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Abstract Recent work in cognitive and computational neuroscience depicts
human brains as devices that minimize prediction error signals: signals that
encode the difference between actual and expected sensory stimulations. This
raises a series of puzzles whose common theme concerns a potential misfit
between this bedrock informationtheoretic vision and familiar facts about the
attractions of the unexpected. We humans often seem to actively seek out
surprising events, deliberately harvesting novel and exciting streams of
sensory stimulation. Conversely, we often experience some wellexpected
sensations as unpleasant and to-be-avoided. In this paper, I explore several
core and variant forms of this puzzle, using them to display multiple
interacting elements that together deliver a satisfying solution. That solution
requires us to go beyond the discussion of simple information-theoretic
imperatives (such as 'minimize long-term prediction error') and to recognize
the essential role of species-specific prestructuring, epistemic foraging, and
cultural practices in shaping the restless, curious, novelty-seeking human
mind.
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1 Predictive processing

Predictive processing1 (henceforth, PP) depicts perception, cognition, and action as the
closely woven products of a single kind of inferential process. That process (‘active
inference’ in the sense of Friston et al. 2010) aims at the progressive reduction of
organism-salient prediction error signals. The computational basis of perception, cog-
nition, and action (if this ambitious story is on track) involves only three ‘basic
elements’ – predictions (flowing from a long-term multi-level ‘generative model’),
prediction error signals (calculated relative to active predictions), and the estimated,
context-varying ‘precision’ of those prediction error signals. Precision estimates the
inverse variance of a prediction error signal – in other words, it sets error bars around an
error signal according to its currently estimated importance or reliability. High-
precision errors enjoy greater post-synaptic gain and (hence) increased influence.
Conversely, even a large prediction error signal, if it is assigned extremely low
precision, may be rendered systemically impotent, unable to drive learning or further
processing.

The human brain, PP here suggests, commands a rich, integrated model of the
worldly sources of sensory inputs, and uses that long-term model to generate on-the-
spot predictions about the probable shape and character of current inputs. The rich,
integrated (generative) model takes a highly distributed form, spread across multiple
neural areas that may communicate in complex context-varying manners. The model
itself is installed by some combination of evolutionary bequest and ongoing lifetime
learning. But this adds nothing further to the onboard equipment since lifetime learning
is itself enabled by the ongoing attempt at prediction. To predict the next word in a
sentence, you would be helped by a knowledge of grammar. But one way to learn a
surprising amount of grammar, as work in machine learning clearly demonstrates, is to
try repeatedly to predict the next word in a sentence, adjusting your future responses in
the light of past patterns. The brain thus uses the prediction task to bootstrap its way to
the structured world-knowledge that is later used to generate better (and better)
predictions.2

Prediction-driven learning, when implemented using hierarchical (hence multi-level)
machinery automatically uncovers structure at multiple scales of space and time. Each
higher level attempts to predict the sensory signal as it appears at the level below, and
does so by learning about patterns in the lower level responses. Higher levels, in a
language processing task, might thus specialize in predictions that involve word-level
knowledge, while lower ones would specialize in predictions that involve letter-level
knowledge, still lower ones in predictions that turn on stroke-level knowledge, and so

1 Predictive Processing (Clark 2013a, b, c) is also known as hierarchical predictive coding and as ‘active
inference’. The former label stresses the layered, roughly hierarchical, organization of these systems and their
use of the data compression technique known as ‘predictive coding’ while the latter is most closely associated
with their more recent extensions into the domain of action and motor control. For discussion of these labels
and of the (weakly) hierarchical assumption, see Clark (2016).
2 The use of multi-layer neural nets, engaged in a prediction task, to acquire approximations to grammatical
knowledge in simplified domains is well established (Elman 1991, 1993; Frank (2006)). This shows that the
prediction task can indeed be used to bootstrap the learning of regularities in language. This falls short (as an
anonymous referee correctly notes) of showing that the full complexities of a natural grammar could be learnt
in this way. But this is not a problem, since predictive processing is silent on the important question of how
much innate bias may be involved in language learning. For discussion, see Clark (2013c).
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on. Higher level guesses are then used to contextualize and inform lower-level
responses, while lower level responses inform the higher-level guessing. This give
and take enables higher-level guesses at what the word is to resolve ambiguities at the
letter level, for example between a poorly written ‘ev’ and a ‘w’ (for this example, see
Friston 2002 and discussion in Clark (2016) chapter 5)). PP thus delivers a multi-scale
grip on the worldly sources of structure in the sensory signal. This means (Kiebel et al.
2009) that higher levels come to specialize in predicting events and states of affairs that
are ‘built up’ from the kinds of features and properties predicted by lower levels. The
message-passing schema by which this is accomplished is one in which predictions
flow sideways (within a level) and downwards, so that each level is attempting to use
what it knows to predict the evolving pattern of activity at the level below. Notice that
activity at each level is thus informed by the predictive attempts of the level immedi-
ately above. Each level effectively treats activity at the level below as if it were raw
sensory evidence, and seeks to predict that evidence as it arrives. This will be important
later in our treatment.

Prediction error signals then encode whatever is currently not accounted for by the
top-down (and sideways) flow of prediction. As previously mentioned, to make the best
and most flexible use of that flow of prediction error PP architectures simultaneously
estimate the precision of the prediction error signal itself. This enables different
circumstances to render different prediction error signals important, and may mandate
different balances between processing in different brain regions and between top-down
prediction and incoming sensory evidence. Reading a puzzling passage in an instruc-
tion manual while listening to music, I may need to devote my attention to the visually
presented words, temporarily ignoring or down-regulating the impact of information
from the auditory stream. In PP terms, that means increasing the estimated precision
(hence the impact) of prediction errors regarding the manual-reading task. Trying to
hear your words in a noisy room requires me to rely heavily upon my top-down
predictions to fill in evidential gaps. But looking at a rare coin under a bright light
implies taking small variations in the sensory signal very seriously indeed, the better to
spot a well-made fake. In all such cases, the variable precision-weighting of prediction
error provides a flexible means to adjust the balances of power according to task and
context. Implemented by multiple means in the brain,3 flexible precision-weighting thus
renders these architectures astonishingly fluid and context-responsive (Clark 2016).

Finally, action itself (if PP is correct) is accomplished by a canny use of the same
resources. The core idea (Friston et al. 2010) is that there are two ways for brains to
match their predictions to the world. Either find the prediction that best accounts for the
current sensory signal (perception) or alter the sensory signal to fit the predictions
(action). If I predict I am seeing my cat, and error ensues, I might recruit a different
prediction (e.g. ‘I am seeing the computer screen’). Or I might move my head and eyes
so as to bring the cat (who as it happens is right here beside me on the desk) into view.
Importantly, that flow of action can itself be brought about, PP suggests, by a select
sub-set of predictions – prediction of the (trajectory of) proprioceptive consequences
that would ensue were the desired action to be performed. This turns out to be a
computationally efficient (Friston 2011b) way of implementing motor commands.

3 For example, slow dopaminergic modulation, and faster time-locked synchronies between neuronal popu-
lations. For discussion, see (Engel et al. 2001; Feldman and Friston 2010).
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Action here results from a kind of self-fulfilling prophecy in which predicting a select
subset of the sensory consequences of an action serves to bring the action about.
Notice, however, that action also provides a potent means of testing the current
hypothesis, for example disambiguating between equiprobable hypotheses (Seth
(2015), Friston et al. (2012a)). The resulting picture is one in which perception and
action are complementary manifestations of a single adaptive regime, whose core
operating principle is the reduction of precise, organism-salient prediction error.

2 Three versions of the ‘darkened room’ worry

The most prominent concerns about the PP framework are all variants on questions
concerning scope. Can this slim prediction-driven tool-kit really assemble and account
for all the richness and variety of a human cognitive life? A popular way to press this
worry is via the so-called ‘Darkened Room’ scenario (Friston et al. 2012b). Darkened
Room scenarios come in various flavours. Some are designed to highlight the apparent
unattractiveness of situations in which prediction error might seem to be minimized,
while others depict the apparent attractiveness of situations in which prediction error
might seem to be increased.

Version 1 can be labeled BThe Death Trap^. The worry here is that the cognitive
imperative of prediction error minimization can seem like a recipe for adaptive disaster.
If brains like ours are driven only to minimize prediction error signals, why don’t
creatures like us simply find a nice dark corner (providing fully predictable, meager,
unvarying patterns of sensory stimulation) and stay there, slowly growing weaker and
then dying? Such creatures would surely display what Willard Van Orman Quine nicely
described as a ‘pathetic but praiseworthy tendency to die before reproducing their kind’
4 – In this case, by being the victims of their own prediction error minimizing success.

Version 2 can be called BThe Boredom Trap^. The idea here is that a common
response to the Death Trap worry – one which we will briefly rehearse below - leads to
an equally pernicious variant. On this variant, the prediction error minimizing routine
has the resources to ensure that we stay alive, but dooms us to sample the world so as to
actively harvest the sensory streams we expect.

Version 3 is the hardest to describe, but (I hope to show) the most potentially
damaging. Let’s call it BThe Merely Modest Exploration Trap^. It arises insofar as
plausible responses to the first two variants involve appeals to the adaptive value of a
certain amount of exploration – for example, it’s value in reducing long-term uncer-
tainty and insuring against volatile environments. But such appeals still seem to fall
short of providing a full or distinctive account of the deep positive attractions of
novelty, play, and exploration. Yet we humans (so the worry goes) appear to value
novelty and exploration in ways not obviously reducible to instrumental value. Indeed,
whole traditions in art and entertainment have been built around the perceived value of
experiential surprise. The Darkened Room worries thus bring us face to face with one
of the major questions confronting any account of core sub-personal mechanisms – the
question of its ‘fit’ with conscious, personal-level experiential facts.

4 The phrase occurs as part of a discussion of inductive reasoning, in the essay BNatural Kinds^ in the
collection Ontological Relativity and Other Essays (1969), p. 126.
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In sum, the worry – here appearing in three distinct yet closely related guises - is that
the core imperative to reduce long-term prediction error looks inconsistent with much
that we humans deem valuable and attractive, rendering the PP story at best radically
incomplete.5

3 Avoiding the simple death trap

The Death Trap worry has a standard, but I think importantly underspecified, solution.
The solution (see, for example, (Friston 2011a) is to claim that creatures like us simply
do not ‘expect’ to sit still and die in dark nutrition-less corners. Even well-adapted
darkness-dwellers (troglodytes) would ‘predict’ motion, foraging, and feeding, and
those predictions would (courtesy of the standard PP apparatus of ‘active inference’
described earlier) help bring such motions and foraging expeditions about. In much the
same vein, it should be noted (Hohwy 2013) that there is no inconsistency between
active exploration (e.g. searching for food in new places) and the minimization of
prediction error, as long as we are careful about the various time-scales over which
these occur. If we ‘expect’ sufficient food in some deep, bedrock way, then we may
reduce long-term surprise relative to that expectation by taking steps to ensure that food
sources remain available even in changing and volatile environments.6

Another way to express this is by distinguishing ‘surprise’, in its usual experiential
sense, from ‘surprisal’ – the information-theoretic construct representing the difference
between sensory evidence and predictions made on the basis of a model of the world.7

Thus we read that:

Put simply, (most) agents would find it highly surprising to be incarcerated in a
dark room and would thus generally try to avoid that state of affairs. More
formally, there is a fundamental difference between the intuitive meaning of
Bsurprise^ in terms of unpredictable sensory input and surprise (in information
theoretic terms) under a particular model of the world. Finding ourselves in a dark
room (and being subject to a surprising sense of starvation and sensory

5 A tempting response at this point would be simply to insist that PP offers a staunchly sub-personal story that
is therefore fully consistent with any personal-level account. Such a response might be bolstered by reflection
on the important distinction (see section 3 following) between personal-level (conscious, experiential) surprise
and sub-personal ‘surprisal’. I choose not to take this direct route, because it seems inconceivable (from my
broadly naturalistic perspective) that personal-level facts should float free of the swathes of sub-personal
activity upon which they supervene. My view (which I will not attempt further to defend here) is thus that each
discourse constrains the other, such that apparent conflicts must eventually be resolved so as to reveal
relations, however complex, between our conscious experiences and the complex weave of probabilistic
sub-personal prediction. All that is, of course, consistent with the view that personal-level descriptions serve
special purposes, and may carve nature in ways alien to other discourses. What is required is simply that our
personal-level profiles should be intelligible in the light of good mechanistic models of their physical
underpinnings. It is apparent threats to this intelligibility that the current paper aims to dissolve. For some
useful discussion, see Drayson (2014).
6 For explorations of many of these issues, cast in terms of the more familiar ‘exploit-explore’ balances
required for adaptive success, see Hammerstein and Stevens (Eds.) (Hammerstein and Stevens 2012). For a
rich PP-style exploration of the issues, see Friston et al. (2016).
7 See (Tribus 1961)
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deprivation) is a highly surprising state, even though it represents an environment
with maximally predictable sensory input. (Schwartenbeck et al. 2013) p. 2

There is something right about all these moves. Quite generally, animals like us live
in a changing and challenging world and so must adopt quite complex strategies
(Friston 2010) to stay within their species-specific windows of viability. In this way,
Friston suggests, our ‘neural expectations’ may come to include expectations of
‘itinerant trajectories’ mandating change, exploration, and search. We ‘expect’ to
sometimes engage in random environmental search as a means of entering into
adaptively valuable states. To put it crudely, we randomly sample because - qua
evolved organisms - we ‘expect’ to discover food, mates, or water at some point during
the expedition.

But such responses open the door to a different kind of worry. It is that the notions of
prediction and expectation may now be being stretched beyond their proper limits. Do
we really predict or expect constant supplies of food and water, and are we really
‘surprised’ (even in a technical, information-theoretic sense) when, halfway through a
local famine, such supplies are no longer to be found? . It is this very broad sense of
‘prediction’ that (Anderson and Chemero 2013) suggest threatens to trivialize PP’s
claim to offer a grand unifying theory of the brain. To this, it may be responded that all
that is meant is that the animal has priors that specify the various forms of escape. But
the issue then becomes how much explanatory work such appeals to priors can do – for
any behaviour whatsoever can be cast as optimal with respect to some set of (perhaps
bizarre) priors, as formally demonstrated by Brown (1981).

Can we do better? A clue emerges in work on ‘interoceptive predictive coding’ (see
e.g. (Seth 2013; Barrett and Simmons 2015; Pezzulo 2014). This work highlights an
under-appreciated feature of the total sensory stream that the agent is trying to predict.
That feature is the stream of information specifying (via dense vascular feedback) the
physiological state of the body. That includes the state of the gut and viscera, blood
sugar levels, temperature, and a great deal more- see (Craig 2014) for a full review.
What happens when a unified multi-level prediction engine crunches all that intero-
ceptive information together with exteroceptive information specifying states of affairs
in the world? Such an agent has a predictive grip on multi-scale structure in the external
world. But that multi-layered grip is now superimposed upon (indeed, co-computed
with) another multi-layered predictive grip – a grip on the changing physiological state
of her own body. And these clearly interact. As your bodily states alter, the salience of
various worldly opportunities alters too. Such estimations of salience are written deep
into the heart of the predictive processing model, where they appear (as we just saw) as
alterations to the weighting (the ‘precision’) of specific prediction error signals. As
those estimations alter, you will act differently, harvesting different streams of extero-
ceptive and interoceptive information, that in turn determine subsequent actions,
choices, and bodily states.

Add to that picture recent work (Kanai et al. 2015) that foregrounds the role of sub-
cortical influences in the assignments of precision that determine perception and action.
Here sub-cortical structures (especially the thalamus, and within it, the pulvinar) seem
poised to play a special and crucial role. Understanding that role requires us to move
beyond what ((Pessoa 2014) p.11) describes as the ‘corticocentric’ image in which
evolutionary older sub-cortical structures are dominated and controlled by the more
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recent cortical overlay. Instead, we are led to endorse an ‘embedded’ view (Pessoa (op
cit)) according to which cortical and sub-cortical states and activities change in a
coordinated fashion characterized by ongoing patterns of mutual influence. Thus the
pulvinar, to take the most studied example, is now thought to play a key role in gating
(by the potent tool of variable precision-weighting (Kanai et al. 2015)) core aspects of
cortico-cortico communication.

The overall effect should be to seamlessly merge sub-cortical and cortical influences
during action and action-selection. Sub-cortical influences here bias (to use the term
favoured by Pessoa) large-scale neural patterns towards signals that are biologically
valuable – those accorded high precision within the PP scheme. Consistent with this,
(Barrett and Bar 2009) provide a physiologically detailed account of how affect, action,
perception and prediction are also constantly co-computed, courtesy of ongoing
looping exchanges with ‘core-affect’ areas such as the OFC, ACC, insula and amyg-
dala. All this keep us from straying too far from adaptive ‘set points’ reflecting basic
organismic needs for food, exercise, company, and water. Talk of ‘expecting to find’
such staples is now revealed as just a kind of innocent summary shorthand for complex
distributed webs of prediction and (especially) precision- estimation. This delivers a
much more substantive unpacking of the idea of an ‘embodied predictive model’, and
one relative to which the Death Trap gets no purchase.

4 Beyond boredom

There remains, however, a subtly different version of the Death Trap worry – the
version dubbed ‘the Boredom Trap’. It is nicely presented in the following passage:

If our main objective is to minimize surprise over the states and outcomes we
encounter, how can this explain complex human behavior such as novelty
seeking, exploration, and, furthermore, higher level aspirations such as art, music,
poetry, or humor? Should we not, in accordance with the principle, prefer living
in a highly predictable and un-stimulating environment where we could minimize
our long-term surprise? (Schwartenbeck et al. 2013, p. 2)

Schwartenbeck et al. have a positive story to tell here, and I return to it in section 7
below. Similar worries – though without the accompanying positive story - have been
raised by (Froese and Ikegami 2013). These authors suggest that the long-term
minimization of prediction-error might mandate ‘stereotypic self-stimulation, catatonic
withdrawal from the world, and autistic withdrawal from others’.

A first – but ultimately insufficient – response is to notice that many of the remedies
outlined in 3.2 still apply. The experiential attractiveness of just-right doses of novelty
and (agentive) surprise may thus be implemented by complex cortico-sub-cortical loops
that implicate multiple systems of reward and value. These systems of reward and value
are, we saw, neatly accommodated within the sub-cortically expanded PP scheme,
where high-precision prediction errors track valuable (hence preferentially action-
entraining) states of affairs. It is also worth stressing the potential species-level advan-
tages of a spectrum of individually differing tendencies towards play and exploration,
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as realized by these complex webs of cortico-sub-cortical influence. This too plausibly
represents a good evolutionary strategy for optimally combining, at the population
level, the exploitation of known resources with the search for new ones. In other words,
having a spread of individual differences in tendencies to exploit and explore presum-
ably makes for a more robust population – one in in which some, but not all,
individuals will be more inclined to take greater risks, and to forage further afield.

Simple versions of the Boredom Trap can thus be avoided, individual differences
accommodated, and the fundamental attractions of play and novelty preserved. This is
progress. It plugs varying tendencies towards play and exploration right into the heart
of the predictive economy, allowing some prediction error minimizing agents deliber-
ately to seek out adaptively valuable doses of complexity and challenge. It does so,
moreover, without trivializing the notion of prediction itself. But it is not enough.

5 What information-theoretic imperatives can’t do

Even this, however, may seem unsatisfying to the determined critic who now
reformulates her worry by suggesting that these prediction-error-minimizing agents
exhibit at most a modest and instrumentally-motivated tendency towards play, explo-
ration, and the search for novel experiences. These prediction error minimizing agents
remain locked, it seems, into an information-theoretic journey whose guiding principle
is in some way unacceptably conservative. It is a journey which, if successful, will be
marked only by the attainment of expected goals and meta-goals (including, for
advanced agents, expected doses of exploration, epistemic foraging, and novelty-
seeking). But such agents, it may be feared, remain fundamentally cognitively conser-
vative. Doesn’t this leave unexplained the basic human need for ‘self-actualization and
personal growth’ (Maslow 1943))? Such commonly felt needs are better captured, it
may be suggested, by considering open-ended objectives such as increasing the
richness of the events of which we can make sense, rather than by more conservative
information-theoretic ideas such as those that appear centered upon survival and
homeostasis.

This, then, is the third, final, and most genuinely challenging incarnation of the
Darkened Room worry – the one we dubbed the ‘Merely Modest Exploration Trap’.
Prediction error minimizing agents are driven – or so the worry goes - by a fundamental
information-theoretic goal that is itself inimical to human flourishing.8 For such agents,
the ultimate information-theoretic goal is a state in which there is zero prediction error.
This looks diametrically opposed to oft-lauded goals such as continued personal growth
and self-actualization (see Maslow 1943; Seligman et al. 2013). How, if at all, are we to
reconcile such expansive visions of human flourishing with the information-theoretic
goal of prediction error minimization?9

One response (which we should reject, for reasons that will emerge shortly) is to
seek some subtly different core information-theoretic imperative. In just this vein,

8 Thanks to Bill Phillips for impressing this worry upon me.
9 I suspect – and thanks to a helpful referee for bringing this out – that the sceptic can always find some notion
of ‘flourishing’ that any specific positive story fails to deliver. This is because there are, as we are seeing,
multiple tricks and ploys that conspire to help us generally avoid the dark room scenarios The take home
message is that there are many traps, and just as many escape routes.
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(Little and Sommer 2013) suggest that we should shift our attention from the minimi-
zation of prediction error to the maximization of mutual information (hence the
maximisation of prediction success). Such an agent would seek to maximize the mutual
information (see also (Phillips 2013)) between an internal model of estimated causes
and the sensory inputs. Minimizing entropy (prediction error) and maximizing mutual
information (hence prediction success), Little and Sommer argue, will each reduce
prediction error but would differ in how they select actions. A system that seeks to
maximize mutual information won’t, they argue, fall into the dark room trap. For it is
driven instead towards some sweet spot between predictability and complexity and will
Bseek out conditions in which its sensory inputs vary in a complex, but still predictable,
fashion^.

Compelling empirical evidence for such a profile includes work by (Kidd et al.
2012) who conducted a series of experiments with 7- and 8-month-old infants mea-
suring attention to sequences of events of varying (and well-controlled) complexity.
Infant attention, they found, was characterized by what they dub a ‘Goldilocks Effect’,
focusing upon events presenting an intermediate degree of predictability—neither too
easily predictable, nor too hard to predict. The probability of an infant looking away
was thus greatest when complexity (calculated as negative log probability) was either
very high or very low. The functional upshot, Kidd et al. suggest, is that ‘infants
implicitly seek to maintain intermediate rates of information absorption and avoid
wasting cognitive resources on overly simple or overly complex events’ (Kidd et al.
2012, p. 1). Such tendencies to seek out ‘just-novel-enough’ situations are a good
candidate for some form of innate specification, since they would cause active agents to
self-structure the flow of information in ways ideally suited to the incremental acqui-
sition and tuning of a rich and informative generative model of their environment. More
generally still, agents that inhabit complex, changing worlds would be well-served by a
variety of policies that drive them to explore those worlds, even when no immediate
gains or rewards are visible. This kind of ‘epistemic foraging’ is itself mandated by the
pressure to reduce prediction error across longer and longer stretched of time.

Related proposals have been made by (Oudeyer and Smith 2016) who suggest that
the core information-theoretic principle should be one that drives organisms to expe-
rience ongoing improvements, manifesting as a continual decrease in prediction errors,
rather than seeking simply to minimize prediction errors. This would likewise rule out
Darkened Room scenarios in which there is no trajectory of improvement of prediction.
Oudeyer and Smith test their hypothesis in a simple robotic experiment, in which the
drive to experience an ongoing reduction in prediction error implements a version of
‘curiosity-drive learning’. The robots actively selected experiences that delivered
progressive decreases of prediction error, yielding a kind of ‘self-organized epigenesis’.
In these experiments, Oudeyer and Smith argue, BProgress in learning in and for itself
generates intrinsic rewards and an action selection system directly aims to maximize
this reward^ (op cit p.2).

Curiosity-driven learning and exploration are, I agree, among the key features that
characterize a great deal of animal behaviour. They are features moreover, that seem
especially well-developed in the human case, leading Oudeyer and Smith to speculate
that Bthe dominance of curiosity in the motivational hierarchy may be key to the
emergence of wide-ranging domain-specific knowledge in humans as compared to
other species^ (op cit p.9). But curiosity-driven learning and exploration are not best
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seen as alternatives to the core information-theoretic imperative of reducing long-term
prediction-error. Instead – or so I suggest - they reflect the operation of that very
principle, as it plays out within species-specific webs of neuro-anatomical structure and
– in the human case especially - cultural constraint.

To see this, it helps first to appreciate that no information-theoretic target can, in
principle, be immune from what I shall dub ‘information-theoretic subversion’. Thus
take a system aiming to maximize prediction success. Such a system will, to be sure,
exhibit a certain kind of ongoing expansion. For to maximize prediction success, it will
continually extend its reach to encompass as new states and patterns. But there will be
many ways to do this, most of which would not represent any kind of human
flourishing or self-actualization. Such an agent might, for example, continuously re-
arrange a finite (but lifetime inexhaustible) stock of small coloured tiles into larger and
larger patterns, inducing then learning new predictive relationships (if I look at this
pattern then move my eyes left, this is what I will see) at every stage. Mutual
information between the agent’s neural economy and the environment is now increas-
ing at every step. But this, surely, is just another way of becoming sucked into a
(somewhat more psychedelic) version of the darkened-room. Such an agent, we may
suppose, is constrained by more ancient homeostatic drives to maintain her integrity, to
eat, drink, and mate. But her quality of life, her degree of flourishing, looks every bit as
limited as that of the prediction-error-minimizing agent. A similar scenario can be
constructed for the agent driven to experience an ongoing reduction in prediction error.
Such an agent could be ‘hijacked’ by a darkened room containing only a computer
monitor and an endless supply of simple (but not too simple) puzzles, each of which
allows a steady trajectory of improvement until the next one pops up on the screen.

The point here is perfectly general (Clark 2013b)). Any purely information-
theoretically specifiable goal will be subvertable, it seems, by the right set of environ-
mental conditions. For any such agent, no matter what information-theoretic quantity or
quantities they are aiming to maximize or minimize, there will be a scenario, consistent
with that imperative, that looks inconsistent with true flourishing. Some imaginable
scenario, tailored to whatever information-theoretic recipe is on offer, will provide an
endless but in some intuitive sense boring or trivial supply of whatever quantity is
being maximized or minimized – and this will be true no matter how complex or
systematically changing the information-theoretic goal, and whether or not that goal
includes medicinal doses of ‘required randomness’. Any information-theoretically
specifiable target, I am suggesting, will be subject to this kind of subversion.

6 Predicting in designer worlds

Such subversion does not, however, typically occur.10 The reason for this, I suggest, is
that we humans minimize prediction errors within the ecologically unique, self-
engineered contexts of culture, technology, and linguaform exchange. This provides a
second, and potent, means of avoiding the traps. It is our cultural practices themselves
that conspire to render us humans so deeply exploratory and that more-or-less

10 Near approximations include the tendency to addiction and various forms of obsessive behavior. For some
nice discussion, see (Montague 2006; Friston 2012).
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immunize us against information-theoretic subversion of even the ‘merely modest’
kind. Constrained and enabled to survive by our basic homeostatic economy, we
humans – like other animals - induce complex multi-layered distributed world models.
These models span cortical and sub-cortical systems, directly implicating action, play,
and exploration in the ways sketched earlier. But as a kind of spin-off from all this deep
(and language-enriched – see (Lupyan and Clark 2015)) model-building activity, we
humans also began to construct complex social and physical environments. Our human
minds are now marinated in the unique statistical baths of a succession of such designer
worlds –worlds characterized by the complex traditions and practices of art, science,
recreation, and literature. Those practices reliably spawn an open-ended set of new
local goals and projects (think Pokemon Go). The skilled pianist has learnt to reduce
prediction error with respect to complex melodies and motor repertoires, and the skilled
mathematician with respect to properties and relations among numbers, theorems, and
other constructs. But the musical and mathematical traditions within which they operate
reflect the operation of cultural forces such as practices of writing, reflecting, dissem-
inating, and peer review. Such practices – beautifully described by (Hutchins 2011) -
repeatedly push us away from local equilibria, ensuring a steady diet of change,
innovation, and challenge. Indeed, we may expect complex ratcheting effects here as
altered environments install policies that drive the creation of further altered environ-
ments – a process nicely described by Heyes (2012) and further discussed in Clark
(2016, Chapter 9). These powerful effects are further explored in work by ‘enactivists’
sympathetic to PP- for example, Rietveld and Kiverstein (2014), Bruineberg et al.
(2016), Gallagher et al. (2013)). For a discussion of some issues that might (or might
not) still separate these traditions, see Clark (2016) chapter 9, Madary (2015).

For present purposes, what matters is just that by designing and repeatedly re-
designing our own environments, populating them with new books, paintings,
theories, games, and practices, we humans continually move the goalposts for our
own prediction-based learning. In this way cultural processes deliver new envi-
ronments that set new targets for the same old prediction error minimizing
machinery to cope with – much as if an animal were repeatedly to alter the
niche with respect to which long-term prediction error needs to be reduced. An
implication may be that true conceptual novelty, when it arises, is better ex-
plained as (at least in large part) a result of the framing and scaffolding of human
activity by shifting cultural practices and changing sets of concrete constraints.
For example, Wheeler (forthcoming) shows, using multiple real-world case stud-
ies, how ‘external developments’ such as new equipment and room acoustics can
create physical spaces and opportunities that constrain individual exploration in
ways that yield new forms of music and musical performance.11 This also speaks
to the observation 12 that cultural scaffolding (e.g. via immersive experience
within a musical style or tradition) often seems to constrain novelty rather than
(as I argue) enabling it. Both effects routinely occur, with conceptual novelty
often resulting from changes to what might superficially seem like quite tangen-
tial factors – but ones that turn out to have deep impacts upon individual and
collective innovation.

11 Thanks to an anonymous referee for encouraging me to flag this implication.
12 Thanks to an anonymous referee for pursuing this issue.
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Finally, consider the suggestion (Schwartenbeck et al., op cit) that some evolved
agents may acquire policies that positively value the opportunity to visit many new
states. For such agents, the value of some current state is partially determined by the
number of possible other states that it allows them to visit. But how do such policies get
a foothold in the first place? The answer may again lie in the complex human-built
environments of art, literature, and science. Predictive agents immersed in these kinds
of designer environment learn to value (assign high precision to) states that make
available wide ranges of new moves and outcomes, enabling scientists and designers to
discover ideas that bring rewards that register in basic forms of neural circuitry
(Montague 2006). Our evolving cultural practices thus piggyback upon ancient reward
systems in ways that enable human populations to continuously seek out new ideas and
perspectives.

Does all this threaten to revive the original puzzle, requiring there to be some
information-theoretic ‘goal’ that our communal cultural explorations serve? I see
no reason to think so. Instead, an operative information-theoretic imperative need
only explain why creatures like us are built the way we are, with mechanisms that
assign proximal value (here manifesting as precision) in ways that can serve any
project that we have embraced. Against the enabling backdrop of the homeostatic
machinery that keeps us within our windows of organismic viability, the shape and
contents of the rest of our mental lives are determined by prediction-driven
learning as it unfolds in the ecologically unique context of our many designer
environments – mathematics, philosophy, fashion, dance, music, sailing, and
mountain-climbing, to name but a few. Most of the heavy lifting, when it comes
to explaining the shape and nature of the modern mind, is thus be done by our
peculiar social and intellectual histories – histories replete (Clark 2013b) with
chance and path-dependent unfolding.

7 Conclusions: Putting prediction error in its place

Darkened Room scenarios are among the most popular reasons for scepticism
concerning the most extreme explanatory aspirations of predictive processing.
Standard replies to such worries can seem ad hoc, asserting that evolved agents
simply ‘expect’ to play, to explore, and to experience epistemically useful
amounts of novelty and surprise. But things look better once when the PP
story is expanded to include patterns of sub-cortical influence and complex
training enivironments. Talk of ‘expectations’ of play and novelty then stand
revealed as a kind of shorthand for these webs of interacting processes whose
combined effect is to ensure that prediction-error minimizing agents keep busy,
harvesting information and improving their overall model of embodied ex-
change with the world. In our remarkably social species, this process runs via
designer environments such as art, literature, music, and science. Our
prediction-error-minimizing brains are thus immersed in exotic statistical baths
that enforce exploration and novelty-seeking in ways hitherto unknown among
terrestrial animals.
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