the socio-economic realm are brought about by

collectives rather than individuals. Individuals can be held morally responsible for

their actions, but does it also make sense to hold a collective morally responsible for

the things it does or fails to do? An affirmative answer immediately raises the

question of whether collective moral responsibility is reducible to the individual

moral responsibility of the collective’s members. Individualists say yes, collectivists

say no. If the individualists are right, what kind of reduction proves them right?

Two kinds of reduction are relevant here: (1) logical reduction concerns whether

statements about collectives are logically equivalent to conjunctions of statements

about individuals, and (2) ontological reduction concerns whether collective entities

are just sets of individuals. For argumentative purposes, we start from the

assumption that ontological reductionism is true, that is, we assume that a group is a

set of individuals and that a group action is an ordered set of individual actions.1 We

argue that, even if ontological reductionism is true, logical reductionism is false.

In this paper, we focus on the notion of collective obligation. Obligations are

forward-looking responsibilities. They are also a good place to start for studying the

reducibility of backward-looking responsibilities, at least in so far as blamewor-

thiness is concerned. Not fulfilling an obligation is a necessary condition for being

individually blameworthy: if an individual agent is individually blameworthy, then

she failed to fulfill an obligation.2 Similarly, not fulfilling a collective obligation is a

necessary condition for being collectively blameworthy: if a group is collectively

blameworthy, then it failed to fulfill a collective obligation. Because of this, we

employ a two-step strategy to establish whether collective moral responsibility is

logically reducible to individual moral responsibility. We first develop a formal

theory of collective obligations and then use the formal properties we have

identified to find out how to evaluate the actions of individual group members in

case a group of agents does not fulfill its collective obligation.

The structure of our paper is as follows. In Sect. 2, we explain why, in studying

collective moral responsibility, it is important to develop a logical theory of

collective actions and obligations. In Sect. 3, we present our deontic logic of

collective action. This deontic logic is then used to study (1) logical relations

between collective actions and individual actions, and (2) logical relations between

collective obligations and individual obligations. We list some intuitive principles

concerning collective actions and obligations and use our deontic logic to determine

whether or not they are valid. In Sect. 4, we submit that when assessing the

obligations of an individual agent, we must distinguish individual obligations from

member obligations. We argue that, although collective obligations are not logically

1 Copp (2006), List and Pettit (2011), and Hindriks (2013) argue against ontological reductionism about

structured groups.
2 Not fulfilling an obligation, however, is not a sufficient condition for being individually blameworthy:

the agent might have a justification or an excuse for not doing her duty. Furthermore, whereas blame

requires not fulfilling an obligation, supererogatory actions make it clear that praise does not require

fulfilling an obligation.
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reducible to individual obligations, given some well-defined assumptions they do

imply member obligations. What follows from a collective obligation is that each

individual has a member obligation to help ensure that the collective fulfills its

collective obligation. In conclusion, we argue that, because member obligations

presuppose collective obligations, our formal analysis supports collectivism.

2 Logical puzzles

The study of collective moral responsibility would be facilitated by a formal theory

that systematically distinguishes valid principles about collective actions and

obligations from invalid ones. Unfortunately, a formal theory of this sort has yet to

be offered. Most of the existing literature on collective moral responsibility remains

informal and relies on everyday examples. Feinberg (1968) discusses the Jesse

James train robbery and concludes that the passengers are collectively responsible

for not having prevented it. Held (1970) takes us to a subway car in which five

bystanders watch someone being strangled and also concludes that the collective is

responsible.3 Sometimes such everyday examples are used as counterexamples to

show that specific logical principles connecting collective actions and obligations

with individual ones are invalid.4 So far so good.

But are there also valid principles that connect collective actions and obligations

with individual ones? Frank Jackson thinks there are: ‘it is surely unbelievable that

there are no valid principles linking the moral status of group acts with the moral

status of constituent individual acts’ (Jackson 1987, p. 107). If we try to show that

Jackson is right, we are presented with a difficulty: although everyday examples can

be used to argue that some logical principles are invalid, they cannot be used to

argue that some such principles are valid. To identify such validities, and also to

systematize the scattered invalidities that were identified with the help of everyday

examples, we need a formal theory of collective actions and obligations. This is by

no means a straightforward matter.

Various authors appear to be puzzled about such a logic of collective actions and

obligations. Let us consider two examples. (1) Kutz (2000a, p. 105) asserts that it is

‘puzzling’ that the conditional ‘If agent i and agent j together see to it that /, then

agent i sees to it that / and agent j sees to it that /’ is invalid, ‘while ordinarily each

conjunct of a true conjunction is also true’. (2) Lawford-Smith (2012, pp. 455–456)

3 Feinberg argues that such collective responsibility cannot be reduced to individual responsibility,

whereas Held defends reductionism about collective responsibility.
4 Held argues that ‘from the judgment ‘‘Collectivity C ought (ought not) to have done A’’, judgments of

the form ‘‘Member M of C ought (ought not) to have done A’’ cannot be derived’ and that ‘judgments

about the moral responsibility of its members are not logically derivable from judgments about the moral

responsibility of a collectivity’ (Held 1970, pp. 474–475). Compare Gilbert: ‘What does the blamewor-

thiness of the collective’s act imply about the personal blameworthiness of any one member of that

collective? From a logical point of view, the short answer is: nothing. Everything depends on the details

of a given member’s particular situation’ (Gilbert 2006, p. 109). Likewise, Isaacs argues that ‘claims

about collective moral responsibility neither entail nor are derivable from claims about individual moral

responsibility’ (Isaacs 2011, p. 24).
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maintains that the conditional ‘If agent i ought to see to it that / ^ w, then agent i

ought to see to it that / and agent i ought to see to it that w’ and the conditional ‘If

agent i and agent j together ought to see to it that /, then agent i ought to see to it

that / and agent j ought to see to it that /’ are both substitution instances of the

logical principle of the distribution of ‘oughts’ over a conjunction. Because she

proposes that we reject the second conditional, she questions the principle’s validity.

The deontic logic of collective action that we present in Sect. 3 does of course

vindicate the validity of the logical principle that the truth of a conjunction implies

the truth of both of its conjuncts. Nonetheless, our deontic logic indicates why

Kutz’s conditional is invalid, why Lawford-Smith’s first conditional is valid, and

why her second conditional is not. That we can draw such conclusions illustrates the

added value of our logic.

In Sects. 3 and 4 we develop a formal framework to study the logical relations

between collective actions and obligations on the one hand and individual actions

and obligations on the other. Our framework will remove puzzlement about the

formal properties of collective action and obligation, and, more generally, provide a

tool to investigate the formal relations between collective and individual respon-

sibility. The framework will therefore also help us to achieve our second goal,

which is to clarify the concept of logical reduction in the debate on individualism

versus collectivism about collective moral responsibility. For these reasons, we

construct a deontic logic of collective action.

3 A deontic logic of collective action

The deontic logic of collective action presented in this section is inspired by John

Horty’s (1996, 2001) deontic logic of agency.5 The present section and the next

extend Horty’s ideas to a formal theory of collective obligations. Our theory

provides clear answers to central questions about the relation between collective and

individual obligations. Can it be the case that an individual in a collective ought to

bring about a certain state of affairs without its being the case that that collective

itself ought to bring about that state of affairs? (Yes.) Can it be the case that a

collective ought to see to it that a certain state of affairs obtains and that an

individual in that collective ought to see to it that that state of affairs does not

obtain? (No.) Are the obligations of a group and all of its subgroups consistent?

(Yes.)

To investigate formal relations between collective and individual obligations, we

make two central idealizing assumptions to filter out factors that interfere with these

relations to the point of trivializing them. Because there are no necessary relations

between obligations generated by different moral codes or between obligations at

different moments in time, we study, first, collective and individual obligations that

5 Our deontic logic of collective action stands in the tradition of the stit (‘sees to it that’) logics of agency

developed by Kanger (1957), Pörn (1970), Kanger (1972), Hansson (1986), von Kutschera (1986), Horty

and Belnap (1995), Belnap et al. (2001), Horty (2001), Kooi and Tamminga (2008), Carmo (2010), and

Tamminga (2013).
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are generated by the same moral code and, secondly, collective and individual

obligations that hold at a single moment in time.

We use the term ‘group’ for any random collection of individuals (Held 1970).

As a consequence, any combination of individual actions performed by such a

random collection of individuals will be considered a group action performed by

that random collective. Naturally, relaxing these assumptions may well result in

different answers to the main questions about the relation between collective and

individual obligations. It should therefore be borne in mind that our deontic logic of

collective action is only a first step towards a fully-fledged formal analysis of

collective actions and obligations.

Our deontic logic is, however, meant to be general in the following respect. Some

group actions are just sets of individual actions. Think, for instance, of harming the

ozone layer. Other group actions involve collective intentions, such as the collective

intention to move the piano upstairs together. To attain a level of generality that

enables us to study common features of group actions that involve collective

intentions (like moving the piano upstairs) and of group actions that lack them (like

harming the ozone layer), we initially assume that the sets of individuals who

perform group actions have not formed a collective intention. On the basis of this

assumption, we model group actions as sets of individual actions. Later on, we relax

this assumption to accommodate joint actions generated by collective intentions as

well.6 We model collective intentions in a minimal way as group plans that have

been adopted by all members of the group.

This technical section proceeds as follows. First, we define our formal language

and, by way of illustration, translate the statements that puzzled Kutz and Lawford-

Smith into this language. Secondly, we define the deontic game models that

interpret the formal language and then check whether the translations of Kutz’s and

Lawford-Smith’s statements are valid, that is, whether the translations of these

statements are true in all models. Thirdly, we justify the answers to the questions

that opened this section by checking the validity of some general claims about

relations between group actions and subgroup actions and between group

obligations and subgroup obligations. All claims are proved in the ‘‘Appendix’’.

3.1 Formal language

Our propositional modal language L is built from a finite set N ¼ fi1; . . .; ing of

individual agents and a countable set P ¼ fp1; p2; . . .g of atomic formulas. The

formal language L is the smallest set (in terms of set-theoretical inclusion) that

satisfies conditions (i) through (iv):

(i) P � L

(ii) If / 2 L, then :/ 2 L and e/ 2 L

(iii) If / 2 L and w 2 L, then ð/ ^ wÞ 2 L

6 Collective intentions play a central role in the analysis of joint actions. See, for instance, Tuomela and

Miller (1988), Gilbert (1990), Searle (1990), and Bratman (1992). For analyses of collective action that

lack collective intentions, see Jackson (1987), Kutz (2000b), and Chant (2007).
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(iv) If G � N and / 2 L, then ½G�/ 2 L and ðGÞ/ 2 L.

We omit parentheses, brackets, and braces if the omission does not give rise to

ambiguities. The operators _, !, and h abbreviate the usual constructions.

This propositional modal language can be used to express alethic statements like

‘It is possible that /’ (formalized as e/), agentive statements like ‘Group G of

agents sees to it that /’ (formalized as ½G�/), and deontic statements like ‘Group G
of agents ought to see to it that /’ (formalized as ðGÞ/). Abilities can then be

expressed by a combination of operators: ‘Group G of agents has the ability to see to

it that /’ is formalized as e½G�/.7

The statements that puzzled Kutz (2000a, p. 105) and Lawford-Smith

(2012, pp. 455–456) are:

(1) If agent i and agent j together see to it that /, then agent i sees to it that / and

agent j sees to it that /.

(2) If agent i ought to see to it that both / and w, then agent i ought to see to it

that / and agent i ought to see to it that w.

(3) If agent i and agent j together ought to see to it that /, then agent i ought to

see to it that / and agent j ought to see to it that /.

They can now be translated as (10), (20), and (30):

(10) ½i; j�/ ! ð½i�/ ^ ½j�/Þ
(20) ðiÞð/ ^ wÞ ! ððiÞ/ ^ ðiÞwÞ
(30) ði; jÞ/ ! ððiÞ/ ^ ðjÞ/Þ.

To show that (20) is valid and that (10) and (30) are not, we need to know the

conditions under which a formula of our modal language is true. These truth-

conditions are specified by our deontic game models.

3.2 Deontic game models

What ingredients do we need to specify truth-conditions for agentive and deontic

statements? Intuitively, the truth of an agentive statement like ‘GroupG of agents sees to

it that /’ requires that group G choose and perform a group action from among a range

of group actions that are available to the group and that by performing this group action

the group ensures that / is true. Moreover, if we order the available group actions in

terms of how well they promote a given moral code, then, intuitively, the truth of a

deontic statement like ‘Group G of agents ought to see to it that /’ requires that every

best group action that is available to group G ensures, if performed, that / is true.

To convert these intuitive requirements for the truth of agentive and deontic

statements into truth-conditions, we use a model theory based on the possible-

worlds semantics for standard deontic logic (Hilpinen 1971, pp. 13–15). A

possible-worlds model for standard deontic logic involves a non-empty set of

possible worlds, a set of possible worlds that are deontically ideal with respect to a

given moral code (this set of deontically ideal possible worlds is a subset of the set

7 For a formal analysis of the concept of individual ability, see Horty (2001, pp. 19–29).
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of possible worlds), and a valuation function that assigns to each atomic formula a

set of possible worlds where that formula is true. In such a possible-worlds model, a

deontic statement like ‘It ought to be that /’ is true if and only if / is true in all

deontically ideal possible worlds.

Our deontic game models are possible-worlds models for standard deontic logic

where the role of possible worlds is played by possible action profiles (to be defined

below). Hence, a deontic game model consists of a set of possible action profiles, a

set of possible action profiles that are deontically ideal with respect to a given moral

code (this set of deontically ideal possible action profiles is a subset of the set of

possible action profiles), and a valuation function that assigns to each atomic

formula a set of possible action profiles where that formula is true.

Formally, a deontic game model involves a finite set N ¼ fi1; . . .; ing of

individual agents. Each agent i in N is assigned a non-empty and finite set Ai of

available individual actions.8 We use ai and a0i as variables for actions in the set Ai

of actions that are available to agent i. The set A of possible action profiles is given

by the Cartesian product �i2NAi of all the individual agents’ sets of actions. Note

that A (¼ �i2NAi) is non-empty, because all the Ai’s are non-empty. We use a and a0

as variables for action profiles in the set A of possible action profiles.9 The set of

deontically ideal possible action profiles (which is a subset of the set A of possible

action profiles) is defined by a deontic ideality function d that assigns to each

possible action profile a in A a value d(a) that is either 1 (if a is deontically ideal) or

0 (if a is not deontically ideal).10 A valuation function v assigns to each atomic

formula p in P a (possibly empty) set v(p) of possible action profiles.

As an illustration, let us define a deontic game model M1, in which there are two

agents i and j. Let Ai ¼ fai; a0ig and Aj ¼ faj; a0jg, that is, the actions that are available

to agent i are ai and a0i, and the actions that are available to agent j are aj and a0j. The full

set A of possible action profiles is then given by Ai � Aj ¼ fðai; ajÞ; ðai; a0jÞ;
ða0i; ajÞ; ða0i; a0jÞg. We define the deontic ideality function d as follows:

dðai; ajÞ ¼ 1

dðai; a0jÞ ¼ 0

dða0i; ajÞ ¼ 0

dða0i; a0jÞ ¼ 1:

Accordingly, the action profiles ðai; ajÞ and ða0i; a0jÞ are deontically ideal, and the

action profiles ðai; a0jÞ and ða0i; ajÞ are not. Lastly, we define the valuation function v

(the valuations of the other atomic formulas are left unspecified):

8 We require finiteness for expository reasons only. If we were to admit infinite sets of individual actions,

we would have to generalize the truth-condition for deontic statements accordingly—see footnote 12.
9 We adopt the notational conventions of Osborne and Rubinstein (1994, Section 1.7).
10 The deontic ideality function represents a given moral code. Our binary ordering of the action profiles

in terms of deontic ideality can also be seen to reflect a simple preference ordering of agents who classify

action profiles unanimously as ‘good’ or ‘bad’. Deontic game models thus resemble Schelling’s

(1960, p. 84) pure-collaboration games and Bacharach’s (2006, p. 122) coordination contexts.
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vðpÞ ¼ fðai; ajÞg
vðqÞ ¼ fðai; ajÞ; ðai; a0jÞ; ða0i; a0jÞg:

Accordingly, the atomic formula p is true at action profile ðai; ajÞ and false at the

other action profiles, and the atomic formula q is false at action profile ða0i; ajÞ and

true at the other action profiles.

The deontic game model M1 can be pictured as in Fig. 1. The rows represent the

actions that are available to agent i, and the columns represent the actions that are

available to agent j. Each cell therefore represents an action profile. Moreover, each

cell contains a number that indicates whether or not the corresponding action profile

is deontically ideal. Finally, we use the convention that a cell contains an atomic

formula if and only if that atomic formula is true at the corresponding action profile.

We now turn to group actions. Following the literature on the logic of collective

action,11 we think of an action performed by a group as a combination of individual

actions performed by the group’s members. In the present setting, we make the idealizing

assumption that, conversely, any combination of individual actions performed by the

members of any group is a group action performed by that group (we relax this latter

assumption in Sect. 4, where we introduce plan-based collective intentions which allow

us to make a distinction between aggregate behaviour and group agency).

Accordingly, for each non-empty group G � N we define the set AG of group

actions available to group G as AG ¼ �i2GAi. We use aG and a0G as variables for

group actions in the set AG of group actions that are available to group G. Given an

action profile a in a deontic game model and a group G � N, we also use aG to refer

to the combination of individual actions of G’s members in a. Likewise, we use a�G
to refer to the combination of individual actions of all of G’s non-members in a. For

example, given an action profile ðai; aj; ak; alÞ in a four-agent deontic game model

and the group G ¼ fi; kg, we have aG ¼ ðai; akÞ and a�G ¼ ðaj; alÞ. In the same

fashion, we use A�G to refer to �i2ðN�GÞAi.

Action profiles are fully determined by combinations of actions of all the

individual agents. Hence, an agent only partly determines an action profile by

performing an action, and this holds irrespective of whether the agent is an

individual or a group. By performing an action an agent only makes a contribution

to realizing an action profile. Nonetheless, by performing an action an agent can

make statements true or false. In the present setting, given a specific action profile, a

group sees to it that a particular statement is true if and only if the group’s

contribution to this action profile suffices to ensure the truth of this statement,

regardless of the actions of the group’s non-members. To be precise, given an action

profile a, a group G sees to it that / if and only if for all action profiles a0 with

a0G ¼ aG it holds that / is true in a0. (The truth-condition for individual agency is

obtained by filling in fig for G.)

11 See Hansson (1986), Tuomela (1989), Belnap et al. (2001, Ch. 10), Horty (2001, pp. 30–33), and

Carmo (2010).
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We model group obligations as follows: a group ought to see to it that a particular

statement is true if and only if all of its optimal actions ensure the truth of that

statement. To discover which of the actions available to a group are optimal, we

order the available actions in terms of the deontic ideality of their possible action

profiles. We thus transform the given binary deontic ideality ordering of the action

profiles in A into an ordering of the actions available to group G, that is, into an

ordering of AG. The actions that are best in this ordering of AG are group G’s optimal

actions. Following Horty (2001, p. 68), we order a group’s available actions in

terms of dominance. Given two actions aG and a0G that are available to a group G, aG
weakly dominates a0G (notation: aG � a0G) if and only if aG promotes deontic ideality

at least as well as a0G, regardless of what the group’s non-members do:

Definition 1 (Dominance) Let M ¼ hN; ðAiÞ; d; vi be a deontic game model. Let

G � N be a group of agents. Let aG; a
0
G 2 AG be actions available to group G. Then

aG � a0G iff for all a00�G 2 A�G it holds that d aG; a
00
�G

� �
� d a0G; a

00
�G

� �
:

Strong dominance is defined in terms of weak dominance: aG 	 a0G if and only if

aG � a0G and a0G 6� aG.

A group’s optimal actions are the ones that are not strongly dominated:

Definition 2 (Optimality) Let M ¼ hN; ðAiÞ; d; vi be a deontic game model. Let

G � N be a group of agents. Then the set of G’s optimal actions, denoted by

OptimalðGÞ, is given by

OptimalðGÞ ¼ aG 2 AG : there is no a0G 2 AG such that a0G 	 aG
� �

:

Finally, we need to specify truth-conditions for the formulas of our propositional

modal language. We write M; a 
 / if a formula / is true at an action profile a of a

deontic game model M. The truth-conditions are given inductively:12

Definition 3 (Truth-conditions) Let M ¼ hN; ðAiÞ; d; vi be a deontic game model.

Let G � N be a group of agents. Let a 2 A be an action profile. Let p 2 P be an

atomic formula and /;w 2 L arbitrary formulas. Then

Fig. 1 Deontic game model M1

12 If we were to admit infinite sets of individual actions (and hence admit infinite sets of action profiles),

then the truth-condition for deontic statements would be as follows: M; a 
 ðGÞ/ if and only if for all

a0 2 A with M; a0 6
 / there is an a00 2 A with M; a00 
 / such that (i) a00G 	 a0G and (ii) for all a000 2 A with

a000G � a00G it holds that M; a000 
 /. Compare Horty (2001, p. 77). This generalized truth-condition

preserves the theorems below that, at first sight, seem to rely on the finiteness condition—Theorems 1(i),

4(i), 4(ii) and 5(i).
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M; a 
 p iff a 2 vðpÞ
M; a 
 :/ iff M; a 6
 /

M; a 
 / ^ w iff M; a 
 / and M; a 
 w

M; a 
 e/ iff there is an a0 2 A such that M; a0 
 /

M; a 
 ½G�/ iff for all a0 2 A with a0G ¼ aG it holds that M; a0 
 /

M; a 
 ðGÞ/ iff for all a0 2 A with a0G 2 OptimalðGÞ it holds that M; a0 
 /:

We adopt the following standard conventions: given a deontic game model M, we

write M 
 / if for all action profiles a in A it holds that M; a 
 /. A formula / is

valid (notation: 
 /) if for all deontic game models M it holds that M 
 /.

3.3 Validities and invalidities

We are now in a position to justify the answers to the opening questions of this

technical section. To do so, we check the validity of some general claims about

relations between group actions and obligations on the one hand and subgroup

actions and obligations on the other. But first we make a general observation.

Because deontic game models are possible-worlds models in disguise, our agentive

and deontic group modalities inherit some basic properties of modalities whose

truth-conditions are specified by universal conditions on possible worlds. Accord-

ingly, all of our modalities are normal modal operators: they validate the principle

of necessitation and the principle of distribution over implication.13 Although it is

straightforward to define non-normal agentive and deontic group modalities on the

basis of our normal ones, we avoid unnecessary complications and stick to normal

group modalities in the theorems below.14 All claims are proved in the ‘‘Appendix’’.

Our first theorem states some of the basic properties of our deontic logic of

collective action. First, if group G has an obligation to see to it that /, then group G
has the ability to see to it that /, that is, it is possible that group G sees to it that /.

This is the well-known principle that ‘ought’ implies ‘can’.15

Secondly, group G sees to it that both / and w if and only if both group G sees to

it that / and group G sees to it that w. Thirdly, group G ought to see to it that both /
and w if and only if both group G ought to see to it that / and group G ought to see to

13 That is, every modality H such that H 2 fh; ½G�; ðGÞg validates the principle of necessitation: ‘if 
 /,

then 
 H/’, and the principle of distribution over implication: ‘
 Hð/ ! wÞ ! ðH/ ! HwÞ’.
14 We could introduce two additional non-normal operators, ‘Group G of agents deliberately sees to it

that /’ (formalized as ½½G��/) and ‘Group G of agents deliberately ought to see to it that /’ (formalized as

ððGÞÞ/), and stipulate the following truth-conditions for them: M; a 
 ½½G��/ if and only if

M; a 
 ½G�/ ^ :h/, and M; a 
 ððGÞÞ/ if and only if M; a 
 ðGÞ/ ^ :h/. The validities for these

new operators are the same as the ones listed below, with two exceptions: in Theorems 1(ii) and 1(iii), the

condition :h/ ^ :hw must be added to the left-hand side of the bi-conditional. Horty and Belnap

(1995) study the single-agent version of the non-normal agentive modality ½½G��.
15 Ethical theorists debate whether the principle of ‘ought’ implies ‘can’ holds in every conceivable

situation. Key references include Kekes (1984), Sinnott-Armstrong (1988), Howard-Snyder (2006), and

Graham (2011).
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it that w. Note that the validity of the third claim implies that the statement (20)
above, ðiÞð/ ^ wÞ ! ððiÞ/ ^ ðiÞwÞ, is also valid.

Theorem 1 Let /;w 2 L and G � N. Then

(i) 
 ðGÞ/ ! e½G�/
(ii) 
 ½G�ð/ ^ wÞ $ ð½G�/ ^ ½G�wÞ

(iii) 
 ðGÞð/ ^ wÞ $ ððGÞ/ ^ ðGÞwÞ.

Our second theorem is on relations between group actions and subgroup actions.

Let F be a subgroup of a group G. First, if subgroup F sees to it that /, then group G
sees to it that /.16 Secondly, the converse implication does not hold: it might be that

group G sees to it that /, whereas subgroup F does not see to it that /. For a

counterexample, note that in the deontic game model M1 of Fig. 1, it holds that

M1; ðai; ajÞ 
 ½i; j�p and M1; ðai; ajÞ 6
 ½i�p. Therefore, the statement (10) above,

½i; j�/ ! ð½i�/ ^ ½j�/Þ, is invalid.

Theorem 2 Let / 2 L. Then

(i) 
 ½F�/ ! ½G�/ for all F � G � N

(ii) 6
 ½G�/ ! ½F�/ for some F � G � N.

Our third theorem is on relations between group obligations and subgroup

obligations. Let F be a subgroup of a group G. First, the fact that subgroup F ought

to see to it that / does not imply that group G ought to see to it that /: it might be

that subgroup F has an obligation to see to it that /, whereas group G does not have

an obligation to see to it that /. Secondly, the converse implication does not hold

either: it might be that group G has an obligation to see to it that /, whereas

subgroup F does not have an obligation to see to it that /. For a counterexample to

the second claim, note that in the deontic game model M1 of Fig. 1, for all action

profiles a it holds that M1; a 
 ði; jÞq and M1; a 6
 ðiÞq. Therefore, the statement (30)
above, ði; jÞ/ ! ððiÞ/ ^ ðjÞ/Þ, is invalid.17

16 This seems awkward as long as we do not make the following distinction: ‘[t]here is more than one

thing that one might mean by ½G�/. First, one might mean that the bearers of G, without any outside help,

guarantee that /, on the basis of a prior simultaneous real choice by each of them. There is also a second,

stronger, account. In this version the bearers of G, without any outside help, and with the essential input of

each of them, guarantee that /’ (Belnap et al. 2001, p. 282—notation adapted). We model the first of

these two notions of group action.
17 Regan claims that ‘all subgroups of any group which produces best consequences produce best

consequences also’ and, moreover, that this statement is equivalent to the statement that ‘there can be no

conflict between the production of good consequences by large groups and by smaller included groups’

(Regan 1980, p. 108). Compare Regan (1980, pp. 54 and 56). In the present setting, Regan’s first

statement is similar to ðGÞ/ ! ðFÞ/, which is invalid (Theorem 3(ii)). His second statement is similar to

ðGÞ/ ! :ðFÞ:/, which is valid (Theorem 4(ii)). For a detailed comparison between Regan’s

construction of obligations and one that is closely related to ours, see Horty (2001, Ch. 6).
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Theorem 3 Let / 2 L. Then

(i) 6
 ðFÞ/ ! ðGÞ/ for some F � G � N

(ii) 6
 ðGÞ/ ! ðFÞ/ for some F � G � N.

Our fourth theorem is also on relations between group obligations and subgroup

obligations. Let F be a subgroup of group G. First, if subgroup F ought to see to it

that / is true, then it is not the case that group G ought to see to it that / is false.

Secondly, if group G ought to see to it that / is true, then it is not the case that

subgroup F ought to see to it that / is false.

Theorem 4 Let / 2 L and F � G � N. Then

(i) 
 ðFÞ/ ! :ðGÞ:/
(ii) 
 ðGÞ/ ! :ðFÞ:/.

Our fifth theorem is also on relations between group obligations and subgroup

obligations, but now we consider two subgroups rather than one. To state the

theorem clearly, we introduce some additional terminology. A group has an

obligation regarding / if it ought to see to it that / is true or it ought to see to it that

/ is false. Two groups have contradictory obligations regarding /, if the one ought

to see to it that / is true, whereas the other ought to see to it that / is false. Two

groups have consistent obligations regarding /, if they do not have contradictory

obligations regarding /.

Let F 1 and F 2 be subgroups of a group G. First, if two subgroups F 1 and F 2

have no common members, then their obligations regarding / are consistent.

Secondly, if two subgroups F 1 and F 2 do have common members, then they might

have contradictory obligations regarding /. Thirdly, if two subgroups F 1 and F 2 of

a group G have contradictory obligations regarding /, then group G does not have an

obligation regarding /. Fourthly, and conversely, if group G has an obligation

regarding /, then the obligations of its subgroups F 1 and F 2 regarding / are

consistent.

Theorem 5 Let / 2 L. Then

(i) 
 ðF 1Þ/ ! :ðF 2Þ:/ for all F 1;F 2 � N such that F 1 \ F 2 ¼ ;
(ii) 6
 ðF 1Þ/ ! :ðF 2Þ:/ for some F 1;F 2 � N

(iii) 
 ððF 1Þ/ ^ ðF 2Þ:/Þ ! ð:ðGÞ/ ^ :ðGÞ:/Þ for all F 1;F 2 � G � N

(iv) 
 ððGÞ/ _ ðGÞ:/Þ ! :ððF 1Þ/ ^ ðF 2Þ:/Þ for all F 1;F 2 � G � N.

To illustrate Theorem 5(ii), we need some seaside drama: far off the coast, a

person is on the verge of drowning. He can be saved by Angela, Bob, and Charlotte,

but only if they act together in specific pairs. Angela is an excellent swimmer, Bob a

moderate one, and although Charlotte is a weak swimmer, she is the only one who

can operate the motorized dinghy anchored nearby. If Angela and Bob work

together they will be able to save the drowning person by swimming up to him
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immediately: Angela will arrive first, Bob somewhat later, and together they will

bring the person back to shore. By contrast, if Bob and Charlotte work together they

will be able to save the drowning person by using the dinghy: on arrival, Bob will

jump into the water, and together he and Charlotte will manage to pull the person

into the dinghy and bring him back to shore. Angela and Bob have a collective

obligation to swim. Bob and Charlotte have a collective obligation not to swim.

These two collective obligations cannot both be fulfilled. After all, the former

requires both Angela and Bob to swim and the latter requires both Bob and

Charlotte not to swim. This shows that subgroups that have common members can

indeed have contradictory obligations regarding some proposition. Note also that the

group consisting of Angela, Bob, and Charlotte has neither a collective obligation to

swim nor a collective obligation not to swim.18

In sum, our deontic game models can be used to specify truth-conditions for

formulas expressing group actions, abilities, obligations, and their interrelations.

They thereby make it possible to check the validity of some central claims about

relations between group obligations and subgroup obligations. In the next section,

we argue that our deontic game models can also be used to make a principled

distinction—crucial to our defence of collectivism about collective moral respon-

sibility—between individual obligations and member obligations.

4 Individual obligations and member obligations

If a group has a collective obligation and an individual wishes to assess her

obligations, it matters whether the individual is a member of the group or not. To

make sense of this simple observation within our formal framework, we make a

principled distinction between individual obligations and member obligations and

what it means to fulfill such obligations.19 An individual obligation is an obligation

that an individual should fulfill regardless of the collective obligations of the groups

of which she is a member. We say that an individual agent fulfills her individual

obligation if and only if she performs one of her optimal individual actions.

Likewise, a group fulfills its collective obligation if and only if it performs one of its

optimal group actions. (Note that, just like an individual agent, a group of agents, by

performing an optimal action, brings about all the states of affairs that it ought to

bring about.) If an individual is a member of a group, a member obligation towards

that group is an obligation that an individual should fulfill in order to help ensure

that the group fulfills its collective obligation.20

18 See Collins (2013, p. 234) for a similar beach example.
19 If we read ‘direct wrongdoing’ as not fulfilling an individual obligation and ‘participatory

wrongdoing’ as not fulfilling a member obligation, then we do something here that Kutz deems

impossible: ‘[w]e will never find a single argument for distinguishing between participatory and direct

wrongdoing, for the simple reason that there is no single framework for assessing accountability’ (Kutz

2000a, p. 148).
20 See Collins (2017) for an informal, but more comprehensive, analysis of ‘membership duties’.
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How are we to understand the relation between collective obligations and

member obligations? To answer this question, consider a strategic situation

represented by a deontic game model. Assume that the individual agents involved

are able to communicate and team up. Suppose that some individual agents decide

to bundle their strengths and act as a team so as to be better able to promote deontic

ideality.21 The members of the newly formed team will then have to determine

which of their options are best, that is, which of the group actions available to them

as a team are optimal. To discover these optimal group actions, the members of the

team must reason from the standpoint of the team rather than from their individual

perspectives. In doing so, they are engaged in we-reasoning (Hakli et al. 2010;

Tuomela 2013).22 We take it that the outcome of this reasoning process is a set of

optimal group actions. The team fulfills its collective obligation if and only if it

performs one of those optimal group actions. Accordingly, the team members will

have to design and adopt a group plan to coordinate their individual actions such

that the composition of their individual actions amounts to an optimal group action

(Tamminga and Duijf 2017, Section 3). The group plan thus specifies which

individual actions the team members should perform to ensure that the team itself

fulfills its collective obligation. Once the team members, aiming to fulfill a

collective obligation, have adopted a group plan, a team member fulfills her member

obligation towards the team if and only if she acts according to plan.

Transposing Bratman’s characterization of practical reasoning from an individ-

ualistic to a collective perspective, we can think of a group plan as providing ‘a filter

on options that are potential solutions’ (Bratman 1987, p. 35) to a group’s

coordination problem. Once adopted, a group plan coordinates the actions of the

group members: it permits them to act simultaneously and unconditionally, in the

full belief that every group member is acting according to plan. We make the natural

assumption that after the group members have adopted a group plan to coordinate

their actions, it is common knowledge among them that the plan has been adopted.

The formation and adoption of a group plan therefore amounts to forming a

collective intention. Group actions regulated by such a plan-based collective

intention are known as shared or joint actions.

If there is a morally significant outcome that requires contributions from several

individual agents, then each has an obligation to perform a relevant contributory

action. In light of this we assume that when the group members adopt a group plan

aimed at realizing a morally significant outcome, the individual members have an

obligation to contribute to it.

Given a deontic game model in which a group of agents aims to fulfill its

collective obligation, it will be convenient to think of a group plan as a non-empty

21 Held argues that a random collection of agents might even have a duty to do so: ‘the random collection

can be held morally responsible for failing to make a decision on which action to take’ (Held

1970, p. 479). See also Collins (2013) and Hindriks (2019).
22 In the theoretical economics literature, the preferred term is team reasoning (Bacharach 1999, 2006;

Sugden 1993, 2000, 2003). Bacharach (2006, p. 121) writes: ‘[r]oughly, somebody ‘‘team-reasons’’ if she

works out the best feasible combination of actions for all the members of her team, then does her part in

it.’ Hakli et al. (2010) provide a detailed comparison of we-reasoning and team reasoning.
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subset of the set of the group’s optimal actions. By adopting a group plan, the group

members agree to perform one of the group actions in the plan. To give a definition

of how such a plan specifies the member obligations of the group members, let us

first consider plans that consist of a single optimal group action (this might be just

one out of several of the group’s optimal actions). Given a plan that consists of a

single optimal group action, it is obvious that if each group member performs her

contribution to that single optimal group action, then the group itself performs an

optimal group action and thus fulfills its group obligation. We therefore propose the

following definition: given a plan consisting of a single optimal group action, a

group member fulfills her member obligation specified by the plan if and only if she

performs the action that is her component action of the single optimal group action

in that plan. (Things become more complicated, but also more realistic, if a plan

consists of several distinct optimal group actions out of which an arbitrary one is to

be performed—more on this at the end of this section.)

Individual obligations should be distinguished clearly from member obligations,

because fulfilling an individual obligation is neither necessary nor sufficient for

fulfilling a member obligation. This can be illustrated with the Figs. 2 and 3.23 To

see that fulfilling an individual obligation is not sufficient for fulfilling a member

obligation, consider the model of Fig. 2. There, it holds that agent i fulfills her

individual obligation if and only if she performs one of the actions ai and a0i, because

both actions are optimal for her. Moreover, given the group plan fðai; ajÞg, agent i

fulfills her member obligation specified by that plan if and only if she performs

action ai. Hence, by performing action a0i agent i fulfills her individual obligation

without fulfilling her member obligation. Fulfilling an individual obligation is

therefore not sufficient for fulfilling a member obligation.

To illustrate this, we return to the seaside, where a person is on the verge of

drowning. Suppose now that Angela and Bob will save the drowning person if they

both swim. They will also save the drowning person if they both use the motorized

dinghy. If one of them swims and the other uses the boat, the person will drown. For

Angela, it holds that if she has to act regardless of the collective obligations of the

groups of which she is a member, then the two actions that are available to her—

swimming and using the boat—are equally good: given that she must act alone, she

Fig. 2 Not sufficient

Fig. 3 Not necessary

23 For clarity, we suppress the valuation function of the models.
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does the best she can by performing either of these actions. Accordingly, were she to

perform either of these two individually optimal actions, she would fulfill her

individual obligation. Given that Angela and Bob coordinate their actions by

adopting the group plan to save the drowning person by swimming, it holds that if

Angela were to use the boat, then she would fulfill her individual obligation without

fulfilling her member obligation.

To see that fulfilling an individual obligation is not necessary for fulfilling a

member obligation, consider the model of Fig. 3. There, it holds that agent i fulfills

her individual obligation if and only if she performs action ai, because it is her only

optimal action. Moreover, given the group plan fða0i; ajÞg, agent i fulfills her

member obligation specified by the plan if and only if she performs action a0i.
Hence, by performing action a0i agent i fulfills her member obligation without

fulfilling her individual obligation. Fulfilling an individual obligation is therefore

not necessary for fulfilling a member obligation. As a consequence, reasons for

fulfilling an individual obligation might outweigh reasons for fulfilling a member

obligation and vice versa.

To illustrate this, let us slightly change the seaside example. Suppose now that

Angela and Bob can each save the drowning person on their own. Angela can

perform either of two actions: swimming or not swimming. By swimming she will

save the drowning person. Likewise, Bob can perform either of two actions: using

the boat or not using the boat. By using the boat he will save the drowning person.

For Angela, it holds that if she has to act regardless of the collective obligations of

the groups of which she is a member, then the best she can do is to swim.

Accordingly, she would fulfill her individual obligation were she to swim. Given

that Angela and Bob coordinate their actions by adopting the group plan to save the

drowning person by Angela’s not swimming and Bob’s using the boat, then it holds

that if Angela were not to swim, she would fulfill her member obligation without

fulfilling her individual obligation.

So far we have only studied member obligations specified by a plan consisting of

a single optimal group action. This is unnecessarily restrictive and unrealistic. To

allow for member obligations specified by plans that consist of several distinct

optimal group actions, we propose the following general definition: given a plan

consisting of one or more optimal group actions, a group member fulfills her

member obligation specified by the plan if and only if she performs an action that is

her component action of one of the optimal group actions in that plan.

It is important to note that a plan consisting of several distinct optimal group

actions does not necessarily guarantee the truth of the conditional ‘If each group

member fulfills her member obligation specified by the plan, then the group itself

fulfills its group obligation’. To see this, let us take a second look at the model of

Fig. 2. Consider the plan fðai; ajÞ; ða0i; a0jÞg. Suppose that agent i performs action ai
and that agent j performs action a0j. Then both agent i and agent j fulfill their member

obligation specified by the plan, although by performing the group action ðai; a0jÞ the

group does not fulfill its group obligation. This plan therefore fails to guarantee the

truth of the conditional. It fails to solve the group members’ coordination problem.

It would therefore be irrational to adopt such a plan. It is a bad plan.
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A good plan—a rational plan—solves the group members’ coordination problem,

that is, it guarantees the truth of the conditional ‘If each group member fulfills her

member obligation specified by the plan, then the group itself fulfills its group

obligation’.24 Equivalently, it guarantees the truth of the conditional ‘If the group

does not fulfill its group obligation, then there is at least one group member who

does not fulfill her member obligation specified by the plan’.25 A bad plan fails to

guarantee the truth of these conditionals.

To ensure that a plan solves the group members’ coordination problem, the plan

has to have a certain structure, namely that whichever group member performs

whatever action that is her component action of one of the optimal group actions in

the plan, the result is always one of the optimal group actions in the plan. To be

precise, a plan should be closed under component individual actions:26

Definition 4 (Closedness) Let M ¼ hN; ðAiÞ; d; vi be a deontic game model. Let

G � N be a group of agents. Let B � AG. Then B is closed if and only if for all

aG; a
0
G 2 B and all i 2 G it holds that ðai; a0G�iÞ 2 B.

A few examples: fðai; a0jÞg is closed (as is every set consisting of a single group

action). Likewise, fðai; ajÞ; ðai; a0jÞg is closed. The set fðai; ajÞ; ða0i; a0jÞg is not,

because ðai; a0jÞ is not in it. The set fðai; ajÞ; ðai; a0jÞ; ða0i; ajÞg is not closed, because

ða0i; a0jÞ is not in it.

A closed plan guarantees the truth of the conditional ‘If each group member

fulfills her member obligation specified by the plan, then the group itself fulfills its

group obligation’. If each group member fulfills her member obligation specified by

a closed plan, each group member performs an action that is her component action

of one of the optimal group actions in that plan. Because the plan is closed, it must

be that this combination of the actions performed by the group members is in the

plan. Because the plan only contains optimal group actions, this combination of

actions is an optimal group action. Hence, the group members perform an optimal

group action. Therefore, if each group member fulfills her member obligation

specified by a closed plan, then the group itself fulfills its group obligation. A closed

plan thus solves the group members’ coordination problem.

Our account of the relation between group obligations, member obligations, and

individual obligations has a number of notable features. First, it shows that fulfilling

an individual obligation is neither necessary nor sufficient for fulfilling a member

obligation. Secondly, if each group member fulfills her member obligation specified

24 Compare Regan: ‘[i]f the members of G all do their part in the best pattern of behaviour for the

members of G given the behaviour of non-members, it is clear that the members of G produce the best

consequences possible as a group’ (Regan 1980, p. 138—notation adapted).
25 This is a possible interpretation of the principle ‘If a group act is wrong, at least one of its constituent

individual acts is wrong’ (Jackson 1987, p. 107). On the basis of an informal counterexample, Jackson

argues that this principle is invalid (Jackson 1987, pp. 102–103). In our view, Jackson’s counterexample

does not invalidate the principle, because it relies on different concepts of obligations—group obligations,

member obligations, individual obligations, conditional individual obligations—that are not systemat-

ically distinguished.
26 Our concept of closedness goes back to Nash (1951, p. 290), where it is called interchangeability.
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by a closed plan, then the group itself fulfills its group obligation. Thirdly, if a group

does not fulfill its group obligation even though its members adopted a plan to solve

their coordination problem, then one of three things has happened: (1) the adopted

plan was not closed, each group member fulfilled her member obligation specified

by the plan, but the combination of the actions performed by the group members

was not an optimal group action; (2) the adopted plan was not closed, there was at

least one group member who did not fulfill her member obligation specified by the

plan, and the combination of the actions performed by the group members was not

an optimal group action; or (3) the adopted plan was closed, there was at least one

group member who did not fulfill her member obligation specified by the plan, and

the combination of the actions performed by the group members was not an optimal

group action. The third possibility supports the counterfactual ‘If each group

member had fulfilled her member obligation specified by the plan, then the group

itself would have fulfilled its group obligation’, while the second possibility does

not. We submit that our account of member obligations helps us to better understand

reductionism about collective moral responsibility.

5 Reductionism revisited

Our analysis does not support logical reductionism about group obligations and

individual obligations. Recall that logical reductionism concerns whether statements

about collectives are logically equivalent to conjunctions of statements about

individuals. As we showed in Sect. 3.3, group obligations do not imply (and nor are

they implied by) individual obligations. Nonetheless, it might seem that our analysis

supports logical reductionism about group obligations and member obligations:

given a closed plan consisting of one or more optimal group actions, it holds that if

each group member fulfills her member obligation specified by the plan, then the

group itself fulfills its group obligation. Therefore, given that the closedness

condition is met, the fulfillment of each member obligation implies the fulfillment of

a group obligation. Is this a case of logical reductionism?

First, to meet the demands of logical reductionism, the converse conditional must

also be valid. Indeed, Jackson argues that the conditional ‘If a group act is right, and

it is in fact performed, then each individual constituent act is right’ is valid (Jackson

1987, p. 107). In the present setting, it is not. Given a closed plan consisting of one

or more optimal group actions, it might be that the group fulfills its group obligation

even though none of the group members fulfills her member obligation specified by

the plan. The model of Fig. 2 provides a counterexample. Consider the plan

fðai; ajÞg. Because it consists of a single optimal group action, it is closed. Suppose

that agent i performs action a0i and that agent j performs action a0j. Then the group

performs the optimal group action ða0i; a0jÞ even though neither agent i nor agent

j fulfills her member obligation specified by the plan.

Secondly, the conditional ‘If each group member fulfills her member obligation

specified by the plan, then the group itself fulfills its group obligation’ only holds

under the condition that the plan is closed. If the plan is not closed, the conditional
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might be false: given a plan that is not closed, it might be that each group member

fulfills her member obligation specified by the plan even though the group itself

does not fulfill its group obligation. To see this, let us return to Fig. 2, where Angela

and Bob will save a drowning person if and only if either (1) they both swim or (2)

they both use the motorized dinghy. Given that Angela and Bob adopt the (bad!)

group plan to save the drowning person either by swimming or by using the boat

(that is, they adopt the group plan fðai; ajÞ; ða0i; a0jÞg), it holds that if Angela were to

swim (ai) and Bob were to use the boat (a0j), then both Angela and Bob would fulfill

their member obligation specified by the plan, but the composition ðai; a0jÞ of their

individual actions would not amount to an optimal group action, and hence Angela

and Bob would not fulfill their collective obligation.

Thirdly, an individualist might point to the fact that member obligations are

obligations that individuals have and that this is all we need to vindicate logical

reductionism. This response is wide of the mark, because a member obligation is of

necessity a member obligation specified by a plan consisting of one or more optimal

group actions. This means that a member obligation essentially includes a reference

to a group. Group obligations are conceptually prior to member obligations, since

the group members determine their member obligations by reasoning from the

group obligation.27 As mentioned before, this kind of reasoning is called ‘we-

reasoning’ (Tuomela 2013). Kutz acknowledges the role of such reasoning in

determining member obligations when he writes that ‘[j]ointly acting agents must

reason backwards from the nature of the group act to an understanding of what each

should do if the group act is to be achieved’ (Kutz 2000a, pp. 83–84). It is hard to

see how this position squares with his individualism.

Fourthly, an individualistmight admit that memberobligations include a reference to a

group, but try to avoid the collectivist consequences of this admission by claiming that

this reference is inessential, because member obligations are in fact individual obligations

and individual obligations do not include any reference to a group. This response is

inadequate for two reasons. First, the proposed identification of member obligations and

individual obligations is not enough to meet the demands of individualism, because we

showed in Sect. 3.3 that group obligations do not imply (and nor are they implied by)

individual obligations. Secondly, we argued in Sect. 4 that fulfilling an individual

obligation is neither necessary nor sufficient for fulfilling a member obligation specified

by a plan: member obligations are not individual obligations.28

27 Copp, Isaacs, and Lawford-Smith defend closely related positions on the connection between group

obligations and member obligations. Copp (2007, p. 374) writes: ‘if a collective has a duty, this is itself a

moral consideration that gives at least some members a pro tanto duty to do their part in bringing it about

that the collective does its duty’. Isaacs (2011, p. 10) maintains that ‘collective obligation lends shape and

form to the obligations of individuals’. Compare Isaacs (2011, pp. 57–58). Lawford-Smith (2012, p. 463)

argues that ‘[g]roups have an obligation, which divides into parts in its bearing on the parts of the group,

the members’.
28 Our analysis ties in with Copp’s (2006, 2007) claim that individual obligations might conflict with and

even outweigh member obligations. Copp argues that member obligations are pro tanto obligations rather

than all-things-considered obligations. Accordingly, it might be that a group has an all-things-considered

obligation and that the group members have pro tanto member obligations. Such a pro tanto member

obligation might be outweighed by an all-things-considered individual obligation.
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We conclude from these four considerations that our analysis does not support

logical reductionism about group obligations and member obligations. Because

logical reductionism about forward-looking and backward-looking collective moral

responsibility is not to be had without logical reductionism about group obligations

and member obligations, our analysis also fails to support logical reductionism

about collective moral responsibility. All in all, our analysis vindicates collectivism

about collective obligations and about collective moral responsibility.
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Appendix

Lemma 1 (Horty 2001, p. 74) Let M ¼ hN; ðAiÞ; d; vi be a deontic game model.

Let G � N be a group of agents. Then

OptimalðGÞ 6¼ ;:

Proof Assume that OptimalðGÞ ¼ ;. By definition of M, it holds that AG is finite

and non-empty. Then for all a0G 2 AG there is an aG 2 AG such that aG 	 a0G. Because

AG is finite, there must be a cycle anG 	 an�1
G 	 � � � 	 a2

G 	 a1
G ¼ anG with all mem-

bers aiG in AG. Because 	 is transitive, it holds that anG 	 anG, that is, anG � anG and

anG 6� anG. Contradiction. Therefore, OptimalðGÞ 6¼ ;. h

Lemma 2 (Kooi and Tamminga 2008, p. 9) Let M ¼ hN; ðAiÞ; d; vi be a deontic

game model. Let F � G � N. Let aF ; a
0
F 2 AF and let a00G�F 2 AG�F . Then

If aF � a0F ; then ðaF ; a00G�F Þ � ða0F ; a00G�F Þ:

Proof Assume that aF � a0F . Let a00G�F 2 AG�F . Suppose that a000�G 2 A�G. Then

ða00G�F ; a
000
�GÞ 2 A�F . Hence, by our assumption it must be that

dðaF ; a00G�F ; a
000
�GÞ� dða0F ; a00G�F ; a

000
�GÞ. Therefore, for all a000�G 2 A�G it holds that

dðaF ; a00G�F ; a
000
�GÞ� dða0F ; a00G�F ; a

000
�GÞ. Hence, ðaF ; a00G�F Þ � ða0F ; a00G�F Þ. h

Theorem 1 Let /;w 2 L and G � N. Then

(i) 
 ðGÞ/ ! e½G�/
(ii) 
 ½G�ð/ ^ wÞ $ ð½G�/ ^ ½G�wÞ
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(iii) 
 ðGÞð/ ^ wÞ $ ððGÞ/ ^ ðGÞwÞ.

Proof (i) Assume that M; a 
 ðGÞ/. Then for all a0 2 A with a0G 2 OptimalðGÞ it

holds that M; a0 
 /. Because OptimalðGÞ 6¼ ;, there is an a0G 2 OptimalðGÞ. Sup-

pose that a00 2 A is such that a00G ¼ a0G. Then it must be that M; a00 
 /. Hence, for all

a00 2 A with a00G ¼ a0G it holds that M; a00 
 /. Then M; a0 
 ½G�/. Hence, there is an

a0 2 A such that M; a0 
 ½G�/. Therefore, M; a 
 e½G�/.

(ii) ()) Assume that M; a 
 ½G�ð/ ^ wÞ. Then for all a0 2 A with a0G ¼ aG it

holds that M; a0 
 / ^ w. Then for all a0 2 A with a0G ¼ aG it holds that M; a0 
 /
and for all a0 2 A with a0G ¼ aG it holds that M; a0 
 w. Hence, it must be that

M; a 
 ½G�/ and M; a 
 ½G�w. Therefore, M; a 
 ½G�/ ^ ½G�w.

(() Assume that M; a 
 ½G�/ ^ ½G�w. Then M; a 
 ½G�/ and M; a 
 ½G�w. Then

for all a0 2 A with a0G ¼ aG it holds that M; a0 
 / and for all a0 2 A with a0G ¼ aG it

holds that M; a0 
 w. Then for all a0 2 A with a0G ¼ aG it holds that M; a0 
 / ^ w.

Therefore, M; a 
 ½G�ð/ ^ wÞ.
(iii) ()) Assume that M; a 
 ðGÞð/ ^ wÞ. Then for all a0 2 A with a0G 2

OptimalðGÞ it holds that M; a0 
 / ^ w. Then for all a0 2 A with a0G 2 OptimalðGÞ it

holds that M; a0 
 / and for all a0 2 A with a0G 2 OptimalðGÞ it holds that

M; a0 
 w. Hence, it must be that M; a 
 ðGÞ/ and M; a 
 ðGÞw. Therefore,

M; a 
 ðGÞ/ ^ ðGÞw.

(() Assume that M; a 
 ðGÞ/ ^ ðGÞw. Then M; a 
 ðGÞ/ and M; a 
 ðGÞw.

Then for all a0 2 A with a0G 2 OptimalðGÞ it holds that M; a0 
 / and for all a0 2 A

with a0G 2 OptimalðGÞ it holds that M; a0 
 w. Then for all a0 2 A with a0G 2
OptimalðGÞ it holds that M; a0 
 / ^ w. Therefore, M; a 
 ðGÞð/ ^ wÞ. h

Theorem 2 Let / 2 L. Then

(i) 
 ½F�/ ! ½G�/ for all F � G � N

(ii) 6
 ½G�/ ! ½F�/ for some F � G � N.

Proof (i) Assume that M; a 
 ½F�/. Then for all a0 2 A with a0F ¼ aF it holds that

M; a0 
 /. Suppose that a00 2 A is such that a00G ¼ aG. Note that aG can be written as

ðaF ; aG�F Þ. Then it must be that a00 ¼ ðaF ; aG�F ; a
00
�GÞ and a00F ¼ aF . Then it must

be that M; a00 
 /. Hence, for all a00 2 A with a00G ¼ aG it holds that M; a00 
 /.

Therefore, M; a 
 ½G�/.

(ii) We define a model M ¼ hN; ðAiÞ; d; vi. Let N ¼ fi; jg be its set of agents. Let

Ai ¼ fai; a0ig be the set of actions available to agent i and let Aj ¼ faj; a0jg be the set

of actions available to agent j. Let the deontic ideality function d be defined as

follows: dðai; ajÞ ¼ dðai; a0jÞ ¼ dða0i; ajÞ ¼ dða0i; a0jÞ ¼ 1. Let the valuation function v

be defined as follows: vðpÞ ¼ fðai; ajÞg. See Fig. 4. Then it is easy to see that

M; ðai; ajÞ 
 ½i; j�p and M; ðai; ajÞ 6
 ½i�p. h
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Theorem 3 Let / 2 L. Then

(i) 6
 ðFÞ/ ! ðGÞ/ for some F � G � N

(ii) 6
 ðGÞ/ ! ðFÞ/ for some F � G � N.

Proof (i) Following Horty (2001, p. 126), we define a model M ¼ hN; ðAiÞ; d; vi.
Let N ¼ fi; jg be its set of agents. Let Ai ¼ fai; a0ig be the set of actions available to

agent i and let Aj ¼ faj; a0jg be the set of actions available to agent j. Let the deontic

ideality function d be defined as follows: dðai; ajÞ ¼ dðai; a0jÞ ¼ dða0i; ajÞ ¼ 1 and

dða0i; a0jÞ ¼ 0. Then OptimalðiÞ ¼ faig and Optimalði; jÞ ¼ fðai; ajÞ; ðai; a0jÞ; ða0i; ajÞg.

Let the valuation function v be defined as follows: vðpÞ ¼ fðai; ajÞ; ðai; a0jÞg. See

Fig. 5. Then it is easy to see that for all action profiles a it holds that M; a 
 ðiÞp and

M; a 6
 ði; jÞp.

(ii) Following Horty (2001, p. 125), we define a model M ¼ hN; ðAiÞ; d; vi. Let

N ¼ fi; jg be its set of agents. Let Ai ¼ fai; a0ig be the set of actions available to

agent i and let Aj ¼ faj; a0jg be the set of actions available to agent j. Let the deontic

ideality function d be defined as follows: dðai; ajÞ ¼ dða0i; a0jÞ ¼ 1 and dðai; a0jÞ ¼
dða0i; ajÞ ¼ 0. Then OptimalðiÞ ¼ fai; a0ig and Optimalði; jÞ ¼ fðai; ajÞ; ða0i; a0jÞg. Let

the valuation function v be defined as follows: vðpÞ ¼ fðai; ajÞ; ðai; a0jÞ; ða0i; a0jÞg. See

Fig. 6. Then it is easy to see that for all action profiles a it holds that M; a 
 ði; jÞp
and M; a 6
 ðiÞp. h

Theorem 4 Let / 2 L and F � G � N. Then

(i) 
 ðFÞ/ ! :ðGÞ:/
(ii) 
 ðGÞ/ ! :ðFÞ:/.

Proof (i) Assume that M; a 
 ðFÞ/. Then for all a0 2 A with a0F 2 OptimalðFÞ it

holds that M; a0 
 /. Suppose that M; a 
 ðGÞ:/. Then for all a0 2 A with a0G 2
OptimalðGÞ it holds that M; a0 
 :/. Note that OptimalðGÞ 6¼ ;. Let a0 2 A be such

that a0G 2 OptimalðGÞ. Note that a0G ¼ ða0F ; a0G�F Þ for an a0F 2 AF and an

a0G�F 2 AG�F . Suppose that a0F 2 OptimalðFÞ. Because a0F 2 OptimalðFÞ, it holds

Fig. 4 [i, j]p, but not [i]p

Fig. 5 (i)p, but not (i, j)p
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that M; a0 
 /. Because ða0F ; a0G�F Þ ¼ a0G 2 OptimalðGÞ, it holds that M; a0 
 :/.

Contradiction. Hence, a0F 62 OptimalðFÞ. Then there must be an a00 2 A with a00F 2
OptimalðFÞ such that a00F 	 a0F . Hence, a00F � a0F . By Lemma 2, it must be that

ða00F ; a0G�F Þ � ða0F ; a0G�F Þ ¼ a0G. Note that for all a000 2 A with a000F ¼ a00F it holds that

M; a000 
 / and that ða00F ; a0G�F Þ 2 AG. Hence, ða00F ; a0G�F Þ 62 OptimalðGÞ. Then there

must be an a� 2 A with a�G 2 OptimalðGÞ such that a�G 	 ða00F ; a0G�F Þ. Because 	 is

transitive, it must be that a�G 	 a0G. Hence, a0G 62 OptimalðGÞ. Contradiction. There-

fore, M; a 6
 ðGÞ:/. Hence, M; a 
 :ðGÞ:/.

(ii) Analogous to (i). h

Theorem 5 Let / 2 L. Then

(i) 
 ðF 1Þ/ ! :ðF 2Þ:/ for all F 1;F 2 � N such that F 1 \ F 2 ¼ ;
(ii) 6
 ðF 1Þ/ ! :ðF 2Þ:/ for some F 1;F 2 � N

(iii) 
 ððF 1Þ/ ^ ðF 2Þ:/Þ ! ð:ðGÞ/ ^ :ðGÞ:/Þ for all F 1;F 2 � G � N

(iv) 
 ððGÞ/ _ ðGÞ:/Þ ! :ððF 1Þ/ ^ ðF 2Þ:/Þ for all F 1;F 2 � G � N.

Proof (i) Following Horty (2001, p. 79), assume that M; a 
 ðF 1Þ/. Then for all

a0 2 A with a0F 1
2 OptimalðF 1Þ it holds that M; a0 
 /. Because OptimalðF 1Þ 6¼ ;,

there is an a0 2 A with a0F 1
2 OptimalðF 1Þ. Suppose that M; a 
 ðF 2Þ:/. Then for

all a00 2 A with a00F 2
2 OptimalðF 2Þ it holds that M; a00 
 :/. Because

OptimalðF 2Þ 6¼ ;, there is an a00 2 A with a00F 2
2 OptimalðF 2Þ. Because

F 1 \ F 2 ¼ ;, it holds that ða0F 1
; a00F 2

Þ 2 AF 1[F 2
. Let a� ¼ ða0F 1

; a00F 2
; a000�ðF 1[F 2ÞÞ for

some a000 2 A with a000�ðF1[F 2Þ 2 A�ðF1[F 2Þ. Then M; a� 
 / and M; a� 
 :/. Con-

tradiction. Therefore, M; a 
 :ðF 2Þ:/.

(ii) Following Kooi and Tamminga (2008, p. 16), we define a model

M ¼ hN; ðAiÞ; d; vi. Let N ¼ fi; j; kg be its set of agents. Let Ai ¼ fai; a0ig be the set

of actions available to agent i, let Aj ¼ faj; a0jg be the set of actions available to

agent j, and let Ak ¼ fak; a0kg be the set of actions available to agent k. Let the

deontic ideality function d be defined as follows: dðai; aj; akÞ ¼ dðai; aj; a0kÞ ¼
dðai; a0j; akÞ ¼ dða0i; aj; a0kÞ ¼ 1 and dðai; a0j; a0kÞ ¼ dða0i; aj; akÞ ¼ dða0i; a0j; akÞ ¼

Fig. 6 (i, j)p, but not (i)p

Fig. 7 (i, k)p and ðj; kÞ:p
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dða0i; a0j; a0kÞ ¼ 0. Let the valuation function v be defined as follows:

vðpÞ ¼ fðai; aj; akÞ; ðai; a0j; akÞg. See Fig. 7. Then it is easy to see that for all action

profiles a it holds that M; a 
 ði; kÞp and M; a 
 ðj; kÞ:p.

(iii) Use Theorem 4 and contraposition.

(iv) Use (iii) and contraposition. h
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