
Vol.:(0123456789)

Pharmaceutical Research 
https://doi.org/10.1007/s11095-024-03699-x

ORIGINAL RESEARCH ARTICLE

Antimicrobial Activity Classification of Imidazolium Derivatives 
Predicted by Artificial Neural Networks

Andżelika Lorenc1   · Anna Badura1 · Maciej Karolak2 · Łukasz Pałkowski2 · Łukasz Kubik3 · Adam Buciński1

Received: 14 November 2023 / Accepted: 9 April 2024 
© The Author(s) 2024

Abstract
Purpose  This study assesses the Multilayer Perceptron (MLP) neural network, complemented by other Machine Learning 
techniques (CART, PCA), in predicting the antimicrobial activity of 140 newly designed imidazolium chlorides against 
Klebsiella pneumoniae before synthesis. Emphasis is on leveraging molecular properties for predictive analysis.
Methods  Classification and regression decision trees (CART) identified the top 200 predictive molecular descriptors. Prin-
cipal Component Analysis (PCA) reduced these descriptors to 5 components, retaining 99.57% of raw data information. 
Antimicrobial activity, categorized as high or low, was based on experimentally proven minimal inhibitory concentration 
(MIC), with a cut-point at MIC = 0.856 mol/L. A 12-fold cross-validation trained the MLP (architecture 5-12-2 with 5 
Principal Components).
Results  The MLP exhibited commendable performance, achieving almost 90% correct classifications across learning, vali-
dation, and test sets, outperforming models without PCA dimension reduction. Key metrics, including accuracy (0.907), 
sensitivity (0.905), specificity (0.909), and precision (0.891), were notably high. These results highlight the MLP model's 
efficacy with PCA as a high-quality classifier for determining antimicrobial activity.
Conclusions  The study concludes that the MLP neural network, along with CART and PCA, is a robust tool for predicting 
the antimicrobial activity class of imidazolium chlorides against Klebsiella pneumoniae. CART and PCA, used in this study, 
allowed input variable reduction without significant information loss. High classification accuracy and associated metrics 
affirm the method’s potential utility in pre-synthesis assessments, offering valuable insights for antimicrobial compound 
design.

Keywords  artificial neural networks · classification · imidazolium derivatives · klebsiella pneumoniae · principal 
component analysis

Introduction

Antibiotic resistance is a pressing concern as bacteria 
continue to develop resistance to antimicrobial substances 
employed in healthcare and industrial settings. This poses 
a significant threat to public health, as noted by the World 
Health Organization (WHO) and other reputable health 
organizations [1–4]. One of the most alarming micro-
organisms, with the ability to develop multi-resistance 
against antimicrobial agents, is Klebsiella pneumoniae 
[5]. This Gram-negative bacteria from the Enterobacte-
riaceae family was reported by the Centers for Disease 
Control and Prevention (CDC) as a high-risk pathogen 
due to its increasing rate of antibiotic resistance and poten-
tial to spread [6]. That trend of K. pneumoniae strains 
is especially dangerous in hospitals and other healthcare 
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institutions where asepsis and antiseptics have a huge 
impact on patients’ outcomes and hospitalization time 
[7]. The problem increased due to large-scale disinfectant 
usage when the COVID-19 pandemic raised [8, 9]. The 
K. pneumoniae's propensity to develop resistance against 
popular antibiotics and disinfection agents and the abil-
ity to create biofilm forces scientists to find new ways of 
searching for new antimicrobial compounds [10–12].

The identification of potential drugs can be a time-
consuming and resource-intensive process. One of the 
problems in the area of searching for new active agents is 
the multitude of compounds that can be synthesized, not 
all of which will exhibit desired properties. However, this 
process can be streamlined and made more efficient, by 
leveraging computational chemistry and machine learn-
ing (ML) techniques in the initial research stage. This 
approach reduces the need for significant resources such 
as time, money, and chemicals. The ultimate goal is to 
identify the most promising compounds, which can then 
be further developed [13–16].

Traditional QSAR models may struggle to capture com-
plex and non-linear relationships between chemical struc-
tures and antimicrobial activity while the non-linear nature 
of ML algorithms can represent these intricate connections. 
Those methods are able to extract patterns and insights 
directly from data without relying on predefined equations, 
making them more adaptive to the nuances of bis-imidazo-
lium compounds’ structure–activity relationships. It can also 
learn relevant features from the data, potentially uncovering 
subtle structural elements that contribute to antimicrobial 
activity. This is in contrast to QSAR, where feature selection 
is often a manual and hypothesis-driven process [17, 18].

Among various ML techniques used in drug research and 
development, the Artificial Neural Networks (ANNs) are 
one of the most promising. At the initial stages of molecu-
lar development, both 2D and 3D structures of compounds 
can be modeled, and subsequent to these models, molecu-
lar descriptors can be calculated, The obtained data can be 
used as predictors of antimicrobial activity by utilizing com-
putational intelligence methods like ANNs [19–21]. This 
approach allows the preselection of potential antimicrobial 
compounds and the synthesis of only the most promising 
ones [22].

ANNs, widely employed in bioinformatics operate in a 
manner inspired by biological neural systems. These net-
works consist of interconnected artificial neurons organized 
into layers, and they become active under specific condi-
tions. One prominent type of supervised ANN utilized in 
this field is the Multilayer Perceptron (MLP). The MLP is 
structured as a feed-forward network comprising a minimum 
of three layers of artificial neurons – input, (at least one) 
hidden, and output. Information flows from one layer to the 
next when it surpasses a predefined activation threshold 

determined by the activation function within each layer's 
neurons [23, 24].

Since MLPs are supervised neural networks with known 
input–output pairs, the primary objective is to minimize the 
discrepancy between predicted and actual outcomes which 
is indicator of the predictive quality of the network. Achiev-
ing this with a single learning attempt is nearly impossi-
ble. Therefore, the training process of an MLP is based on 
epochs, which represent repeated cycles of presenting the 
entire dataset to the network in order to optimize its per-
formance. During each epoch, the strengths of connections 
(weights) between neurons are recalibrated (starting from 
initial random values) based on the errors observed in previ-
ous epochs – the network learns on its own mistakes.. This 
iterative process continues until the network's error reaches 
its minimum, enhancing its predictive accuracy [25].

The problem which can occur in this process is overfit-
ting, which means that the network overly adjusts to the data 
which deprives its ability to generalize the knowledge. In 
this case, the network will perform well on known data but 
the ability to correctly predict outcomes for the new data 
(generalization) is limited.

The reasons that the model overfits the data include sam-
ple size, input data dimensionality, or regularization tech-
niques. A small number of cases taking part in the learning 
process can lead the model to treat the irrelevant information 
(noise) as important characteristics of presented data. As 
the prospects of to increase the number of cases are mostly 
limited, some kind of multiple sampling, for example, dif-
ferent types of cross-validation (CV), is suggested to avoid 
this problem and to optimize the model and enhance its per-
formance by better hyperparameters tuning [26].

Another issue is the high dimensionality of the input data, 
known as the ‘Curse of Dimensionality’ [27]. This term, 
introduced by Bellman indicates that the rising number of 
features in the dataset should be followed by an exponen-
tially rising number of samples to maintain the balance in 
the model. Similarly to the previous issue, as the number of 
samples cannot be enhanced, the way to avoid overfitting 
caused by excessive dimensionality is dimensional reduc-
tion. One of the methods applied as solution is Principal 
Component Analysis (PCA) which, based on correlations 
between features, calculates the Principal Components (PCs) 
describing as much information included in original features 
as possible [28].

An alternative method to mitigate overfitting involves 
the utilization of regularization techniques, with one such 
approach being early stopping. This strategy involves the 
introduction of a separate dataset, referred to as a validation 
set. The validation set containing new, never presented to 
the network cases predicts the solution based on the net-
work architecture previously built using the learning set. 
The function of the validation set is to check the network's 
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generalization ability by comparing the errors made by ANN 
in each epoch. When the errors made in both sets are com-
parable, the learning process is continued, but if the error 
made in the learning set decreases and the validation set 
error increases, the network overfits the learning data and 
the process should be stopped [29].

The only set which doesn’t take part in the learning pro-
cess is the test set. As the cases presented for this set weren’t 
revealed for it in the learning and test stages of network 
modeling, the test set role is to verify the ability of the devel-
oped model to generalize its knowledge for newly presented 
data [30].

In this paper, the authors would like to present a pre-
synthesis approach for the classification of bis-imidazolium 
derivatives using Artificial Neural Networks in combination 
with other machine-learning techniques.. The mechanism of 
action of studied compounds is closely related to their chem-
ical structure and physical properties. Compounds interact 
electrostatically with the negatively charged cell surfaces 
of microbes and surface active compounds easily penetrate 
through the protein–lipid biological membranes, causing 
disturbances in their structural and functional coherence. 
That make them potentialy active against considered in this 
research Klebsiella pneumoniae strains.

Materials and Methods

Structures, Synthesis, and Molecular Descriptors

The authors decided to investigate the 140 novel bis-imida-
zolium compounds (quaternary ammonium salts) as poten-
tial agents [31, 32].

The structures of 140 analyzed imidazolium homologs 
differed in the length of the linker chain (n value—from 
2 to 12 CH2 groups) and the substituent chain (Fig. 1, 
Table I) (full list of homologs available in Table S1 in 
supplementary material). Designed compounds were 
modeled into 2D and 3D structures as neutral compounds 
and the quantum mechanical Density Functional Theory 
(DFT), B3LYP method using Pople’s 6-31G as basis set 
was applied to optimization. Optimization was performed 
in the implicit solvent model SCRF (Self-Consistent Reac-
tion Field) with dielectric constant set to that of water, 
with the use of the PCM (Polarizable Continuum Model). 

Calculations were performed employing Gaussian 09, 
Revision D.02 (Gaussian, Inc., Wallingford CT, USA), on 
a supercomputer cluster nods with 12-core Intel® Xeon® 
E5 v3 2.3 GHz processors. Geometry optimization cal-
culations were carried out at the Centre of Informatics—
Tricity Academic Supercomputer & Network. In further 
analysis, the 5270 molecular descriptors from 29 logical 
blocks were determined using Dragon 7.0 software (Talete, 
Milan, Italy) [33].

The synthesis, molecules determination using nuclear 
magnetic resonance spectroscopy (NMR Spectra), purity 
examination with thin-layer chromatography (TLC), and 
elemental analysis of studied imidazolium compounds is 
described in article by Pałkowski et al. [34].

Antimicrobial Activity

The minimal inhibitory concentration (MIC) value of 
each homolog was determined for the K. pneumoniae 
ATCC 27853 strain based on references of Clinical and 
Laboratory Institute (CLSI) which was also conducted 
and reported by mentioned above Pałkowski et.al. With 
reference to the standard, which was didecylmethylammo-
nium chloride (DDAC) (a quaternary ammonium salt used 
for disinfection and approved by the European Economic 
Area as biocide [35]) with MIC = 0.856 mol/L, imidazo-
lium compounds were categorized to high activity or low 
activity group. Imidazolium compounds with MICs below 
the MIC of the DDAC were classified in the high activity 
category, and those above—low activity category. This 
division resulted in the separation of 64 compounds clas-
sified as high activity class (45.71%) and 76 compounds 
classified as low activity class (54.29%) (Table S1 in sup-
plementary material).Fig. 1   General structure of analyzed imidazolium homologs.

Table I   Informative System 
for 3,3'-(α, ω-Dioxaalkan)bis(1-
Alkylimidazolium) Chlorides

Code R

1 CH3

2 C2H5

3 C3H7

4 C4H9

5 C5H11

6 C6H13

7 C7H15

8 C8H17

9 C9H19

10 C10H21

11 C11H23

12 C12H25

14 C14H29

16 C16H33
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Data Preprocessing

In the preprocessing stage, from the 5270 descriptors 
obtained in previous steps with Dragon 7.0 software the 
ones that were constant for all the cases and/or incomplete 
were deleted. That left 2711 variables for further analysis. 
In the next step, the data was standardized to minimize the 
influence of variables scaling and to make them comparable.

All the calculations in this research were conducted using 
STATISTICA 13, provided by StatSoft Inc., Tulsa, USA.

Descriptors Selection

As each of the 140 examined molecules was characterized 
by a set of 2711 molecular descriptors, a volume of data 
deemed excessive for meaningful analysis within the frame-
work of Artificial Neural Networks (ANN), so the authors 
opted to employ different ML techniques as a strategic 
approach to mitigate the challenges posed by highly prob-
able overfitting issue.

1.	 Authors decided to use Classification and Regression 
Trees (CART) to select the best activity descriptive vari-
ables—descriptors. Based on chi-square statistics and 
p-value (p < 0.001) the trees have selected 200 best-fit-
ted variables. Selected for this research 200 molecular 
descriptors belonged to 19 molecular blocs, and most of 
the descriptors were from the 2D matrix-based descrip-
tors block (92 descriptors, 46%), 3D autocorrelations 
block (25 descriptors, 12.5%) and 2D autocorrelations 
(23 descriptors, 11.5%). (full list of selected descriptors 
available in Table 2 in supplementary material)

2.	 To limit the number of neurons and avoid data over-
load in the input layer, the principal component analysis 
(PCA) was applied. PCA is a linear method of dimension 
reduction, allowing to reduce the number of variables 
included in the network by searching the relationships 
between them. The correlated variables are transformed 
to save most of the variance of the reduced variables and 
create the new variable called the principal component 
(PC) [36] This way, 5 principal components describing 
99.57% of the variability of the data contained in the 200 
selected variables were extracted.

Artificial Neural Networks calculations

Obtained in previous steps 5 PCs were used as input vari-
ables to build ANN classification models and predict, based 
on previously presented conditions, whether the compound 
presents high activity or low activity against K. pneumo-
niae. Cases were randomly divided into 3 sets: learning—98 
cases (70%), validation—28 cases (20%), and test—14 
cases (10%). Using the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) [37] learning algorithm, the software automatically 
modeled 500 artificial neural networks from which the one 
with the most optimal architecture, the best predictive abil-
ity, and the lowest error (the number of correctly classified 
cases) was chosen as principle ANN hyperparameters setting 
for further analysis.

Results

Model selection, metrics and evaliation

The chosen MLP neural network was built of 5 neurons in 
the input layer, 12 neurons in the hidden layer, and 2 neurons 
in the output layer. The graph of the modeled MLP with 
inputs, outputs, and activation functions for hidden and input 
layers is shown in Fig. 2.

As the sample size was relatively small, the 12-fold cross-
validation (CV) sampling technique has been applied. The 
percentage of correctly classified cases in every CV fold is 
shown in Fig. 3.

The quality of the learning, validation, and test set was 
considered as an average of models obtained in the cross-
validation step and established at 88.61%, 90.48%, and 
86.90% respectively, which means that the model correctly 
classified almost 90% of cases in each set. To evaluate the 
quality of modeled ANN the classification metrics and sta-
tistics were calculated (Table II).

To compare the performance of MLPs with and without 
PCA dimension reduction, the authors constructed vari-
ous MLP models with different input configurations. The 
minimum number of inputs for MLPs without PCA was 
determined by the number of inputs used in MLPs with 
dimension reduction. The maximum number of inputs was 
constrained to not exceed 10% of the total cases (given the 
dataset size of 140 cases, the maximum number of inputs 
was set at 14).

The inputs were selected from the top of the list of the 
200 most significant variables (according to p-value) derived 
initially with the CART method used for PCA dimension 
reduction. These variables were not subjected to further 
reduction and were directly used as the inputs for MLPs. 
The resulting models are presented in Table III.

Discussion

Current reports show that effectiveness in the search for 
new antimicrobial agents is estimated at around 5% [38]. 
Released in 2015 in ‘Review of Antimicrobial Resistance’ 
[39] pointed out that the number of drugs under develop-
ment showing notable antimicrobial activity, especially 
against Gram-negative bacteria with broaden resistance is 
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desperately low and it is estimated that among the vast of 
drugs under development only a few show potential against 
most resistant pathogens. In the mentioned review authors 
also pointed out that lowering the costs of antibiotics devel-
opment is one of the major issues to focus on.

The majority of research is limited by financials, hence 
the most important problem seems to be the disproportion 
between the costs of the development of new drugs and 
the resulting benefits [40]. Implementing in silico meth-
ods in the preliminary selection of modeled drugs allows 
excluding the compounds with low antibacterial proper-
ties, which improves the whole process by minimizing the 
number of synthesized compounds, reducing costs, and 
lowering chemical waste as the methods of searching for 
new antimicrobial agents are hindered by vast of financial 

and ecological restrictions nowadays. The combination 
of molecular modeling and ML methods seems to have 
a high potential for usage in the preclinical stage of drug 
research [41] limiting the needed resources. That also has 
been investigated on a large-scale dataset by Rahman et al. 
where they showed that the use of ML methods in the ini-
tial part of drug research can significantly increase the hit 
rate in searching for antimicrobial agents [42]. Research 
presented by Badura et al. shows that ANNs created to 
categorize 140 imidazolium compounds by their antimi-
crobial abilities have achieved over 90% accuracy for two 
bacterial strains – E. coli [43] and S. aureus [44] as well 
as for C. albicans fungus strain [45] using 20 molecular 
descriptors for each, but in contrast to the work presented 
in this paper, they worked on raw data.

Fig. 2   MLP 5-12-2 graph

Fig. 3   Histogram and table of 
classification correctness (%) 
of learning, validation, and test 
sets 
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The predictive ability of the selected in this research 
ANN allows classifying the compound to the group of high 
activity or low activity with almost 90% certainty. Used 
in the research MLP 5–12-2 neural network based on five 
Principal Components obtained good classification metrics 
with 0.905 sensitivity, 0.909 specificity, 0.891 precision, and 
0.907 accuracy. The MCC which is considered as one of 
the most balanced classification metrics was established at 
0.813. Also, FPR at the level of 0.091 shows a low probabil-
ity of classifying compounds with low antimicrobial activity 
into the group of highly active homologs.

It should be kept in mind that appropriate feature selec-
tion is of great importance for developing accurate predic-
tive models. The number of inputs should be adjusted to 
the analyzed dataset – with an increasing number of input 
features the risk of overfitting rises, but ANN with too small 
number of inputs could not gain the ability to generalize 
knowledge. Taking that into account, the authors used the 
PCA method for dimension reduction which allowed low-
ering the number of input variables to 5, maintaining over 
99% of information carried by the 200 molecular descrip-
tors selected with CART. This way of data condensation is 
widely used in computational intelligence problem-solving 
to avoid overfitting and increase algorithm performance 
speed. The concept of using PCA dimension reduction in 
combination with ML models is well known in medical sci-
ences [46–49]. The paper by Chippalakatti et al., comparing 
different classification models with and without PCA dimen-
sion reduction shows that those with PC as inputs reached 
better performance than models based on raw data which 
was also shown in this paper [50]. The results depicted in 
Table III reveal that none of the MLP models trained on the 
original descriptors data outperformed the predictive quality 
of the MLP model trained with PCA inputs. Remarkably, the 
MLP model constructed with only 5 principal components 
encompassing the data from the 200 molecular descriptors 
exhibited better activity prediction than larger models based 
on the raw data. That result reinforces the decision to use 
PCA as a dimension-reduction method.

Conclusions

The supervised MLP NN used in this research reached high 
values in predicting the activity class of presented imidazole 
compounds. The combination of different ML techniques, 
including dimension reduction with PCA for multivariable 
datasets elevated the model performance in comparison to 

Table II   ANN Classification Model Metrics and Statistics

Model metrics
  Layer Input Hidden Output
  No. of neurons 5 12 2
  Activation function Tanh Expotential

Model quality
Learning set Validation set Test set

  Number of cases (%) 98 (70%) 28 (20%) 14 (10%)
  Corectness 

(mean ± SD)
88.61 ± 3.45 90.48 ± 4.65 86.90 ± 7.36

Classification correctness
High activity Low activity All

  General 64 76 140
  Classified correctly 57 (89.06%) 70 (92.11%) 127 (90.71%)
  Classified incorrectly 7 (10.94%) 6 (7.89%) 13 (9.29%)

Classification metrics
TPR 0.905
SPC 0.909
FPR 0.091
FDR 0.109
PPV 0.891
NPV 0.921
ACC​ 0.907
MCC 0.813

Table III   Predictive Qualities 
Comparison of Different MLP 
Models

Set quality Error function Activation function

Learning Validation Test Hidden layer Output layer

PCs MLP 5-6-2 88.61 90.48 86.90 SOS Logistic Tanh
MLP 5-5-2 83.25 84.23 80.95 Entropy Expotential Softmax
MLP 6-5-2 83.59 88.99 83.93 Entropy Tanh Softmax
MLP 7-16-2 82.65 89.29 83.93 Entropy Tanh Softmax
MLP 8-13-2 84.10 88.99 80.36 SOS Logistic Linear
MLP 9-13-2 82.91 89.29 82.14 SOS Exponential Logistic
MLP 10-16-2 84.18 90.48 79.17 Entropy Tanh Softmax
MLP 11-10-2 85.80 90.77 83.33 Entropy Logistic Softmax
MLP 12-3-2 84.27 88.69 86.31 Entropy Tanh Softmax
MLP 13-15-2 84.01 86.61 85.71 SOS Tanh Logistic
MLP 14-2-2 81.89 87.80 80.36 SOS Logistic Logistic
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the models based on raw data.. The application of ML meth-
ods gives scientists the opportunity to study the antimicro-
bial properties of compounds even in the earliest design and 
development stages.

Furthermore, use of several different methods such as 
PCA for dimension reduction to limit the number of ANN 
inputs, the learning process early stopping method sup-
ported by a validation set and use of additional test set to 
evaluate the generalization ability of the network allowed 
to avoid overfitting problem maintaining as best as possible 
performance.

We are aware that artificial neural network models are 
designed to predict, in this case, antimicrobial properties of 
certain homogenous groups of molecules, and for another 
group, there will be a need to build a different model. To 
optimize the accuracy of our models and to improve their 
predictive abilities, it is essential to conduct a comprehen-
sive analysis of a wider range of compounds. The research, 
however, shows that the NN models demonstrate high poten-
tial as a preliminary approach to selecting designed with 
computational methods molecules. In our opinion, the use 
of ANN as a tool for the selection of compounds with anti-
bacterial potential can have a significant impact on the per-
formance of the initial phase of drug development.
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